
ANNALES
UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA

LUBLIN - POLONIA

VOL. ŁI.l, 15__________________ SECTIO A__________________________ 1997

KAZIMIERZ SOBCZYK (Warszawa)

On Cumulative Jump Models for Random 
Deterioration Processes

Abstract. There exists variety of phenomena of cumulative type which 
are adequately described by random sums of random variables, or - when 
dependence on time is essential - by cumulative random processes of the 
form: X(t) = Xi + Xj + ■ • • + Xyv(i) where A', , i = 1,2,..., N(t) are 
random variables characterizing elementary increments (or jumps) of the 
process in quastion and N(t) is a counting process.

In the paper we expound the existing results and new problems associ­
ated with such cumulative processes under various assumptions on random 
variables Xi and process N(t). As a possible application, the modelling of 
fatigue accumulation is briefly discussed.

1. Introduction. In the midst of a rich research activity of D. Szynal 
essential contributions are connected with randomly indexed sequences of 
landom variables (cf. [9], [10], [23]). The papers cited concentrate on the 
asymptotic behavior of randomly indexed sequences and sums of random 
variables, in particular, on the central limit theorem and the rate of con­
vergence. The problems studied by Szynal and his co-workers have, to a 
great extent, close connections with the applied problems in risk theory 
and reliability analysis where a total effect (for example, the total claim 
amount, or the total damage experienced by a machine element) is rep­
resented as a random sum of random partial contributions (cf. [1], [16]). 
There exist a variety of real phenomena of cumulative type, which can be 
adequately described by random sums of random variables, or - when the
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dependence on time is essential - by cumulative random processes of the 
form X(Z,7) = where A\(7) are random variables character­
izing elementary increments (or, jumps) of the process in question, and N(t) 
is a counting stochastic process characterizing a number of the increments 
in time interval [0, /]; 7 denotes an element of the space of elementary events 
T on which a probability structure is defined.

The key quantity of reliability theory is the life-time of a device or system 
and the main problem arising is that of finding the probability distribution of 
the lifetime. In the statistical approach, this distribution is inferred from the 
empirical data on the lifetimes of a number of identical copies of the device, 
mechanical/structural element etc. However, a more satisfactory approach 
to the characterization of the lifetime of engineering device (or, system) is 
to consider a deterioration process including damage and responsible for the 
ultimate failure. The lifetime is then defined to be the hitting time of the 
critical threshold value by the deterioration process . As far as mechanical 
components are concerned, the most common deterioration (or degradation) 
processes are wear, creep, fatigue, plastic deformation and others. Analysis 
of deterioration models provides information on the development of the 
damage in time and, consequently, it can be used for the reliability updating 
and reliability control of the system.

In this paper we wish to expound the basic models for random deterio­
ration phenomena, with special emphasis on those associated with random 
sums of random variables including their ’’continuous” extensions in the 
form of integrals with respect to random measures.

2. Cumulative jump models. Lets us denote by P(/,7) a stochastic 
process and interpret it as the amount of deterioration in the engineering 
element at time t. Real deterioration phenomena are mostly cumulative in 
nature. Process £>(<,7) can be regarded as a non-decreasing and discontin­
uous random process consisting of a random number of jumps, each with 
random magnitude. Therefore, its representation is as follows

N(0
(2.1) £>(f,7) = ^o + X(t,7), X(£7)= £^(7),

«=l

where Do denotes the initial deterioration of sufficient amount to growth; 
it can be regarded as deterministic, or random. Random variables Vi(7) 
characterize the magnitudes of partial (elementary) increments of degrada­
tion and A’(t) is an integer-valued stochastic process (a counting stochastic 
process) characterizing the number of increments in the interval [0, /].
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The model-process _Z?(Z, 7) constitutes a class of cumulative models in 
which particular members are specified by the hypotheses posed on the 
counting process and on the random variables ^(7), i = 1,2,... .
A function of prime interest is the probability distribution of the degradation 
model-process P(/,7) at an arbitrary time t, that is

(2.2) FD(a:;Z) = P{P(/,7) < a;}

or equivalently, the probability density function <)• Let T be a positive 
random variable that characterizes a random time at which the deterioration 
process 7?(Z, 7) reaches a fixed critical value £. Of course,

(2.3) P{T>4 = P{7?(i,7)<e}.

This means that the lifetime distribution and the distribution of the dete­
rioration process are directly related to each other, namely

(2.4) Fr(t) = 1 - FD(x;t)\x-ę .

