ANNALES UNIVERSITATIS MARIAE CURIE – SKŁODOWSKA LUBLIN – POLONIA

VOL. LI.1, 7

SECTIO A

1997

SYLWIA GUTKOWSKA and WIESLAW ZIĘBA (Lublin)

On a Stability in Renyi's Sense

ABSTRACT. The aim of this note is to give a construction of the stable sequence of random elements with a given density function.

Let X_S be the set of all random elements (r.e.) defined on a probability space (Ω, \mathcal{A}, P) with values in a separable, complete metric space (S, ρ) , i.e. $X_S = \{X : \Omega \to S; X^{-1}(\mathcal{B}) \subset \mathcal{A}\}$, where \mathcal{B} stands for the σ -field generated by the open subsets of S.

Now, let T denote the set of positive integer-valued random variables (r.v.) and $\mathcal{P}(S)$ -the set of all probability measures defined on (S, \mathcal{B}) .

On $\mathcal{P}(S)$ the Levy-Prokhorov metric is defined as follows:

 $L(P_X, P_Y) = \inf \{ \varepsilon > 0 : P_X(A) < P_Y(A^{\varepsilon}) + \varepsilon, P_Y(A) < P_X(A^{\varepsilon}) + \varepsilon, A \in \mathcal{B} \},\$

where P_X is the probability distribution of r.e. X, $A^{\varepsilon} = \{x : d(x, A) = \inf_{y \in A} \rho(x, y) < \varepsilon\}$, $P_X(B) = P[X \in B], B \in \mathcal{B}$.

It is known [2] that the convergence of a sequence of probability measures in the Levy-Prokhorov metric and the weak convergence of this sequence coincide.

The concept of stability of a sequence of events was introduced by A. Renyi [6]. A survey of stable limit theorems is given in [1].

Definition 1 [6]. The sequence $\{A_n, n \ge 1\}$ of events $(A_n \in \mathcal{A}, n \ge 1)$ is said to be stable, if the limit $\lim_{n\to\infty} P(A_n \cap D) = Q(D)$ exists for every $D \in \mathcal{A}$.

In this case Q is a bounded measure on (Ω, \mathcal{A}) which is absolutely continuous with respect to the measure P and thus $Q(D) = \int_D \alpha dP$, for every $D \in \mathcal{A}$, where $\alpha = \alpha(\omega)$ is a measurable function on Ω such that $0 \leq \alpha(\omega) \leq 1$. The function α is called the local density of the stable sequence of events $\{A_n, n \geq 1\}$.

It is well known [5] that any sample space Ω can be represented as

(1)
$$\Omega = D \cup \bigcup_{k=1}^{\infty} D_k$$
, $D_m \cap D_n = \emptyset$, $m \neq n$, $B \cap B_n = \emptyset$, $m = 1, 2, ...,$

where each D_k is an atom or an empty set and D has the property that, for any given $A \in \mathcal{A}$ such that $A \subset D$ and any ε , $0 < \varepsilon < P(A)$, there exists $C \subset A, C \in \mathcal{A}$, such that $P(C) = \varepsilon$.

Lemma 1. Let $(\Omega, \mathcal{A}, P) = (\langle 0, 1 \rangle, \mathcal{B}^0, \nu)$, where \mathcal{B}^0 -denotes the Borel σ -field of subsets of the interval $\langle 0, 1 \rangle$ and ν denotes the Lebesgue measure. For every measurable real function α such that $0 \leq \alpha \leq 1$ there exists a stable sequence of events $\{A_n, n \geq 1\}$ such that

$$\lim_{n\to\infty}\nu(A_n\cap B)=\int_B\alpha d\nu=\mu_B\cdot\nu(B)\,,\text{ where }0\leq\mu_B\leq 1.$$

Proof. We put

(2)
$$A_n = \bigcup_{k=0}^{n-1} \left(\frac{k}{n}, \frac{k}{n} + \int_{k/n}^{(k+1)/n} \alpha d\nu \right)$$

Then for every interval $I \subset \langle 0, 1 \rangle$ we have $\lim_{n \to \infty} \nu(A_n \cap I) = \int_I \alpha d\nu$, which proves that the sequence $\{A_n, n \geq 1\}$ is stable with density α .

