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ABSTRACT. We prove a Glivenko-Cantelli lemma for a class of discrete as-
sociated random variables. The obtained result applies in the case of lattice,
in particular, integer-valued and binary random variables.

1. Introduction and the main result. Let (X,).en be a sequence of
random variables defined on the same probability space (2, 7, P). Here and
in the sequel we assume that the random variables are associated, i. e., for
every finite subcollection X,,, X»,,...; Xn, and coordinatewise nondecreas-
ing functions f,g:R* — R the inequality

COV(f(an ’Xngv 00ag) Xnk )a g(X"ll ’ X'lz’ ) Xﬂk)) 2 0

holds, whenever this covariance is defined (cf. [7]).
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Associated processes are widely encountered in mathematical physics and
statistics, in particular in reliability theory and in percolation theory (cf. [4],
(7], [12], [13]). There is a number of limit theorems for associated sequences
such as central limit theorem, strong law of large numbers, weak and strong
invariance principle and the law of the iterated logarithm (cf. [2-4], [6], [8-
13] and references therein). Asymptotic properties of empirical distribution
and empirical survival function were considered in [1] and [8]. Hao Yu [8]
studied the Glivenko-Cantelli lemma and weak convergence of empirical
processes of associated sequences. He considered equidistributed random
variables with continuous distribution function and pointed out that the
Glivenko—Cantelli lemma remained open in the discrete case. Our goal is
to fill this gap.

We shall consider associated random variables taking values in the set
S C R, such that for some é > 0, inf; yes,z2y |z — y| = 6. It is easy to see
that S is at most countable, moreover any finite set and the set of integers
satisfies the given condition. Associated processes of this kind are very
important and were studied in [6] and [7].

Assume that (X, )nen is a sequence of r.v.’s with the same distribution
function F(z) = P(X, < z). Foreachn > 1 put S, = ¥;_, Xs. The
empirical distribution function of X,..., X, is defined as

1 n
Fn(l‘):-ﬁ' ; I[XkSI],SEER,
k=1

where I[- < z] is the indicator function.

Theorem. Let (X,)nen be a sequence of associated random variables tak-
ing values in the set S and having the same distribution function F(z).
Assuming

Y‘ — Cov(Xp, Sn-1) < 00,

Lﬂ 112
we have, as n — 00,

sup |Fn(z)— F(z)| — 0, almost surely.

—00<z<00

Let us observe that the condition used in our Theorem is the same as
in [8], therefore our result extends Theorem 2.1 of [8] on a larger class of
associated sequences.
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2. Proof of the main result and auxiliary lemmas. Let us put g(z) =
(=%lzl + 1) I(~s/2,5/2)(x) and

Gz)= ), g(z-zx).
T, <z,1, €S

G(z) is bounded and absolutely continuous with |G(z)| < 1 and |G'(z)| <

2/6, moreover I[X, < z] = G(X4,), for n € N. Therefore, it follows from
Lemma 1, that

Cov (I[X < 2], I[ X < z]) = Cov (G(Xk),G(Xm)) =

= [ @60 PR < 2,Xn <) = PO S 2)P(Xin < ) dady <
§4/152 / [P(Xk <2,Xm <y)— P(Xy <2)P(X, < y)ldzdy =

= 4/6*°Cov(Xk, Xm), for k # m.

By Lemma 2, we get as n — o0

Fo.(z) = %Z I[ Xk <z} — F(z), almost surely.
k=1

Similarly, taking é(z) =3 <zres 9T = zi) instead of G(z), we prove
that

Fo.(z-0)= %Z I[Xi < z} = F(z —0), almost surely, as n — oo.
k=1

Now, the proof may be completed as in the i.i.d. case (cf. Chung [5]).
For the sake of completeness we recall two results (cf. Theorem 2.3 of
Hao Yu [8] and Theorem 2 of Birkel [2]).

Lemma 1. Let f,g : R — R be absolutely continuous functions in any
finite interval. Then we have, for any random variables X and Y,

conf(xo )= [ [ F@rw[Px <ay <y

—00 —00

- P(X < 2)P(Y < y)|dzdy.
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Le

mma 2. Let (X, ).en be a sequence of associated random variables with

finite variance. Assume

Th

(1]
(2]
(3]
(4]

(5]
(6]

(7]
(8]
(9]
(10]

(1]

Do %Cov(Xn,Sn) < oo.

en, as n — oo, we have (S, — ES;)/n — 0 almost surely.
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