The determination of explicit probability distribution Pd(x;Z) of the 
model-process (2.1) is, in general, a hard problem. To make the analy­
sis effective one has to introduce simplifying hypotheses concerning both 
the process 7V(Z) and random variable ^(7).

2.1. N(t) — Poisson process, ^(7) - i.i.d. random variables. The
case when N(Z) is the Poisson process with intensity Ao > 0 and ^(7) are
1.1. d random variables is the simplest one (compound Poisson process). But 
even in this case, the explicit, exact probability distribution Pd(x;Z) is not 
available in general. It can be determined only in some particular cases; 
for example if the distribution of random variables y,(7) is the exponential 
one, that is /y(y) = aexp(-a?/), y > 0,a > 0. Then, as well known

(2-5) exp(—A0Z - ax)F (2y/aXotx^ ,

where Ji(-) is a modified Bessel function of the first order given for p > -1
by

00 1
(2-6) /p(z) = |>m+P+i)(2/2) +P‘

To obtain formula (2.5) it is assumed that random variables ^(7) are 
independent of process A(Z).
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In general case, when we only assume that common probability density 
fy (p) (or, characteristic function <py (0)) of random variables Yi(7) is known, 
the characteristic function of X(t,Y) has a general form

(2.7) </>x(0) = exp {AoZ[<py(0) - 1]} .

Unfortunately, there is no general rule yielding the explicit and exact 
inverse transform and providing the corresponding probability density. All 
what we can evaluate from (2.7) are the moments of JC(Z, 7); for example

(2.8) £[X(Z,7)] = A0Z£[E], var X(Z,7) = AoZE^O].

In order to characterize a distribution of X(Z,7) the appropriate ap­
proximations are necessary. Of course, the best known result is when the 
distribution of X(Z,7) at the fixed Z is asymptotically normal with mean 
and variance given by (2.8) for Ao —* oo. For fixed Ao two most popular 
approximations are the Edgeworth and saddlepoint approximations (cf. [3], 
[6], [U])-

The Edgeworth approximation uses the first few central moments of the 
distribution and therefore gives a good approximation in the center of the 
distribution only where x - Xotmy is of order (AoZE2)1/2; the relative error 
tends to infinity in the tail of the distribution. Contrary to this the saddle- 
point approximation gives a small relative error for x = Xotmy; this approx­
imation is valid when Z —► oo, if the Laplace transform g(s) = £[exp(—sE)] 
of fy(y) exists in a neighborhood of zero, the equation g'(s) = my has a 
solution and the characteristic function of Y belongs to Lq for some q > 1.

The question which has risen much attention in the recent years is: What 
happens if x is very large in P{X(Z,7) > a:} but Z is not large. It turns out 
(cf. [8], [9]) that for a large class of densities of Y = Yi the relative error 
of the saddlepoint approximation tends to zero for x —> oo irrespective of 
the value of Z. The classes of densities are the so called Gamma-like, Beta­
like and log-concave and belong to Lq, for some p > 1. The saddlepoint 
approximation has the form

(2.9) P{A'(Z,7) > *} » G(-a)eXP(~ga?) B0(so(s»,serfs)
where

G(s) = £[exp(sX(Z))] = exp{A0Z[p(s) - 1]} , p(s) = £[exp(sE)]
= f/s2InG>^) ’ 5°^) = -2rexP(^2/2)[1 - $(*)]

with $(•) the standard normal distribution function, and where the saddle­
point s > 0 is determined by

-y- In G(s) = x . 
ds(2.H)
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The above approximation is often called the Esscher approximation due 
to his works in 1932 and 1963.

2.2. N(t) - pure birth process, ^(7) - i.i.d random variables. 
In modelling of deterioration processes (e.g. in modelling of fatigue crack 
growth - cf. [17]) it is essential that the intensity of a jump-counting pro­
cess is state dependent. Pure birth process, for which the probability of 
transition from the state k to the state k + 1 in the interval [Z, t + At] 
is proportional to the state k, has the features which make it interest­
ing not only in population growth. In this case the intensity of N(t) is: 
A/j. = \°k,k = 1,2,... , A° > 0. In contrast to Poisson process whose mean 
and variance are linear functions of time, in this case:

D[7V(Z)] = exp(A°Z), varTV(Z) = exp(A°Z)[exp(A°Z) - 1].

