UNIVERSITATIS MARIAE CURIE-SKLODOWSKA

LUBLIN - POLONIA

VOL. LII. 1, 19

OLLI TAMMI

The First Coefficient Bodies of Bounded Real Non-vanishing Univalent Functions

Dedicated to Professor Eligiusz Zlotkiewicz on the occasion of his 60th birthday

Abstract

The close relationship between the normalized univalent real classes of non-vanishing and bounded functions allows shifting coefficient body information from the latter to the former one. By means of this the extremal values of the coefficients A_{2} and A_{3} of the non-vanishing functions are determined.

1. Introduction. In this treatment we will use coefficient estimates concerning bounded normalized univalent functions f of the class $S(b)$,

$$
\left\{\begin{array}{l}
S(b)=\left\{f\left|f(z)=b\left(z+a_{2} z^{2}+\ldots\right),|z|<1,|f(z)|<1,0<b<1\right\}\right. \tag{1}\\
S_{R}(b) \subset S(b) .
\end{array}\right.
$$

Here $S_{R}(b)$ means the real subclass with all the a_{ν}-coefficients real.
Denote $U=\{z| | z \mid<1\}$ and consider the functions F defined in U and satisfying the above univalence- and boundedness conditions with the additional non-vanishing restriction $0 \notin F(U)$. Further, normalize the functions F so that

$$
\left.F(z)=B+A_{1} z+\ldots, F(0)=B \in\right] 0,1[.
$$

If all the coefficients A_{ν} are real, the requirement $B=F(0)>0$ implies $F^{\prime}(0)=A_{1}>0$. While extending this requirement to concern also the general case we may introduce the class notations

$$
\begin{cases}S^{\prime}(B)=\left\{F \mid F(z)=B+A_{1} z+\ldots,\right. & z \in U \supset F(U) \not \supset 0, \tag{2}\\ & \left.0<B<1, A_{1}>0\right\},\end{cases}
$$

where $S_{R}^{\prime}(B)$ means again the real subclass. These notations emphasize the relationship between the classes (1) and (2). The notations (2) differ from those used in the treatments to be mentioned next.

In [3] Prokhorov and Szynal give estimates concerning the coefficients A_{2} and A_{3} in $S^{\prime}(B)$ and $S_{R}^{\prime}(B)$ by using Bieberbach-Eilenberg functions. In [4] Śladkowska applies variational method and in [5] the Löwner method for deriving in $S_{R}^{\prime}(B)$ sharp bounds for the coefficient A_{2} in terms of B.

In [2] the Grunsky type inequality was for the first time applied for finding information concerning the coefficient body of $S(b)$-functions. This optimized inequality idea was later extended up to the body $\left(a_{4}, a_{3}, a_{2}\right)$ in the class $S_{R}(b)$ [1].

In [5] the estimations are based on the one-to-one relationship between the classes $S_{R}(b)$ and $S_{R}^{\prime}(B)$ realized by means of the function L :

$$
\left\{\begin{array}{l}
L=L(z)=K^{-1}\left[\frac{4 B}{(1-B)^{2}}(K(z)+1 / 4)\right] \tag{3}\\
K=K(z)=z /(1-z)^{2}
\end{array}\right.
$$

Here K is the left Koebe function for which $K(U)$ is the complex plane with a left radial slit from $-\infty$ to $-1 / 4$. Thus $L(U)$ is a left radial-slit domain i.e. a unit disc with a left radial slit from -1 to the origin. With suitably chosen parameters b, B there holds the mentioned relation

$$
\begin{equation*}
L \circ f \in S_{R}^{\prime}(B), \quad L^{-1} \circ F \in S_{R}(b) \tag{4}
\end{equation*}
$$

In the present paper this basic connection found in [5] will be applied directly to coefficient bodies. Actually, the inequalities defining the body boundaries, are nothing else but the optimized Grunsky conditions.

The connection (4) shifts this information from class to class and hence the sharp inequalities of $S_{R}(b)$ coefficients can be transformed to those of $S_{R}^{\prime}(B)$.
2. The body $\left(A_{2}, A_{1}\right)$. From the inverse connection of $w=K(z)$,

$$
z=K^{-1}(w)=1-\frac{2}{1+\sqrt{1+4 w}}
$$

we obtain for L,

$$
L(z)=1-\frac{2(1-B)}{1-B+\sqrt{(1+B)^{2}+16 B K(z)}} .
$$

This yields for $L(z)$ the expansion

$$
\left\{\begin{array}{l}
y=L(z)=B+B_{1} z+B_{2} z^{2}+B_{3} z^{3}+\ldots, \text { where } \tag{5}\\
B_{1}=4 B(1-B) /(1+B)^{-1}, \\
B_{2}=8 B\left[(1-B) /(1+B)^{-3}\right]\left(1-2 B-B^{2}\right) \\
B_{3}=4 B\left[(1-B) /(1+B)^{-5}\right]\left(3-20 B+18 B^{2}+12 B^{3}+3 B^{4}\right)
\end{array}\right.
$$

