ANNALES

UNIVERSITATIS MARIAECURIE-SKLODOWSKA LUBLIN - POLONIA

VOL. LI.1, 2
SECTIO A
1997

AGATA BORATYŃSKA and RYSZARD ZIELIŃSKI (Warszawa)

Asymptotic Behavior of Sample Median in a Parametric Model

Abstract

Under rather mild assumptions, sample quantiles are strongly consistent estimators of the appropriate population quantiles. A difficulty in statistical applications of the statement lies in that the convergence is not uniform even in reasonably small statistical models.

1. Introduction. It is well known that if the distribution function F is strictly increasing in a neighbourhood of the point x_{p} such that $F\left(x_{p}\right)=p$, then the appropriately defined sample quantile of order p is a strongly consistent estimator of the population quantile x_{p} (Bartoszewicz 1996, Serfling 1980). Strong consistency of the sample quantile is, however, of a rather limited usefulness for statistics because the convergence is not uniform, even in some "small" parametric statistical models.

To demonstrate that, in what follows we consider the problem of estimating the median in the family $\mathcal{F}=\left\{F_{\alpha}: 0<\alpha<1 / 2\right\}$ of distributions F_{α} on the interval $[0,1]$, where

$$
F_{\alpha}(x)= \begin{cases}0, & \text { if } x \leq 0 \\ \frac{1}{2}(2 x)^{\alpha}, & \text { if } 0<x \leq \frac{1}{2} \\ 1-\frac{1}{2}[2(1-x)]^{1 / \alpha}, & \text { if } \frac{1}{2}<x \leq 1 \\ 1, & \text { if } x>1\end{cases}
$$

Observe that for every F_{α} the median is equal to $1 / 2$. Given a sample $X_{1}, X_{2}, \ldots, X_{n}$ and its order statistics $X_{1: n}, X_{2: n}, \ldots, X_{n: n}$, let M_{n} be the sample median

$$
M_{n}= \begin{cases}\left(X_{k: n}+X_{k+1: n}\right) / 2, & \text { if } \mathrm{n}=2 \mathrm{k}, \\ X_{k: n}, & \text { if } n=2 k-1\end{cases}
$$

We show that $E_{\alpha} M_{n}-1 / 2=n^{-1 / 2} C(\alpha)+O\left(n^{-1}\right)$ and that for every $C>0$ one can choose $\alpha \in(0,1 / 2)$ such that $C(\alpha)>C$. It appears that even in very large samples the error of the estimate of the population median by the sample median might be very large and a statistician is not able to predict it in advance.

2. Results.

Theorem 1. Let $F_{\alpha} \in \mathcal{F}$. Then for large n

$$
E_{\alpha} M_{n}-\frac{1}{2}=\sum_{i=1}^{\infty} A_{i} B_{i},
$$

where

$$
\begin{gathered}
A_{i}=\frac{1}{i!}\left(\frac{1}{\alpha}\left(\frac{1}{\alpha}-1\right) \ldots\left(\frac{1}{\alpha}-i+1\right)-\alpha(\alpha-1) \ldots(\alpha-i+1)\right), \\
B_{1}=-\frac{1}{4 \sqrt{k \pi}}+O\left(k^{-3 / 2}\right) \\
B_{2}=\frac{1}{8\left(k+\frac{1}{2}\right)}+O\left(k^{-2}\right)
\end{gathered}
$$

and

$$
B_{i}=\frac{i-1}{2 k+i-1} B_{i-2}, \quad i \geq 3 .
$$

Proof. Let X_{1}, \ldots, X_{n} be a sample from F_{α}. Then

$$
E_{\alpha} M_{n}=0.5+I(k, \alpha)
$$

where

$$
\begin{aligned}
I(k, \alpha) & =\frac{1}{2} \frac{\Gamma(2 k)}{\Gamma^{2}(k)} \int_{0}^{\frac{1}{2}}\left[(2 t)^{1 / \alpha}-(2 t)^{\alpha}\right] t^{k-1}(1-t)^{k-1} d t \\
& =\left(\frac{1}{2}\right)^{2 k} \frac{\Gamma(2 k)}{\Gamma^{2}(k)} \int_{0}^{1}\left[s^{1 / \alpha}-s^{\alpha}\right] s^{k-1}(2-s)^{k-1} d s
\end{aligned}
$$