For arbitrary probability distribution of random variables Tj(7) = ^(7) 
with the corresponding characteristic function ę>y(0) we have the general 
formula

ro _ pr /ar/mi _ ^y(^)exp(-A0Z)
(2.12) <pr(0) _ D[exp(i0A (Z))] - x _ exp(_ A0Z)]

yielding the general expressions for moments; for example 

E[X (Z, 7)] = exp( A0Z)£[y]
213 var X(Z,7) = exp(A0Z)vary + Dfy1!)] exp(A0Z){exp(A0Z) - 1]|.

In order to obtain the probability density of X(Z,7) one has to evaluate 
the inverse Fourier transform (2.12). If random variables ^(7) = y(7) have 
exponential distribution with parameter a, then (cf. [18])

(2.14) /x(x; Z) = oexp(-A0Z) exp[-aa: exp(-A0Z)], x>0, a > 0, Z>0.

Therefore, the distribution of X(Z,7) for each Z is an exponential one 
with ’’parameter” oexp(—AoZ).

The distribution of random variable T, the time at which the deteriora­
tion process D(Z,7) reaches the critical value £, is easily obtained by using 
formula (2.3). The result is (Do is assumed to be deterministic constant)

(2.15) Dp(Z) = exp[-a(£ - D0)exp(-A°Z)].

Differentiation with respect to Z yields the probability density of the life 
time

(2.16) fT(t) = b\° exp[-A°Z - 6exp(-A°Z)], b = (£ - Do),
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which is of the form of an extreme-type (or, Gumbel) distribution. Analysis 
of experimental data on the deterioration caused by the growth of fatigue 
crack reported in [8] has indicated that the extreme type distribution of the 
form (2.16) can constitute a satisfactory model for the first passage time 
of this process. More details can be found in [18], where also an attempt 
is made to estimate the model parameters (e.g. A°,o) using the empirical 
information about fatigue deterioration. Formulae (2.13-2.16) have been ob­
tained under the assumption that the distribution of ^(7) is exponential. In 
general case, one may look for some asymptotic results. However, according 
to the author’s knowledge the saddlepoint approximations for cumulative 
models (2.1) with underlying birth process seem to be lacking.

2.3. N(t) - Poisson process, ^(7) - correlated random variables. 
The assumption on independence of random variable Fi(7) process (2.1) 
is an essential weakness of the model. It is clear that in real phenomena, 
successive increments in deterioration are not independent. A reason for this 
is that an accumulation of deterioration (damage) usually results in a loss 
of resistance of further damage, so the magnitudes of successive increments 
should be treated as dependent random variables.

Summation of dependent random variables creates very serious difficul­
ties. Perhaps, one may say that this is one of most challenging problems 
of applied probability theory. Even calculation of a few of first moments of 
the sum constitutes a non-trivial computational problem.

Recently, the authors of [13] provided the recursive method-algorithm 
(with respect to n) for calculating £[5"*] where 

(2.17) Sn(7) = Fi(7) + V2(7) + • • • + V„(7) •
The basic formula is as follows

E[Skn] = E[(5n_! + yn)fc] = £[$*_,] + £[ynfc]

(2.18) +£(•) 

t=l x '

This means that each recursion requires that k - 1 expectations 
(2.19) £[5n_1ynfc-1],...,£fc1yn]

are available. Assuming that the sequence y^),... ,yn(7) is stationary, 
one can obtain recursion formulae for expectations (2.19)

^[^-jy^-1] = £[(b + 5n_! )%*-] = £[5’_2^n-l1]

«'-l

+ e[y;y k̂-i

j=i

(2.20)
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where 5n_i = >2 + • • • + Yn-i» and £[(Sn_i j’Y^-*] has been replaced 
by f?[(5„_2),Ynfc71‘]. Therefore, formula (2.20) becomes a recursion formula 
in n. The last sum of expectations in (2.20) can be regarded as simple if 
the power i — j is not greater than 2. Since i — j < k — 2 we conclude 
that the recursive formulae above are computationally manageable (for the 
computerized symbol manipulation for k < 4). In [13] the above formu­
lae have been used to a sequence of polynomials of degree 1/ of standard 
Gaussian variables (i.e. Y; = Pp(Zj),z € N), and Zi,Z2,... ,Zn,... is a 
stationary sequence of standardized Gaussian variables with given covari­
ances c(r) = cov(Z!, Zi+r). Also the results obtained have been used to 
judge the validity of the central limit theorem for dependent random vari­
ables (cf. [22], [24]) in specific applicational situations; especially, to judge 
the speed of convergence of the distribution of to the standard normal
distribution. Of course, such results are of prime interest in the estimation 
of the probability distribution of the integrals of non-Gaussian processes.

