
ANNALES
UNIVERSITATIS MARIAE CURIE-SKLODOWSKA

LUBLIN - POLONIA

VOL. LI. 1,11 SECTIO A 1997

PIOTR KOWALSKI and ZDZISŁAW RYCHLIK (Lublin)

On the Weak Law of Large Numbers for Randomly 
Indexed Partial Sums for Arrays

Dedicated to Professor Dominik Szynal 
on the occasion of his 60th birthday

Abstract. We present a general weak law of large numbers for randomly 
indexed partial sums for arrays. We consider the case where no assumption 
concerning the interdependence between the summation random indices and 
partial sums is made.

1. Introduction. Let {An«, » > 1> » > 1} be an array of random variables 
defined on a probability space (0,7-', P). Let us put

771

/■„o = {0,0},
Pnm = 1 < i < m}, n > 1, m > 1.
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Let {Nn, n > 1} be a sequence of positive integer-valued random vari­
ables defined on the same probability space (Q,.P, P).

Let f be a nondecreasing function such that /(x) > 0, for x > 0, and 

(1) lim /(x) = +oo.

Let {kn, n > 1} be a sequence of positive integers such that kn —> oo as 
n —> oo.

Define

m

(2) P [Ani-f (|Xnt| < /(&n)) l-Pn.t'-l] •
t=l

In the present paper we present sufficient conditions under which

p
(3) (SnN„ ~ anN„) /Nn —> 0 as n -> oo

and

p
(4) (SnNn - anNJ/bn—>0 as n oo,

where {£>„, n > 1} is a sequence of positive numbers such that bn —> oo as
p

n —+ oo. Here, and in what follows, —* denotes the convergence in probabil­
ity. We consider the case where no assumption concerning the interdepen­
dence between the summation indices Nn and the sequence {Snm, m > 1} 
is made.

Weak law of large numbers for sequences of nonidentically distributed 
random variables has been intensively studied in several papers. Pyke and 
Root (1968), Chatterji (1969), Chow (1971), Gut (1974), Klass and Te­
icher (1977), and Rosalsky and Teicher (1981) generalized weak law of large 
numbers for sequences of independent and identically distributed random 
variables. Chandra (1989) introduced so-called Cesaro uniform integrability 
condition. Under this condition Chandra (1989), Chandra and Bose (1993), 
and Gut (1992) have studied Zp-convergence of several types of sequences 
of random variables. Recently Hong and Oh (1995) introduced another 
condition which relaxes Cesaro uniform integrability one and, under this 
condition, studied the weak law of large numbers for arrays. Hong (1996) 
has also presented the weak law of large numbers for randomly indexed 
partial sums for arrays. His result has the following form. If

p
Nn/f(n) —* A as n —► oo,(5)
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where 0 < A < oo is a constant, then under some additional assumptions 
on the random variables {Xnj, i > 1, n > 1}

p(SnNkn - anNkn ) /Nkn —> 0 as n -+ oo.

In this paper we extend the result of Hong (1996). Our basic assumptions 
on {Nn, n > 1} are much weaker than (5) and include the case when, in (5), 
A is a positive random variable. We also present sufficient conditions under 
which (4) holds, too. Since the sequence {bn, n > 1} does not depend on 
chance, (4) is usually more useful than (3) in applications. The assumptions 
concerning the random variables {Xni,i > 1, n > 1}, follow closely those 
of Gut (1992), Hong and Oh (1995) and Hong (1996). In the proofs of our 
results we also use some ideas of these authors.

Here we would also like to mention that almost sure convergence of se­
quences with random indices have been studied by Rychlik and Zygo (1991). 
On the other hand, the complete convergence of sequences of randomly in­
dexed partial sums has been intensively studied by Szynal (1972), Csórgó 
and Revesz (1981), see pages 252-254, Gut (1983, corrections 1985), Csórgó 
and Rychlik (1985).

2. Main results.

Theorem 1. Let {A\it, a> 1, n > 1} be an array of random variables. 
Let {JVn, ii > 1} be a sequence of positive integer-valued random variables. 
If there exists a non-random sequence of positive integers {kn, n > 1} such 
that kn —»• oo as n oo,

(6) P (Nn > kn) —> 0 as n -+ oo,

and, for some f satisfying (1),

(7)
"n
52 p (|Ani| > f(kn)) -> 0 as n oo,
i=i

and

(8) (/(fcn))'2 £ EX2niI (|Ani| < f(kn)) - 0 as n —> oo,
i=l

then
p(SnNn - anNn) / f(kn) —• 0 as n — oo.(9)
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If, in addition, there exists a constant Co such that 0 < Co < oo and

(10) P (Nn < Co/(fcn)) —* 0 as n —> oo,

then

p
(11) (SnNn - anNn)/Nn—*0 as n -+ oo.

