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A Note on the Strong Tightness in CJ0,1]

ABSTRACT. A sequence {Xn,n > 1} of random elements is called strongly
tight if for any € > 0 there exists a compact set K such that

P{ﬁ[xn e:c]} >1-e¢

A new type of convergence of r.e. was indroduced in [4]. With this kind
of convergence some criteria of strong tightness in Cjq 1) are given. Also
almost sure convergence of random functions in Cjg ) is investigated.

1. Notation and definitions. Let (Q, A, P) be a probability space and
(S,p) a separable and complete metric space (Polish space). A random
element with values in S is a measurable map X from the probability space
(2, A, P) into S equipped with its Borel o-algebra B, , (X ~'(B,) C A).

The distribution of X is the probability measure Py : B, — [0, 1] defined
by the formula

V BeB, Px(B) = Plw: X(w) € B}.

Definition 1. We say a sequence {X,,n > 1} of random elements converges

. . . 5 Q D 3
in distribution to the random element X , and write (X, = X, n — 00), if

VBEC';-X nan;o PX-.(B) = PX(B)a
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where Cp, = {B € B, : Px(0B) = 0} and B denotes the boundary of B.

Definition 2. A sequence {X,,n > 1} of random elements is said to be

essentially convergent in law to ar.e. X (X, £4 X, n— 00),if

P(limsup[X, € A]) = P(ILITLL';f[Xn € A]) = P([X € 4))

n—oo
for every A € Cp,.

Definition 3. A probability measure P on (S, p) is tight if

Veso 3 P(K)>1-¢

Kcs

K —compact

Definition 4. A sequence {P, : n > 1} of probability measures defined on
(S, p) is tight if

V¢>0 =) VnZl Pn(li') >l-¢

KcS
K —compact

A sequence {X,,n > 1} of random elements is tight if the sequence of
distributions {Px, : n > 1} is tight.

Theorem 1 ([1; Th. 8, p. 241]). Suppose that X, L X, n > oco. Then
{Px, :n > 1} is tight.

Let C|o,1) denote the metric space of continuous functions on [0,1] with
the metric defined by formula

p(z,y) = sup{|z(t) — y(t)| : t € [0,1]}.
The modulus of continuity of z € Cjg ) is defined by
we(8) = sup{|z(tr) - a(ta)| : |t — ta] < 6 < 1).

We define C, as the o-field generated by the open subsets of Cjg ;) .
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Theorem 2 ([1, p. 54]). Let {X,,n > 1} and X be random elements with
values in Cig ). If

{Xn(tl)vxn(t2),--"Xn(tk)} B {‘X(tl)v-x(t?)v ey -Y“k]]' n — oo,

forevery k and 0 < t; < t; < .. <ty <1,andif {Px, :n > 1} is tight,
D
then X,, = X, n — oo.

2. Almost sure convergence. Now, we give some conditions which
assure almost sure convergence of random elements in Cjg y.

It seems to be worth mentioning that every almost surely convergent
sequence converges in probability.

Definition 5. We say that a sequence {X,,n > 1} of r.e. is strongly tight
iff

(Ty) Veso Ikccpny ll ﬂ )€ I\] l PVl g

Obviously, if a sequence {X,,n > 1} is strongly tight then it is tight,
but the reverse implication does not hold. (For instance sequences of i.i.d.
real r.v’s having a standard normal distribution are tight but not strongly
tight).

By T we denote a collection of all bounded stopping times relative to the
sequence {o(X1, X2,...,Xn) : n > 1}, where (X}, X2, ..., X»,) denotes the
smallest o-algebra with respect to which X, X, ..., X, are measurable .

Theorem 3. If X, 3 X , n — oo , then the sequence {X,,n > 1} is
strongly tight.

Proof. Since X,, 3" X for n — o0, X, is randomly convergent in proba-
bility to X. This means that for any € > 0 there exists o € T, such that
for every 7 > m(a.s.) , 7(X;,X) < €, where 7 denotes the Prokhorov
distance. Now, we will show that the family {Px,,7 € T} of measures is
tight. Let {z;,7 € N} be a countable dense subset of § and fix é >0 .
Define B, (6) = U, K (2:,6), where K (z;,6) is the ball of radius é cen-
tered at z;. We have to show that for any € > 0 there exists m € N such
that P[X, € B,,(8)] > 1 — € for every 7 € T . Suppose that it is not true.
Then there exists € > 0 such that for any m € N we can choose 7, € T that
P[XT... ¢ Bn(8)] > €.
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Since {z;,i € N} is dense, for any n € N there exists a sequence {m,}
such that P(UU!_,[X: € Bm,(8)]) < €/2. We can also assume that {m,} is
strictly increasing and m, > n. For T:nn = max{Tm,,(n + 1)} it is easy to
see that P([X,: & Bm,(8)]) 2 €/2.