For the inverse mapping we obtain

$$
\left\{\begin{array}{l}
z=L^{-1}(y)=\sum_{1}^{\infty} C_{\nu}(y-B)^{\nu}, \text { where } \tag{6}\\
C_{1}=1 / B_{1}, \\
C_{2}=-B_{2} / B_{1}^{3}, \\
C_{3}=2 B_{2}^{2} / B_{1}^{5}-B_{3} / B_{1}^{4} .
\end{array}\right.
$$

Let $F \in S_{R}^{\prime}(B)$ be arbitrary. For the corresponding function f we thus have

$$
\left\{\begin{aligned}
S_{R}(b) \ni f=L^{-1}(F) & =\sum_{1}^{\infty} C_{\nu}(F-B)^{\nu}=C_{1} A_{1} z+\left(C_{1} A_{2}+C_{2} A_{1}^{2}\right) z^{2} \\
& +\left(C_{1} A_{3}+2 C_{2} A_{1} A_{2}+C_{3} A_{1}^{3}\right) z^{3}+\ldots
\end{aligned}\right.
$$

This yields for the coefficients of f :

$$
\left\{\begin{array}{l}
b=A_{1} / B_{1}, \tag{7}\\
a_{2}=A_{2} / A_{1}+\left(C_{2} / C_{1}\right) A_{1}=A_{2} / A_{1}-\left(B_{2} / B_{1}^{2}\right) A_{1} \\
a_{3}=A_{3} / A_{1}+2\left(C_{2} / C_{1}\right) A_{2}+\left(C_{3} / C_{1}\right) A_{1}^{2} \\
\\
=A_{3} / A_{1}-2\left(B_{2} / B_{1}^{2}\right) A_{2}+\left(2 B_{2}^{2} / B_{1}^{4}-B_{3} / B_{1}^{3}\right) A_{1}^{2}
\end{array}\right.
$$

Observe that because of $b \in] 0,1]$,

$$
\begin{equation*}
0<A_{1} \leq B_{1} . \tag{8}
\end{equation*}
$$

The equality $A_{1}=B_{1}$ implies $b=1$ and thus $f(z) \equiv z \in S_{R}(b)$, i.e.

$$
A_{1}=B_{1} \Rightarrow S_{R}^{\prime}(B) \ni F=L
$$

In $S_{R}(b)$ the first optimized Grunsky condition is equivalent with the well-known limitations

$$
\begin{equation*}
-2(1-b) \leq a_{2} \leq 2(1-b) \tag{9}
\end{equation*}
$$

where the right equality is attained by the left radial-slit mapping f,

$$
\begin{equation*}
f /(1-f)^{2}=b\left[z /(1-z)^{2}\right] \tag{10}
\end{equation*}
$$

and the left equality holds for the right radial-slit mapping f,

$$
\begin{equation*}
f /(1+f)^{2}=b\left[z /(1+z)^{2}\right] \tag{11}
\end{equation*}
$$

It follows from (7) and (9) that for any $F \in S_{R}^{\prime}(B)$ there hold the sharp estimates

$$
-2\left(1-\frac{A_{1}}{B_{1}}\right) \leq \frac{A_{2}}{A_{1}}-\frac{B_{2}}{B_{1}^{2}} A_{1} \leq 2\left(1-\frac{A_{1}}{B_{1}}\right)
$$

This yields for A_{2} sharp bounds in terms of A_{1} and B and further, absolute bounds in terms of B.

$$
\begin{aligned}
A_{2} \geq-2 A_{1}+\frac{A_{1}^{2}}{B\left(1-B^{2}\right)} & =-B\left(1-B^{2}\right)+\frac{\left(A_{1}-B\left(1-B^{2}\right)\right)^{2}}{B\left(1-B^{2}\right)} \\
& \geq-B\left(1-B^{2}\right)
\end{aligned}
$$

Because of $B\left(1-B^{2}\right)<B_{1}$, the last equality is always attained:

$$
A_{2} \leq 2 A_{1}-\frac{2+B}{1-B^{2}} A_{1}^{2}=\frac{1-B^{2}}{B+2}-\frac{B+2}{1-B^{2}}\left(A_{1}-\frac{1-B^{2}}{B+2}\right)^{2} \leq \frac{1-B^{2}}{B+2}
$$