Remark 1. Let us observe that if (9) holds and

(12) Nn/f(kn)—>X as n —> oo,

where A is a random variable such that P(0 < A < oo) = 1, then by 
Corollary 2 in Chow and Teicher (1988), p. 254, (11) holds, too. Here, and 
in what follows, denotes the convergence in distribution.

Remark 1 can also be taken into account in Theorems 2 and 3, since the 
convergence in distribution is weaker than the convergence in probability.

Let f be a nondecreasing function such that /(x) > 0, for x > 0,

(13) x~1 is nonincreasing as x —> oo,

(14) x 1 /2(x) —> +oo as x —> oo

and

(15) [ x-1 /(x)d/(a:) = 0 (t-1 /2(t)) as t —> oo.
Jo

Theorem 2. Let {Xni, i > 1, n > 1} be an array of random variables. 
Let {Nn, n > 1} be a sequence of positive integer-valued random variables 
such that for some non-random sequence of integers (fcn, n > 1}, kn -+ oo 
as n —> oo, (6) holds. If for some f satisfying (13), (14) and (15)

kn
fc;1£aP(|Xn,|>/(a))-0 

i=l
(16) as a oo
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uniformly in n, then (9) holds. If, in addition, either (10) or (12) holds, 
then (11) holds, too.

Remark 2. Let us observe that if for some non-random sequence {ln, n > 
1}) ln —* as n -+ oo, and for some f satisfying (13) and (14)

(17) iVn//(ln)c as ra —> oo,

where 0 < c = const. < oo, then (6) and (10) hold e. g. with kn = 2 [c/(ln)]. 
Here, and in what follows, [x] = the largest integer < x. Furthermore, in 
this case, f(kn) — f (2[c/(ln)]) < 2c/(l)/(/n) and this inequality can be 
taken into account in (9) and (10).

Theorem 3. Let {Xni, i > 1, n > 1} be an array of random variables. 
Let {Nn, n > 1} be a sequence of positive integer-valued random variables. 
If for some f satisfying (13), (14) and (15)

m

(18) ra-1 aP (|XnJ > /(a)) —> 0 as a —+ oo,
1=1

uniformly in m and n, and for some sequence of positive integers {kn, n > 
1}, kn —* oo, as n —► oo,

(19) Nn/f(kn) A as n-H-oo,

where X is a random variable such that P(0 < A < oo) = 1, then

(20) (b'niVn — anN„) / f (.kn) * 0 as n >00

and

(21) (SnN„ ~ M.) /Nn -^-> 0 as n -> oo.

Theorem 4. Let {Xn, n > 1} be a sequence of independent and identically 
distributed random variables such that for some 1 < p < 2

(22) raP(|A'i|p > ra)-> 0 as ra-> oo.

If {Nn, n > 1} is a sequence of positive integer-valued random variables 
such that

A as ra -* oo,(23) Nn/nl/p p
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where A is a random variable such that P(0 < A < oo) = 1, then

(24) n) —> 0 as n —► oo

and

(25) (Sjv„/-Nn) - PX1/(|A’i|p < n) —> 0 as n —► oo,

where Sn = +-----(- Xn, n > 1.

3. Proofs.

Proof of Theorem 1. Let us put

x'ni = XniI{\Xni\<

m
S'nm = > I, m > 1.

t=l

Then, by (6) and (7), we get

(26) P (SnNn / $nNn ) — P (Nn > fcn) + P [Xn,- /

k»
< P (Nn > fcn) + P (l^n«l > /(*n)) -* o as n -> oo 

i=i

Thus it is enough to prove

(27) asiwoo.

For an arbitrary e > 0 we define

|s;J -£p(x;i|pn,i.1)| >£/(hn)
t=i

D„ = J «?•
j=l
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Since, for every n > 1, X'ni — E (X'ni|Pn,i-i), 1 < i < kn, is a martingale 
difference sequence, we have, by the Hajek-Renyi inequality, Chow and 
Teicher (1988), Theorem 7.4.8,

(28)

P(£>„) = P ( max - £ E I > £/(fcn)
\ l<J<k„ I J " 1

kn
< £-2/-2(A:n) £ £(XC - PCXCIP^))2 

•=i

<(£/(U)-2Xto2
i=l 

kn

= (£/(fcn))-2 < /(*„))•
1=1

Furthermore

(29) P (BnNn) < P (BnNn n [Nn < fcn]) + P(Nn > fcn)
< P(Pn) + P(Nn > fcn).

Thus, by (6), (28), (8) and (29), we obtain (27). Hence, by (26) and (27), 
(9) holds. On the other hand, by (9) and (10), we get (11).

