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Abstract. The property of weak compactness for sequences of finite Borel 
measures on the real line is extended to a sequence of families of Borel 
measures on R and discussed in the study of sequences of bounded self- 
adjoint operators on a separable real Hilbert space.

One of the fundamental results of probability theory is the property of 
weak compactness for sequences of finite Borel measures on the real line 
R: if {//")} is a sequence of Borel measures on R with ^"^(R) = c for 
n > 1, then there exists a subsequence {//"”**'} and a Borel measure //, 
with /i(R) < c such that J pd(.fni^ —> f <pd{i for all y? G C/<(R), the 
real-valued continuous functions with compact support. If /z(R) = c then 
f (^d^nkl —> J pdfi for all y? G Cfc(R), the bounded real-valued continuous 
functions on R. This will be the case if the sequence {//”)} is tight, i.e. 
supnM(n)(/<c) | 0 as K ( R, K compact.

A generalization of these ideas would be the following: suppose :
t G T} is a sequence of families of Borel measures on R such that for each 
t G T, j4n)(R) = ct for n > 1. Under what conditions can one affirm



36 R. Duncan

the existence of a subsequence {pt"*' : t € T} and measures pt, Z 6 T, 
such that p<(R) = ct and J (pdp1^ —> f <pdpt for all t £ T, ip € C(,(R))? 
Such a situation arises in the study of sequences {An} of bounded self 
adjoint operators on a separable real Hilbert space H with inner product 
(z,j/) for x,y 6 H. As is well-known one can represent An in the form 
Anx = J XdE^X'jx where £n(A),A 6 R, is a resolution of the identity, 
i.e. a right- continuous increasing family of orthogonal projections on H 
satisfying limA_»_oo En(X)x = 0 and lim^oo £n(A)z = x. One can then 
define for ip € C's(R) a bounded self adjoint operator £n(<p) '■ H —> H by the 
formula Rn((p)x = J (p(X)dEn(X)x for x € H and one has ||72(<p)|| < Halloo 
where ||7?(<p)|| is the usual operator norm and Hy’Hoo = sup{|<p(A)| : A € R}. 
The functions A —> (£n(A)z,z) are increasing and right-continuous on R 
and therefore define Borel measures dfi^l = d(£n(A)z,z), the so-called 
spectral measures associated with An and x € H. We can then write

(£n(<p)z,x) = y <p(A)d(£n(A)z,z) = J <p(X)dpW

and by polarization
(£„(</?>, j/) = y pdp^,

where
>>t x,y

- - (u(n}2 \>x+y,x+y
(n) _ Jn)^x<x ^y,y)P

for x,y € H. Note that (7?n(l)z,z) = (z,z) = px"i(R) for all x € H. 
The question now arises as to when can one say that the measures {px"x : 
x € H} have weakly convergent subsequences as described above. If would 
follow, of course, that the sequences {pt’,y : x,y £ H} would also have 
weakly convergent subsequences. In this note we will show that under a 
mild condition this can always be done and that the limit measures define 
self adjoint operators. We recall that if {//”)} is a sequence of finite Borel 
measures such that supn / X2dpln\X) < oo, then the sequence {p(n)} is 
tight.

Theorem. Let {/!„} be a sequence of bounded self-adjoint operators on H. 
Assume there is a dense linear subspace D C II such that supn 11 Anx11 < oo 
for ail x € D. Then there is a family of Borel measures {fix,y '■ x,y E ffj 
with pJ;iI(R) = (z, z) = ||z||2 and a subsequence {njt} of positive integers 
such that

} VOW nk (A)z,z) I <p(X')dpXtX
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for alL x £ H, ę> E Cfc(R). Moreover, the formula (R(ip)x,y) = f <pdpXi!/ for 
x,y E H defines a bounded self-adjoint operator for each 6 C(,(R) with 
IIW)II < IHloo.

Proof, if x £ H we denote by /zL’,r the spectral measure associated with 
An and x, i.e. = d(En(\)x, x). If x € D we have

||An®||2 = (A2nx,x) = y \2dpW

and hence supn / A2 d/zL”2 < oo. Also

Mg(R) = ||a:||2, n>l,xeH.