Lets us focus our attention again on our main process-model (2.1) with 
correlated random variables. From practical point of view, it is important 
to construct a joint probability distribution (density) of dependent random 
variables Yi(7),... , Yn(7) in terms of known one-dimensional (marginal) 
distributions and covariances (or, correlation coefficients). A construction 
adopted in [16] is known as the Morgenstern model (cf. [14]) according to 
which the joint probability density is presented by the formula

/(l/l,--- ,2/n) = n^(2/i)l1 + 52a«j[1-2FY(2/>)][1-2FY(l/j)]

(2.21)
+ 52 “ 2^y(J/>)] ~ 2^Vj,(2f>)] t1 “ 2^V*(3/fc)] + • ••

i<j<k

where Fyt (y,) are the marginal cumulative distributions,

(2.22) «12...fc
_______Pl2...k_______

(-‘X)kQ\Qi • • -Qk

and p\2...k is the fc-dimensional, normalized joint central moment, i.e.

(2.23)
/Y2-m2\ /Yi-m.Al

Pl2...fc — E ( „ J " ( a. JJ

where m, and ór,-(t = 1,2,... ,fc) are the mean and standard deviation of 
Y,(7), £[•] denotes the mean value, and

Yj-mA
/

{YMFyXy^dyi.(2.24) <2,
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Of course, since the joint density (2.21) has to be non-negative, the Mor­
genstern model is valid under the restrictions on an...k- These restrictions 
are expounded in [12].

The moment of order k of process JV(/, 7) in (2.1) where y,(7) are de­
pendent is

OO oo
(2.25) E[Xk(t, 7)] = £ I N(t) = n] P„(t) = £ EkPnW ,

n=0 n=0

where Ek - the conditional moment of order k is

k

(2.26) Ek = E klE
»=0 hi -I---t-h„ = k

E[Y^...Y^},
/!!!.../!„!

and the summation is extended over all possible combinations of n elements 
giving the sum equal to k. To evaluate the joint moment in (2.26) we make 
use of the Morgenstern representation (2.21) when only binary correlations 
are accounted for the joint moments occurring in (2.26). In this case [19]

(2.27)
n

e[y^ ... km=n 3+e “v- n e^' ’
*=1

r*j

where

(2.28) Mhr = I y^fYr(yr)[i-2FYM}dyr.

Formulae (2.25) - (2.28) give a general representation of the moment of 
order k of the process X(t,7) under the approximation (2.21) and with 
account for the binary correlation only.

Let us assume that:
(1) N(t) is the Poisson process with intensity Ao,
(2) random variables Yi(7) have exponential distribution with parameters 

ai, that is Fyt(y) = aiexp(—aiy^y > 0, and a« = aliv,a > 0,w - natural 
number (which means that E(Yi) — iv la increases with the number of jump 
i; the parameter v can be calibrated to empirical data),

(3) the binary correlation coefficient between 1^(7) and Vj(7) is as follows

\j ~ *1
max(i, j)

, = 1,... , n, i / j ,(2.29) = B 1 -
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where B is a positive constant selected in such a way that the joint proba­
bility density (2.21) is non-negative. Under the above hypotheses, general 
formulae given above yield [19]

fc(v+l)
(2.30) £[%*(/,7)]= £ C<(*)W).

(=i

where c/(5) are the appropriate algebraic expressions including B, whereas 
Ri(z) are the Stirling polynomials of degree I.

For example, when v = 2 we have the following results for the first 
moments of X(Z,7)

(2.31) £[.¥(Z, 7)] = [2(Ao/)2 + 9A0< + 6]

5[X2(M)] = [5(Ao/)5(16 + 35) + 18( AOZ)4(88 + 135)

(2.32) + 345(Ao/)3(28 + 35) + 60(AoZ)2(348 + 235)

+ 360AoZ(38 + 5) + 144o] .

It is worth noting that the effect of parameter 5 on the mean square of 
A"(f,7) is explicit and - as calculations show - significant, especially for 
larger values of time.

Formulae (2.25)-(2.28), or - in particular situation formula (2.30) - ex­
press the moments for arbitrary order k of the jump cumulative process 
X(Z,7) in terms of the probability distribution of elementary increments 
y, (7), intensity of jumps and the correlation coefficients between ^(7). Ex­
cept for the asymptotic results which might be obtained via the central 
limit theorem it does not seem to be possible to obtain analytical formula 
for the probability distribution of the process X(Z,7) at an arbitrary time 
Z. However, having the moments, one can construct an approximate prob­
ability distribution using the information contained in the given moments. 
A possible, effective approach is the use of the maximum entropy principle 
(cf. [20]), as it has been done in [19].