By [1, Th. 2i‘] we get for any n

Px(Bm,(8)) <liminf Px , (B, (5))

(1) o
<liminf Px, (Bm,(6))<1-¢/2.

k—o00 Tmy

On the other hand, since B,,(6) T Q as m — oo, lim,~o Px(Bm,(6)) =1,
which contradicts (1). For any k € N and € > 0 there exists m,, such

that P[X, ¢ Bm, (1/k)] < €/2F . Put K = N2, Bm,, (1/k) . Obviously,
K is compact and P[X, € K] > 1— ¢ for all 7 € T . Thus, the family
{Px,,7 € T} is tight.

Suppose now that the sequence {X,,n > 1} is not strongly tight, i.e.
there exists € > 0 such that for any compact set K

P( ﬁ [Xn € K]) <1 -2

n=1

On the other hand, we know that there exists K’ such that P([X, € K.]) >
l—¢eforall 7€ T . Define r =inf{n: X, ¢ K.} and 7, = 7 An € T, then

B U [Xn & K]) < EL“' P([X:, ¢ K]) < e

n=1

This contradicts (2) and completes the proof. m]
It is easy to observe that this theorem is not true in the case of conver-
gence in probability.

Example. Let (,A,P) =(<0,1),B,u) and

s forw €< k/2% (k+1)/2°)
0 otherwise ,

Xa(w) = §

where s = max{i:2' < n} and k = n - 2.

It is easy to see that X, £ 0,n — oo, but the sequence {X,,n > 1} is not
strongly tight.
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Theorem 4. If {X,,n > 1} is strongly tight and X,(t) 3" X(t),n — oo
for every t € [0,1] , then X, *> X,n — oo .

Proof. We assume that X, af: X,n — oo and define
N ={w: lim p(X,(w),X(w))#0} i P(N)=7n>0.
n—00

Let {ty,t;,...} be a dense subset of [0,1] .
Define Q¢ = {w : limp_oo Xn(tisw) = X(t),i = 1,2,...} . Obviously,
P(fg) = 1. For € = /2 > 0 there exists compact set K C Cjp,;) such that

{ﬂ[w xn{UJEI\]l >1-—c¢

n=1

Let Q; = Q¢ N ﬂ [w: Xn(w) € K]. Let us notice that N N Q; # 0.

fweNNQ, there exist subsegences {Xpn,,k > 1} and {X,,,s > 1}
such that X, (w) — X;(w),k — o0 and X, (w) = X2(w),s — oo and
P(X1(w), X2 (w)) > 0. By the definition of p, there exists t € [0,1] such
that | X;(t,w) — X3 (t,w)| > 0. On the other hand, w € Q; and the func-
tions X;(t,w) and X, (t,w) are continuous and coincide on a dense subset
of [0,1] which proves that X; = X, and this completes the proof. O

The following theorem will be needed throughout the paper.

Theorem (Arzela-Ascoli, cf. [1, Appendix]). A subset A of Cjg ) has
compact closure if and only if

(I sup |z(0)] < oo
T€EA
and
(II) lim sup wz(6) =0
6—0z€A

By Arzela-Ascoli theorem we see that the sequence {X,,n > 1} of r.e. is
tight if and only if
(1) Vy50 3a Px, {z : |z(0)] > a} <, forn > 1 and
(2) Ye>03p>030< 6 <13ng Px, {z:w,(8)>¢€} <n,for n2>ng
It is easy to observe
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Corollary. If {X,,n > 1} and {Y,,n > 1} are strongly tight in Co ;) then
{Xn+ Yn,n > 1} and {aX,,n > 1}, a € R, are strongly tight.

The sequence {X,,n > 1} is uniformly continuous if
(W;) Ve >036 >0 SUP,>1 wy,(0) < ¢, a.e.