A: WERLAND

Corollary 1. Let (Ω, \mathcal{A}, P) be a probability space. If there exists a r.e. $Z: \Omega \to <0, 1>$ such that $Z^{-1}(\mathcal{B}^0) = \mathcal{A}$ and $P_Z = \nu$ then for every measurable real function α satisfying $0 \leq \alpha \leq 1$ there exists a stable sequence of events $\{A_n, n \geq 1\}$ for which

$$\lim_{n \to \infty} P(A_n \cap B) = \int_B \alpha dP = \mu_B \cdot P(B),$$

where $0 \leq \mu_B \leq 1$.

$$P_Z(A) = P[Z \in A] = \nu(A).$$

By Lemma 1 we see that, if α' and α are measurable real functions satisfying $0 \le \alpha' \le \alpha \le 1$ then there exist stable sequences $\{A'_n, n \ge 1\}$ and $\{A_n, n \ge 1\}$ with density α' and α respectively, such that $A'_n \subset A_n$, $n = 1, 2, \ldots$. It is obvious that the sequence $\{A_n \setminus A'_n, n \ge 1\}$ is stable with density $\alpha - \alpha'$.

If α' and α are nonnegative measurable real functions such that $0 \leq \alpha' + \alpha \leq 1$ then there exist stable sequences $\{A'_n, n \geq 1\}$ and $\{A_n, n \geq 1\}$ with density α' and α respectively which satisfy $An' \cap A_n = \emptyset$, $n = 1, 2, \ldots$.

Definition 2. A sequence $\{X_n, n \ge 1\}$ of r.e. is said to be stable if for every $B \in \mathcal{A}_+ = \{B \in \mathcal{A} : P(B) > 0\}$ there exists a probability measure μ_B , defined on (S, \mathcal{B}) such that

(3)
$$\lim_{n \to \infty} P([X_n \in A] \mid B) = \mu_B(A)$$

for every $A \in C_{\mu_B} = \{A \in \mathcal{A} : \mu_B(\partial A) = 0\}$ where ∂A denotes the boundary of A.

If $\mu_B(A) = \mu(A)$ for every $B \in \mathcal{A}_+$ and $A \in \mathcal{B}$ then a sequence $\{X_n, n \ge 1\}$ of r.e. is said to be μ -mixing.

Let $Q_A(B) = \mu_B(A)P(B)$. Obviously Q_A is a measure absolutely continuous with respect to P and, by Radon-Nikodym Theorem, there exists a nonnegative function $\alpha_A : \Omega \to \mathbb{R}^+$ such that $Q_A(B) = \int_B \alpha_A dP$. The function α_A is called the density of a stable sequence $\{X_n, n \ge 1\}$.

The set $\mathcal{P}_{\mathcal{A}}(S) = \{\mu_B : B \in \mathcal{A}_+\}$ of all probability measures defined by (3) satisfies the following condition:

$$P\left(\bigcup_{i=1}^{n} B_i\right) \mu_{\bigcup_{i=1}^{n} B_i}(A) = \sum_{i=1}^{n} \mu_{B_i}(A) P(B_i)$$

for every $B_i \in A_+, i = 1, 2, ..., n, B_i \cap B_j = \emptyset, i \neq j$. Moreover, it is known [9] that a sequence $\{X_n, n \geq 1\}$ of r.e. converges in probability to a r.e. X iff $X_n, n \geq 1\}$ is stable and $\mathcal{P}_A(S)$ satisfies the following condition

(*) If $\mu_B(A) > 0$ then there exists a set $B' \in \mathcal{A}_+, B' \subset B$ such that $\mu_{B'}(A) = 1$.