Proof of Theorem 2. We show that (13), (14), (15) and (16) imply (7) 
and (8). Let us observe that, by (16),

kn kn
£ p (|xnf I > /(&„)) < k-1 £ knP(\Xni\ > /(£„)) ->0 as n - oo, 
t=l i=l

so that (7) holds.
On the other hand

kn
(30) £PX2/(|Xn,|</(fcn))

1=1

k k
= £ £ EX2niI(f(j - 1) < |Xni| < /(;))

t=i j=i 
A.' k

itt /2(j){P(|Xnf| > /(j - 1))- P(|Xni| > /(»)}

i=l j = l
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= £ {P(l)P(l*ni| > /(0))-/2(t„)P(|X„d > /(i,))

1=1

+ E [P« + 1) - PM] > f(j» }
1=1

kn
</2(i)£p(|xni|>/(0))

t=i
kn

+ E E [PU+1) - PMR(l*»il > /U))-
1=1 j=l

Now, by (14),

k„
(31) (A*"))-2 £ P (I*n»l > A°)) - 0 aS n -* O0’

i=l

Set, for every n > 1 and j > 1, 

k«

«.M = *;'E>p(i-¥"<i >•«»).
1=1

Then, by (16),

(32) sup a„(j) —► 0 as j -> oo.
n

Furthermore, by (13), (14) and (15),
k k

(33) E [Pu+p - Pm] a < 2Er7w+1)(/o+!)-/(»)
1=1 1=1

fc.< 8 E(J' + 1)"7U) (/O+ !)-/«))
1=1

/•fcn+1
<8/ x_1/(x)d/'(a;) = O as n -» oo.

Jo

Thus, by (33), (32), (14) and Toeplitz Lemma [Ash (1972), Lemma 7.1.2], 
we get

A: k
(34) (/(fc„»-2 E E IPu + *) - Pm] ^d-fnii > zu»

«=11=1
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< M/(fcn))-2 52 J-1 [/2(j + 1) - /2(j)] (supan(j)} — 0 as n — oo. 

j=i V n 7

Now (8) easily follows from (30), (31) and (34). Thus the proof of The­
orem 2 is completed.

Proof of Theorem 3. Taking into account (19) and Remark 1 it is enough 
to prove that (20) holds.

Let £ > 0 and <5 > 0 be given. Then, by (19), there exists n0 such that 
for every n > no

(35) P(\Nn-Xf(kn)\>6f(kn))<s.

Let us choose now 0<a<b<ooso that

(36) P (a < A < b) > 1 - £.

Thus, by (35), (36), (18) and (13), for every n > no we get

p (SnNn ± S'nNn) < 2£ + p( [Sn/vn / n [a < A < 6] 

A [(A-$)/(*„) <2Vn< (A+ $)/(*„)])

— 2£ + (Jn/kn)
In

l-'Y,k„PUXni\>
«=1

2e as n oo,

where /„ = [(6 + ó)/(fcn)], n > 1.
Since £ > 0 can be chosen arbitrarily small it is enough to prove that 

(27) holds, of course with {kn, n > 1} and f from Theorem 3.
For an arbitrary 77 > 0 we define, similarly as in the proof of Theorem 1,

Hf=[\S'nj-anj\>r,f(kn)}, Gn = Q K".

j=i

Hence, again by (35), (36) and (28) with {/n, n > 1} instead of {kn, n > 
1}, for every n > no, we obtain

(37) PWJ <2e + P(Gn)
In

<2£ + (T)/(fcn))'2 E £Xn,/0Xni < /(*„)) •
«=1
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Now, step by step as in (30)-(34) with necessary changes, we get 
(38)

In In
££x2,/(|xni < /(A.n)) < > /(0))
«=1 1=1

+ £ £ a +!) - Pw) c(ix„ii > /(»)

1=1 j=l

< /n/2(l) + £ {(/2(J + 1) - /2(»)/j} { £ jP(|Xnj| > /(;)) 
5=1 »=i

= i„P(i) + /„ £ {(P(l +1) - P(j)) /j} {tP £jP(|X,(| > PP) }■
5=1 i=l

Furthermore, by (13), (14) and (15)

/n<(ft + Wn)<(& + «)/(l)fcn,

and (33) holds. Thus, by (18), (33), (38), Toeplitz Lemma [Ash (1972), 
Lemma 7.1.2] and (37), we get

P (Htfn) —> 2e n —♦ oo.

This completes the proof of Theorem 3.

Proof of Theorem 4. Theorem 4 is an immediate consequence of Theorem 
3 obtained by choosing /(x) = x1^, 1 < p < 2, kn = n, n > 1.
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