2.4 Generalization. The models discussed above represent the cumu­
lative deterioration level .¥(<,7) of the "system” at time Z as a result of 
summation of the partial (elementary) increments (or jumps) which occur 
in random times according to the process N(t). Of course, the cumulation 
of deterioration may take place in a more complicated way. For example,
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the partial deterioration may depend both on its magnitude and on the 
deterioration level already existing in the system. Such a more general for­
mulation can be accomplished by use of the counting integral with respect 
to a random Poisson measure (cf. [15]). We mean here the representation 
of the deterioration level X(Z,7) in the form

(2.33) X(/,7)= [ [°° h(H3-,y)N(ds,dy)
J to Jo

which means that the mechanism of a system deterioration is as follows. The 
instants of time and magnitudes of partial deterioration form a collection 
of random points (T,-,Yj) in R+ x R+. The number N(A) of such pairs 
falling into a Borel set A has the Poisson distribution; if the deterioration 
jump (increment) occurs at time s with magnitude y when the existing 
deterioration level just before s is Xs- then the partial damage to the system 
is h(Xs-, y). The overall deterioration due to events (jumps) which occurred 
in time interval [to, <] with non-negative magnitudes is given by (2.33). It 
is clear that integral (2.33) is in fact a sum. Indeed, if the points of the 
Poisson random measure are enumerated so that

(2.34) A(A) = 52/a(t<, j/,),

where /x(-) denotes the indicator function of the Borel set A then

characterizes a random number of jumps occurring in the interval [/o,t] with 
magnitudes y € R+. The counting integral (2.33) or (2.35) as interpreted 
above provides an adequate model for a wide class of jump cumulative 
phenomena; in fact, any homogenous process with independent increments 
and no continuous component can be represented in such a form. Of course, 
model-process (3.33) constitutes a stochastic integral equation with respect 
to a Poisson measure. The attempts to characterize the reliability problem 
along this line are presented in papers [2], [5].

3. Fatique-induced deterioration. It is widely accepted that fatigue 
fracture in real engineering materials takes place via formation and growth



On Cumulative Jump Models ... 155

of cracks. However, according to many experimental investigations fatigue 
crack grows intermittently. The damaging stress experienced by the ma­
terial at different times are random and the instances of occurring of such 
stresses are random as well. This is supposed to be mainly due to the fact 
that the fatigue process is primary generated by such ’’factors” as peaks 
of the stress process, its rises and falls, etc., which are random and dis­
crete in time. It is therefore justified to regard the crack growth process as 
a discontinuous random process consisting of a random number of jumps, 
each with random magnitude. Such an approach to modelling of fatigue 
crack growth has been presented in the papers [16], [18], [19]. It should be 
underlined that the cumulative models of the form (2.1) have features that 
make them applicable in modelling various complicated growth process; for 
example - in modelling of crack growth with retardation due to occasional 
overloads. In this situation (cf. [17]) a decrease in growth rate is observed 
which follows a high overloads. To capture mathematically such a phenom­
ena a compound pure birth process with specially defined intensity has been 
adopted in paper [4]. The idea is that instead of the intensity A^ = A°l- of 
the birth process N(t), the following intensity is proposed

(3.1) Xk = XoL(f)Xk

where Xol is constructed to characterize as adequately as possible the 
amount of retardation due to overloadings. The intensity function Afc(Z) 
introduced in [23] is as follows
(3.2)

Xk(t) -  A/;(t,/l,... , t Al )
M

= RH “ ~ti _ ^O^lexpf-a^/ -ti- Oi)}H(t - ti - Oi)
i=i

where <i,... ,<m are the instants of time in which overstresses occurred, 
/z(Z, <^j) is a retardation magnitude function depending on time and a col­
lection of relevant variables (e.g. overloading ratio, stress biaxiality, etc.) 
denoted by £, the parameter 6 is introduced to reflect a delay of the start 
of the retardation, ctj characterizes a decay in the retarded growth after 
t-th overload, and //(•) is the Heaviside unit step function. The physical 
features of the phenomenon enter into the model through the parameters 
C, a, (3 and 0. The interpretation of these parameters in terms of experimen­
tal data are discussed in [23]. In order to model a curvilinear random fatigue 
crack growth the vectorial jump cumulative processes were constructed and 
analyzed in papers [21], [25].
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