Theorem 1. Let $(\Omega, \mathcal{A}, P) = (\langle 0, 1 \rangle, \mathcal{B}', \nu)$. If the set $\mathcal{P}_{\mathcal{B}'}(S) = \{\mu_B : B \in \mathcal{B}'\}$ of probability measures defined on (S, \mathcal{B}) satisfies the condition

(I)
$$\nu\left(\bigcup_{i=1}^{n} B_{i}\right) \mu_{\bigcup_{i=1}^{n} B_{i}}(A) = \sum_{i=1}^{n} \mu_{B_{i}}(A)\nu(B_{i}),$$
$$B_{i} \in \mathcal{B}'_{+}, i = 1, 2, \dots, n, B_{i} \cap B_{j} = \emptyset, i \neq j,$$

then there exists a stable sequence $\{X_n, n \ge 1\}$ such that

$$\lim_{n \to \infty} \nu \Big([X_n \in A] \cap B \Big) = \mu_B(A) \nu(B) \,, \ A \in \mathcal{B}, B \in \mathcal{B}'_+.$$

Proof. Let $Q_A(B) = \mu_B(A)\nu(B)$. Obviously Q_A is a measure absolutely continuous with respect to ν and $Q_A(B) = \int_B \alpha_A d\nu$, $0 \le \alpha \le 1$, a.e.. Then there exists a variant $\lambda(A, \cdot)$ of $\alpha(A, \cdot)$ such that, with probability 1, $\lambda(\cdot, \omega)$ is a probability measure on $(S, \mathcal{B}), (\nu\{\omega : \alpha(A, \omega) \ne \lambda(A, \omega)\} = 0$ for every $A \in \mathcal{B}$, [8].

Let us choose a sequence of Borel subsets $S_{i_1,i_2,\ldots,i_k} \in \mathcal{C}_{\nu}$ satisfying the following conditions [7]:

- a) $S_{i_1,i_2,\ldots,i_k} \cap S_{i'_1,i'_2,\ldots,i'_k} = \emptyset$ if $i_s \neq i'_s$ for some $1 \le s \le k$
- b) $\bigcup_{i_k=1}^{\infty} S_{i_1,i_2,\dots,i_{k-1},i_k} = S_{i_1,i_2,\dots,i_{k-1}}, \ \bigcup_{i_1=1}^{\infty} S_{i_1} = S$
 - c) $d(S_{i_1,i_2,...,i_k}) < 2^{-k}$ where d(B) denotes the diameter of the set $B \subset S$.

By Lemma 1 for every $S_{i_1,i_2,...,i_k}$ there exists a stable sequence $\{A_{i_1,i_2,...,i_k}^n, n \ge 1\}$ with density $\alpha(S_{i_1,i_2,...,i_k}, \cdot)$ such that

- a') $\cap A^n_{i'_1,i'_2,\ldots,i'_k} = \emptyset$ if $i_s \neq i'_s$ for some $1 \leq s \leq k$ and
- b') $A_{i_1,i_2,...,i_{k+1}}^n \subset A_{i_1,i_2,...,i_k}^n$, $n \ge 1, k \ge 1$ and
- c') $\bigcup_{i_{k+1}=1}^{\infty} A_{i_1,i_2,\ldots,i_{k+1}}^n = A_{i_1,i_2,\ldots,i_k}^n, \ \bigcup_{i_1=1}^{\infty} A_{i_1}^n = <0, 1>, n \ge 1.$

If $z_{i_1,i_2,...,i_k} \in S_{i_1,i_2,...,i_k}$ and

(4)
$$X_n^k(\omega) = z_{i_1,i_2,\ldots,i_k}$$
 for $\omega \in A_{i_1,i_2,\ldots,i_k}^n, n \ge 1$,

then for every ω the sequence $\{X_n^k, k \ge 1\}$ satisfies the Cauchy condition and therefore convergences to some r.e. $X_n \in \mathcal{X}_S$.