Let Dc C 2? be a countable set in D which is dense in H. Using a diagonal 
argument we can find subsequences and measures px<x satisfying

= IMP and such that

(Rnk(<p)x,x) = y p(A)dp^ y <p(X)dpXtX 

for all <p E Cb(R),x € DC-
We claim that for each x E H there is a finite measure pXyX such that 

(Rnt((p)x,x') —> / p(\)dpx>x for each € C/<(R). By compactness it suffices 
to show that the sequence {(d?nt(ę>M x)} is Cauchy. We write for x,y E H

(Rnk(<p)x,x) = (Rnk(<p)(x - y),x) + (Rnt(y)y,x - t/) + (72n*y)

to obtain

l(fln*(ę>)®,®) - (7?„,(<p)a;,a:)| < 2||ę?||Oo||a: - y\\ IMI + 2||ę>|Ml|x - y|| ||j/||

The first two terms can be made arbitrarily small by choosing y E Dc 
appropriately; the last term tends to 0 as k,l —> oo for y E Dc- Consider 
now the function L : II X H —»• C defined by

L(x,j/) = y <pdpx<y = Km(Rnk(<p)x,y)

where 9? E C/<(R) and the measures px,y,x,y E H are defined in the ob­
vious way by polarization. The map L is bilinear symmetric and satis­
fies |L(x,i/)| < ||<p||oo||®|| lll/ll; hence there exists a self-adjoint operator
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R(jp) : H —> H such that (7f(ę>)x,y) = /<pdfjXty with ||7?(ę?)|| < ||</?||oo. 
The formula extends, by continuity, to functions y> E Cf,(R) and satisfies 
IW(r’)ll < llv’lloo- We have for x E Dc

(72(l)x,ar) = y 1 dp.X'X = (i,x).

Since 7Z(1) : H —> H is bounded and since Dc C H is dense, the formula 
holds by continuity for all x E H. Hence //X,X(R) = ||a:||2 for all x E H and 
therefore

(7fnt(<p)z,a:) -> <pdfix<x for all </? E Cfc(R) 

and the proof is complete.

Remark 1. The map <p —> from Cf,(R) to the space of self-adjoint
operators on H is clearly linear and positive, i.e. (7f(ę>)x, x) > 0 for all 
x E H if <p > 0.

Remark 2. It can be shown that Ant —> Ax weakly for each x E D where 
A : D —+ H is the symmetric operator defined by (Ax,y) = f \dp,Xty for 
x 6 £>,JZ E if.

As an example we take H = i2([0,1]) and define the sequence of multipli­
cation operators An by the formula Anf(t) - (sinni)/(/) for f E i2([0,1]). 
Then for ip E Ct,(R) Rn(v5)/(f) = (y?(sin and hence

(R„W,/) = ę>(sin nt)f2(t)dt.

By the Theorem there is a subsequence {n^} and self-adjoint operators 
7?(<p) : H —► H such that

(Rnt(^)/,/) - (if(ę>)/,/) for all E Cb{K), f E I2([0,1]).

But for each <p E C(,(R) the functions ę>(sinnZ) are uniformly bounded and 
hence form a relatively compact set is the weak* topology of i°°([0,1]). 
From this it follows that there is a function T(ę?) E i°°([0,1]) such that

(R(^)/,/)= ['r^f^dt, /ei2([o,i]).
Jo

The map T : C;,(R) —► i°°([0,1]) is linear and positive with T(l) = 1. More­
over, -/?(<£>)/ = a multiplication operator. It is interesting to note
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that the operators R((p) cannot be written in the form R(<p)f = J (fl(\)dE\f 
for some resolution of the identity E( A), A € R. Indeed, it is well known that 
such operators satisfy the multiplicative property R(9?iy52) = R((^i)R(y>2)- 
But if (fio € C(,(]R) is a function such that y?o(A) = A on [-1,1] and if f — 1, 
then

(fi(y?o)l,l) = lim [ (sin nt)2dt / 0 = (R(tpo)R(vo)l AY 
k Jo

Here we use the fact that

(R(ipo)f, f) = lim y sin ntf2(x)dt = 0

by the Riemann-Lebesgue Lemma, i.e. R(<fio) — 0.
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