The sequence {X,,n > 1} is almost uniformly continuous if

(W) Vp>03 g, Ve>036>0 sup,5, wx,(v)(0) <edlaweR,.
P(Qn)>1_7l K

Condition (W) is equivalent to the
(W3) lims_osup,>; wx,(8) =0, ae.

It is easy to see that (W;) = (W;) = (W;) . The implication (W;) =
(W,) follows by the Egoroff Theorem ([2, p. 88]). The implication (W;) =
(W3) does not hold.

Examples. Let {z,(t),n > 1} be defined by the formula

- 2nt for 0 <t < 1/(2n)
zp(t)=¢ —2nt+2 forl/(2n)<t<1/n
0 for1/n<t<1.

If
(E1) Xn(t,w) = z,(t) as., then X,(t) = X(t) "2 0,n — oo,

for every t € [0,1] but X, A X,n = oo, in Cpo, -
Let A, € A be a sequence of events such that 0 < P(4,) — 0,n — o0
and Ap41 C A,. We define

zo(t) dla we A,
Yo (t, =
(£2) () {0 dla wd A,

The sequence {Y,,n > 1} satisfies condition (W,) , but not (W}).
Let A, € A be a sequence of independent events such that 0 < P(A,) — 0,
n—oo,and Y oo, P(A.) = o0 . We define

N (f z,(t) dla we A,

E 7 i
(£s) hwy=1' dla wé A,.

A sequence {Z,,n > 1} of C|g,) -valued r.e.s converges in probability but
not almost surely.
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Theorem 5. A sequence {X,,n > 1} of Clo ) -valued r.e’s is strongly tight
if and only if it satisfies

(Ry) Vn >0 3a P{u:supan(w,0)|>a} <n
n2l
and
(W3) lim sup wx, (6) =0, a.e.
6—0 pn>1

Proof. Let {X,,n > 1} be strongly tight sequence. Then for every n > 0
there exists a compact set A C C|pyj such that

P{(\[Xn € A} >1-n.
n=1

By the compactness of A we see that there exists a € R such that
SUp, 5 [Xa(w,0)] = a < oo forw € R, = {;2,[X» € A]} and for every
€> 0, there exist é(¢) > 0 such that sup, wx, (.)(6) < € forw € O, .

On the other hand, by (R;) and (W;) , for every n > 0 there exists
Q, , such that P(Q,) > 1 — n and for w € Q, we have sup, |Xn(w,0)| <
a, for some a € R and

Ve > 036(€) > 0 supwx, (6(€)) < e.
n2>1

It means that X, belong to the compact set A C Cjg ) described by a
and the function é(e) . o

It is easy to observe that the convergence (Xn(t1), Xn(t2), -, Xn(tx)) ==
(X(t1), X(t2)...X(tx)) for every (11,12,...,tk) is equivalent to the conver-
gence X,(t) = X(t),n — oo, for every t € [0, 1].

Theorem 6. If{£,,n > 1} are independent identically distributed random
variables with mean 0 and finite variation o , then the random function

Xn(tvw) = ;]i : S[nt](w) + (nt L [nt]) L % : E[nt]-{-l (w)’

where S,(w) = ¥ €x(w) , converges almost surely to the X(t,w) = 0 a.s.
k=1

ill C[O.l] .

Proof. First, observe that by the Kolmogorof Theorem

t] 1
(3) lim lS[m] = lim M——S[m] =0 a.s. forevery t € [0, 1]
n—oco n n—co n [nt]
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and Ty ) -
ZP’Q >el = Y P&l > ke < Z-‘f-
k 22
k=1 i k=1 k=1
which implies that
(4) Jim (nt — [nt]) - ~ f[n¢l+1(w) =0as.

By (3) and (4) we have X,(t,) == 0, as n — oo, for every t € [0,1] .

Now we prove that the sequence {X,(t,w),n > 1} is strongly tight. We
only need to show that sup, |X,(t)] — 0 a.s.

It is easily to seen that sup, |X,(t,w)| = maxjck<n |2 - Sk(w)|. By the
Kolmogorov inequality

P<w: max - Sk(w >e = P | max |Sk(w)| > n-¢
L 1<k<n k ) 1<k<n’ k( )I
%S, i n-o?
S . 62 3 s e
Hence we have sup, | X,(t)] — 0 a.s. 0O
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