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ABSTRACT. The property of weak compactness for sequences of finite Borel
measures on the real line is extended to a sequence of families of Borel
measures on R and discussed in the study of sequences of bounded self-
adjoint operators on a separable real Hilbert space.

One of the fundamental results of probability theory is the property of
weak compactness for sequences of finite Borel measures on the real line
R: if {u(")} is a sequence of Borel measures on R with w(R) = ¢ for
n > 1, then there exists a subsequence {u("+)} and a Borel measure g,
with p(R) < ¢ such that f(pdp.("") — [edp for all ¢ € Cg(R), the
real-valued continuous functions with compact support. If u(R) = c then
[ odutm) - [ pdp for all ¢ € Cp(R), the bounded real-valued continuous
functions on R. This will be the case if the sequence {u{™} is tight, i.e.
sup, u(M(K°) |0 as K 1R, K compact.

A generalization of these ideas would be the following: suppose {,u[t"] :
t € T} is a sequence of families of Borel measures on R such that for each

L u(,")(R) = ¢; for n > 1. Under what conditions can one affirm
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the existence of a subsequence {p{t"") :t € T} and measures p;,t € T,

such that u:(R) = ¢; and fcpdy;"‘) — [@dp, for all t € T, ¢ € Cy(R))?
Such a situation arises in the study of sequences {A,} of bounded self
adjoint operators on a separable real Hilbert space H with inner product
(z,y) for z,y € H. As is well-known one can represent A, in the form
Apz = [AdE,()A)z where E,()),A € R, is a resolution of the identity,
i.e. a right- continuous increasing family of orthogonal projections on H
satisfying limy—._o En(A)r = 0 and limy—~o En(A)z = z. One can then
define for ¢ € C,(R) a bounded self adjoint operator R,(¢): H — H by the
formula R,(¢)z = [ @(A)dE,(A)z for z € H and one has ||R(9)|| < |¢]lc
where ||R(¢)|| is the usual operator norm and ||¢||ec = sup{|¢(A)| : A € R}.
The functions A — (E,(A)z,z) are increasing and right-continuous on R
and therefore define Borel measures d/tg:,); = d(E,(\)z,z), the so-called
spectral measures associated with A, and = € H. We can then write

(Ru(@)2,2) = / P(A)d(En(N)z, ) = / P(A)dp™)

and by polarization
(Ra(p)z,) = [ ol

where

l n
1) = 5 (s = 1 - 03

for z,y € H. Note that (R,(1l)z,z) = (z,z) = ug':,)E(R) for all z € H.
The question now arises as to when can one say that the measures {;AS,-",),- :
z € H} have weakly convergent subsequences as described above. If would
follow, of course, that the sequences {p(;'}, : z,y € H} would also have
weakly convergent subsequences. In this note we will show that under a
mild condition this can always be done and that the limit measures define
self adjoint operators. We recall that if {u(™} is a sequence of finite Borel
measures such that supnf/\2du(")(/\) < 00, then the sequence {u(™} is
tight.

Theorem. Let {A,} be a sequence of bounded self-adjoint operators on H.
Assume there is a dense linear subspace D C H such that sup, ||Apz|| < 00
for all z € D. Then there is a family of Borel measures {jz,, : z,y € H}
with p; -(R) = (z,2) = ||z||* and a subsequence {n,} of positive integers
such that

[ ANE N)z2) = [ ¥
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for all z € H, p € Cy(R). Moreover, the formula (R(p)z,y) = [ pdp,,, for
z,y € H defines a bounded self-adjoint operator for each ¢ € Cy(R) with

HR(@H < Nlloo-

Proof. If z € H we denote by p(,’,',); the spectral measure associated with
An and z,ie pi") = d(E,(AN)z,z). If 2 € D we have

| Anzll? = (422,2) = / X2duln)

and hence sup,, [ Azd;t(,,-r,',)_- < 00. Also
HOIR) = |zl n21, z€ A

Let Dc C D be a countable set in D which is dense in H. Using a diagonal
argument we can find subsequences {,u( 8
iz 2(R) = ||z||* and such that

(Rnk(¢)xvx) =/ l‘(::n::) ‘_’/ dl‘r.r

for all p € Cy(R),z € Dc.