Moreover, for every k, the sequence $\{X_n, n \ge 1\}$ is stable.

Let $B \in \mathcal{B}^0$ and $\varepsilon > 0$. We choose $\delta > 0$ such that

$$\int_{B} \alpha \left(S_{i_{1},i_{2},\ldots,i_{l}}^{2\delta}, \cdot \right) d\nu < \int_{B} \alpha \left(S_{i_{1},i_{2},\ldots,i_{l}}, \cdot \right) d\nu + \varepsilon$$

where $A^{\delta} = \left\{ x : \int_{y \in A} \rho(x, y) < \delta \right\}$. Hence

$$\nu\left(\left[X_n \in S_{i_1, i_2, \dots, i_l}\right] \cap B\right) \le \nu\left(\left[X_n^k \in S_{i_1, i_2, \dots, i_l}^{\delta}\right] \cap B\right)$$

$$\leq \nu \left(\left[X_n^k \in \bigcup_{\substack{\{i_1, i_2, \dots, i_s: S_{i_1, i_2, \dots, i_s} \cap S_{i_1, i_2, \dots, i_l} \neq \emptyset\}}} S_{i_1, i_2, \dots, i_s} \right] \cap B \right)$$

$$\xrightarrow{n \to \infty} \int_B \alpha \left(\bigcup_{\substack{\{i_1, i_2, \dots, i_s: S_{i_1, i_2, \dots, i_s} \cap S_{i_1, i_2, \dots, i_l} \neq \emptyset\}}} S_{i_1, i_2, \dots, i_s}, \cdot \right) d\nu$$

$$\leq \int_B \alpha \left(S_{i_1, i_2, \dots, i_l}^{2\delta}, \cdot \right) d\nu \leq \int_B \alpha \left(S_{i_1, i_2, \dots, i_l}, \cdot \right) d\nu + \varepsilon$$
for $k > s > \log_2(1/\delta)$

Similarly

$$\lim_{n \to \infty} \nu\left([X_n \in S_{i_1, i_2, \dots, i_l}] \cap B \right) \ge \int_B \alpha\left(S_{i_1, i_2, \dots, i_l}, \cdot \right) d\nu - \varepsilon$$

which proves that

$$\lim_{n \to \infty} \nu\left(\left[X_n \in S_{i_1, i_2, \dots, i_l} \right] \cap B \right) = \int_B \alpha\left(S_{i_1, i_2, \dots, i_l}, \cdot \right) d\nu.$$

Since the set S_{i_1,i_2,\ldots,i_l} form the convergence-determining class this completes the proof.

References

- Aldous, D. J. and G. K. Eagleson, On mixing and stability of limit theorems, Ann. Probab. 6 (1978), 325-331.
- [2] Billingsley, P., Convergence of probability measures, New York, 1968.
- [3] Csórgö, M. and R. Fischler, Departure from independence: the strong law, standard and random-sum central limit theorems, Acta Math. Hungar. 21 (1970), 105-114.
- [4] Dobrušin, R. L., Lemma on the limit of compound random functions, Uspekhi. Mat. Nauk 10 (1955), 157-159.
- [5] Loeve, M., Probability Theorey, New York, 1963.
- [6] Renyi, A., On stable sequence of events, Sankhya Ser. A 25 (1963), 293-302.
- [7] Skorohod, A. W. Limit theorems for stochastic processes, Teor. Veroyatnost. Primenen. 1 (1956), 289-319 (Russian).
- [8] Szynal, D. and W. Zięba, On some properties of the stable sequence of random elements, Publ. Math (Debrecen) 33 (1986), 271-282.
- [9] Zięba, W., On some criterion of convergence in probability, Probab. Math. Stat. 6
 (2) (1985), 225-232.

Instytut Matematyki UMCS pl. Marii Curie-Skłodowskiej 1 20–031 Lublin, Poland received February 12, 1997