The Taylor expansion of the functions s^{α} and $s^{1 / \alpha}$ at the point $s=1$ gives us

$$
\begin{gathered}
s^{\alpha}=1+\sum_{i=1}^{\infty} \frac{\alpha(\alpha-1) \ldots(\alpha-i+1)}{i!}(-1)^{i}(1-s)^{i} \\
s^{1 / \alpha}=1+\sum_{i=1}^{\infty} \frac{\frac{1}{\alpha}\left(\frac{1}{\alpha}-1\right) \ldots\left(\frac{1}{\alpha}-i+1\right)}{i!}(-1)^{i}(1-s)^{i} .
\end{gathered}
$$

Using the identity $s^{k-1}(2-s)^{k-1}=\left[1-(1-s)^{2}\right]^{k-1}$ we obtain

$$
I(k, \alpha)=\left(\frac{1}{2}\right)^{2 k+1} \frac{\Gamma(2 k)}{\Gamma^{2}(k)} \sum_{i=1}^{\infty}(-1)^{i} A_{i} \int_{0}^{1} s^{(i-1) / 2}(1-s)^{k-1} d s
$$

with A_{i} as above. Hence

$$
I(k, \alpha)=\sum_{i=1}^{\infty}(-1)^{i} A_{i}\left(\frac{1}{2}\right)^{2 k+1} \frac{\Gamma(2 k) \Gamma\left(\frac{i+1}{2}\right)}{\Gamma(k) \Gamma\left(k+\frac{i+1}{2}\right)}
$$

By Stirling's formula in the form

$$
i!=i^{i} \sqrt{2 \pi i} e^{-i} e^{\theta / 12 i}, \quad \text { where } \quad \theta \in(0,1)
$$

we obtain for i odd

$$
B_{i}=\left(\frac{1}{2}\right)^{2 k+1} \frac{\Gamma(2 k) \Gamma\left(\frac{i+1}{2}\right)}{\Gamma(k) \Gamma\left(k+\frac{i+1}{2}\right)}=\frac{\left(\frac{i-1}{2}\right)!}{4 \sqrt{\pi k^{i}}}+O\left(k^{-\frac{i+2}{2}}\right)
$$

By the formula

$$
\Gamma\left(i+\frac{1}{2}\right)=\frac{(2 i)!\sqrt{\pi}}{2^{2 i} i!}=\frac{(2 i-1)!!\sqrt{\pi}}{2^{i}}
$$

we have for i even

$$
B_{i}=\left(\frac{1}{2}\right)^{2 k+1} \frac{\Gamma(2 k) \Gamma\left(\frac{i+1}{2}\right)}{\Gamma(k) \Gamma\left(k+\frac{i+1}{2}\right)}=\frac{(i-1)!!}{2^{\frac{i}{2}+2}\left(k+\frac{1}{2}\right)^{\frac{i}{2}}}+O\left(k^{-\frac{i+2}{2}}\right)
$$

Substituting these expressions for $i=1$ and $i=2$ to $I(k, \alpha)$ we obtain the assertion.
3. A conclusion. As a simple conclusion of the Theorem we obtain that for every $A>0$ there exists $F \in \mathcal{F}$ such that

$$
E_{F} M_{n}-m_{F}=-\frac{A}{\sqrt{n}}+O\left(\frac{1}{n}\right)
$$

A deeper insight leads us to the conclusion that for every $\varepsilon>0$ and for every n there exists a distribution $F_{\alpha} \in \mathcal{F}$ such that

$$
E_{F_{\alpha}}-m_{F_{\alpha}}>\frac{1}{4}-\varepsilon
$$

which is really "very large" when compared with how large is the support of the family \mathcal{F}.

References

[1] Bartoszewicz, J., Wyklady ze statystyki matematycznej, PWN Warszawa, 1996.
[2] Serfling, R.J., Approximation theorems of mathematical statistics, John Wiley \& Sons, Inc., 1980.

Instytut Matematyki Stosowanej
received January 30, 1997
Uniwersytet Warszawski
Warszawa, Poland

Instytut Matematyki PAN
Warszawa, Poland