The last equality is attained provided $\left(1-B^{2}\right) /(B+2) \leq B_{1} \Leftrightarrow$ $2 / \sqrt{3}-1 \leq B<1$. For $B \leq 2 / \sqrt{3}-1$ the upper bound of A_{2} is maximized at $B=B_{1} \Rightarrow A_{2} \leq B_{2}$. The estimates obtained may be stated as the following

Proposition. The first non-trivial coefficient body A_{2}, A_{1} for $S_{R}^{\prime}(B)$ functions F is determined by the sharp bounds

$$
\begin{equation*}
-2 A_{1}+\frac{A_{1}^{2}}{B\left(1-B^{2}\right)} \leq A_{2} \leq 2 A_{1}-\frac{2+B}{1-B^{2}} A_{1}^{2} \tag{12}
\end{equation*}
$$

In the maximum case the extremal function $F=L \circ f$ is obtained for $b=A_{1} / B_{1}$ with f from (10), and from (11) in the minimum case.

The extremal functions F are thus left radial-slit mappings on the upper boundary arc 3 and left-right radial-slit mappings on the lower boundary arc 1 (Figure 1).

The lowest and highest points of the convex figure $\left(A_{2}, A_{1}\right)$ yield the absolute minima and maxima of A_{2} :

$$
\begin{cases}A_{1}=B\left(1-B^{2}\right)=-\min A_{2}, & 0<B<1, \tag{13}\\ A_{1}=\left(1-B^{2}\right) /(B+2)=\max A_{2}, & 2 / \sqrt{3}-1 \leq B<1, \\ A_{1}=B_{1} \Rightarrow B_{2}=\max A_{2}, & 0<B \leq 2 / \sqrt{3}-1 .\end{cases}
$$

In the first two cases the minimal and maximal points are on the arcs 1 and 3 respectively. In the last case the maximal point is P (Figure 1) and the extremal function is L.

The estimates (13) are those in [3], [4] and [5].
3. The lower boundary of the body $\left(A_{3}, A_{2}, A_{1}\right)$. In $S_{R}(b)$ the next coefficient body (a_{3}, a_{2}) is well known ([6], p. 220-235) and simple enough for shifting for $S_{R}(B)$ functions. Start by considering the lower boundary which includes only one type of extremal $S_{R}(b)$ functions.

According to [6], p. 222-223, the lower boundary of the body (a_{3}, a_{2}) consists of the parabolic arc

$$
\begin{equation*}
-1+b^{2}+a_{2}^{2} \leq a_{3},-2(1-b) \leq a_{2} \leq 2(1-b) . \tag{14}
\end{equation*}
$$

The extremal functions f correspond to left-right radial-slit mappings defined by

$$
\begin{equation*}
b\left(f+f^{-1}\right)=z+z^{-1}-a_{2} . \tag{15}
\end{equation*}
$$

The condition (14) implies, by means of (7), for $S_{R}^{\prime}(B)$ functions:

$$
-1+\frac{A_{1}^{2}}{B_{1}^{2}}+\left(\frac{A_{2}}{A_{1}}-\frac{B_{2}}{B_{1}^{2}} A_{1}\right)^{2} \leq \frac{A_{3}}{A_{1}}-2 \frac{B_{2}}{B_{1}^{2}} A_{2}+\left(2 \frac{B_{2}^{2}}{B_{1}^{4}}-\frac{B_{3}}{B_{1}^{3}}\right) A_{1}^{2}
$$

which implies

$$
\begin{equation*}
A_{3} \geq \frac{A_{2}^{2}}{A_{1}}-A_{1}+\frac{A_{1}^{3}}{\left(1-B^{2}\right)^{2}} \tag{16}
\end{equation*}
$$

Observe that, according to (12), the ratio $\left|A_{2} / A_{1}\right|$ is bounded.

Consider now the extremal function F of (16). If $\left(A_{1}, A_{2}\right)$ is any point of the coefficient body, we obtain from (7) and (14) the corresponding a_{ν} coefficients

$$
a_{2}=\frac{A_{2}}{A_{1}}-\frac{B_{2}}{B_{1}^{2}} A_{1}, \quad a_{3}=a_{2}^{2}-1+\frac{A_{1}^{2}}{B_{1}^{2}} .
$$

This fixes a point on the parabolic arc (14) which implies that the corresponding f is in general left-right radial-slit type. Hence the extremal $F=L \circ f$ is always left-right type except for the arc 3 , where left radial-slit mapping exists.