We claim that for each z € H there is a finite measure p » such that
(Rn, (0)z,2) = [ /\)(lpr,for ea.ch » € Ci(R). By compactness it suffices
to show that the sequence {(R )z z)} is Cauchy. We write for z,y € H

and measures i, satisfying

R, (p)z,7) = (Rn, (¢)(z = ¥),2) + (R, ()Y, 7 — ¥) + (Rnu(9)y, )
to obtain
|(Rn, (9)z,z) — (R, (9)z,2)| < 2ll0lloollz — yll |2l + 2lI@lleollz = il ]3]
+ [(Rny (@) ¥) = (Ry (9)y, )|

The first two terms can be made arbitrarily small by choosing y € D¢
appropriately; the last term tends to 0 as k,! — oo for y € D¢. Consider
now the function L : H x H — C defined by

L(z,y) = /‘Pdﬂz.y = im(Ry, (¢)z,y)

where ¢ € Ck(R) and the measures p; ,z,y € H are defined in the ob-
vious way by polarization. The map L is bilinear symmetric and satis-
fies |L(z,y)] < ||¢lloollz|||ly]l; hence there exists a self-adjoint operator
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Rp) : H — H such that (R(¢)z,y) = [ ¢duz, with IR < [[¢llo.
The formula extends, by continuity, to functions ¢ € Cy(R) and satisfies
IR(#)I] < ll¢llco- We have for z € Dc

(R(1)2,2) = [ 1z = (2,2).

Since R(1): H — H is bounded and since D¢z C H is dense, the formula
holds by continuity for all z € H. Hence p; -(R) = ||z||? for all z € H and
therefore

(Bos(9)2,2)~ [t forall peGiR)

and the proof is complete.

Remark 1. The map ¢ — R(¢) from Cy(R) to the space of self-adjoint
operators on H is clearly linear and positive, i.e. (R(yp)z,z) > 0 for all
ze Hif 2> 0.

Remark 2. It can be shown that A,, — Az weakly for each z € D where
A : D — H is the symmetric operator defined by (Az,y) = [ Adp,,, for
ze€D,ye H.

As an example we take H = L?([0, 1]) and define the sequence of multipli-
cation operators A, by the formula A, f(t) = (sinnt)f(t) for f € L%([0,1]).
Then for ¢ € Cy(R) R,(p)f(t) = (¢(sinnt)f(1) and hence

1
(Ral@)1.1) = [ olsinnt) (1)

By the Theorem there is a subsequence {n;} and self-adjoint operators
R(¢): H — H such that

(Rey(9)f, F) = (R(9)f, f) for all € Cy(R), fe L*([0,1]).
But for each ¢ € Cy(R) the functions (sinnt) are uniformly bounded and

hence form a relatively compact set is the weak™ topology of L*°([0,1]).
From this it follows that there is a function T'(¢) € L*°([0,1]) such that

1
(R(9)f, ) = / To(z)fA(a)dt, fe L¥([0,1]).

The map T : Cy(R) — L°°([0, 1]) is linear and positive with T'(1) = 1. More-
over, R(yp)f = T(y)f, a multiplication operator. It is interesting to note
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that the operators R() cannot be written in the form R(¢)f = [ ¢(A)dE\ f
for some resolution of the identity F(A), A € R. Indeed, it is well known that
such operators satisfy the multiplicative property R(p1¢2) = R(¢1)R(¥2).
But if g € Cy(R) is a function such that po(A) = Aon [-1,1] and if f =1,
then

(R(#)1,1) = lim /l(sin nt)’dt # 0 = (R(0)R(¢0)1,1).
0

Here we use the fact that
(Rigo)f, ) =lim [ sinnt* ()it =0

by the Riemann-Lebesgue Lemma, i.e. R(¢p) = 0.
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