Next ask for the absolute minimum of A_{3} satisfying the restriction (16). Denote

$$
m\left(A_{1}, A_{2}\right)=\frac{A_{2}^{2}}{A_{1}}-A_{1}+\frac{A_{1}^{3}}{\left(1-B^{2}\right)^{2}}
$$

Clearly, m is minimized for minimal values of $\left|A_{2}\right|$, i.e. at a point which is located on one of the arcs 1,2 or 3 of the body $\left(A_{2}, A_{1}\right)$. According to the location of the point P (Figure 1) we have to consider two main cases.

$$
1^{\circ} .0<B \leq \sqrt{2}-1
$$

The point P is not below the A_{1} axis. The extremal point lies necessarily either on the arc 2 or 1 . It is convenient to denote the extremal point according to its location: $E_{\nu} \in \operatorname{arc} \nu(\nu=1,2,3)$. Similar notation $m_{\nu}(\nu=$ $1,2,3)$ is useful also for the corresponding functions minimizing $m\left(A_{1}, A_{2}\right)$:
$m\left(A_{1}, A_{2}\right)= \begin{cases}m_{2}\left(A_{1}\right)=m\left(A_{1}, 0\right)=-A_{1}+\frac{A_{1}^{3}}{\left(1-B^{2}\right)^{2}}, & 0 \leq A_{1} \leq Q, \\ m_{1}\left(A_{1}\right)=m\left(A_{1},-2 A_{1}+\frac{A_{1}^{2}}{B\left(1-B^{2}\right)}\right), & Q \leq A_{1} \leq B_{1} .\end{cases}$
Here $Q=2 B\left(1-B^{2}\right)$ and

$$
m_{1}\left(A_{1}\right)=3 A_{1}-\frac{4}{B\left(1-B^{2}\right)} A_{1}^{2}+\frac{1+B^{2}}{B^{2}\left(1-B^{2}\right)^{2}} A_{1}^{3}
$$

The local minimizing point $A_{1}^{(2)}$ of $m_{2}\left(A_{1}\right)$ is the positive zero of the derivative $m_{2}^{\prime}\left(A_{1}\right), A_{1}^{(2)}=\left[1-B^{2}\right] / \sqrt{3}$. For $m_{1}\left(A_{1}\right)$ the corresponding point is the greater zero of $m_{1}^{\prime}\left(A_{1}\right)$:

$$
\left.\left.A_{1}^{(1)}=\frac{B\left(1-B^{2}\right)}{3\left(1+B^{2}\right)}\left(4+\sqrt{7-9 B^{2}}\right) \in \mathbf{R}, \quad B \in\right] 0, \sqrt{2}-1\right] .
$$

Since these derivates are of second degree, the order of the points $Q, A_{1}^{(1)}$ and $A_{1}^{(2)}$ determines the minimum of $m\left(A_{1}, A_{2}\right)$ in the following way:

$$
\begin{aligned}
& 0<B<\sqrt{3} / 6: A_{1}^{(2)}>Q<A_{1}^{(1)}<B_{1} \Rightarrow \min A_{3}=m_{1}\left(A_{1}^{(1)}\right) \\
& B=\sqrt{3} / 6: A_{1}^{(1)}=A_{1}^{(2)}=Q<B_{1} \Rightarrow \min A_{3}=m_{1}(Q)=m_{2}(Q) \\
& \sqrt{3} / 6<B \leq \sqrt{2}-1: A_{1}^{(2)}<A_{1}^{(1)}<Q<B_{1} \Rightarrow \min A_{3}=m_{2}\left(A_{1}^{(2)}\right)
\end{aligned}
$$

$B=0.6$

$$
B=\sqrt{2}-1
$$

Figure 1.
2°. $\sqrt{2}-1 \leq B<1$
The point P lies below the A_{1}-axis and the extremal point is necessarily either on the arc 2 or 3 . The functions m_{ν} minimizing $m\left(A_{1}, A_{2}\right)$ are:
$m\left(A_{1}, A_{2}\right)= \begin{cases}m_{2}\left(A_{1}\right)=m\left(A_{1}, 0\right)=-A_{1}+\frac{A_{1}^{3}}{\left(1-B^{2}\right)^{2}}, & 0 \leq A_{1} \leq Q, \\ m_{3}\left(A_{1}\right)=m\left(A_{1}, 2 A_{1}-\frac{2+B}{1-B^{2}} A_{1}^{2}\right), & Q \leq A_{1} \leq B_{1},\end{cases}$
where now $Q=2\left(1-B^{2}\right) /(2+B)$ and

$$
m_{3}\left(A_{1}\right)=3 A_{1}-4 \frac{2+B}{1-B^{2}} A_{1}^{2}+\frac{B^{2}+4 B+5}{\left(1-B^{2}\right)^{2}} A_{1}^{3}
$$

The greater zero of $m_{3}^{\prime}\left(A_{1}\right)$ is

$$
A_{1}^{(3)}=\frac{1-B^{2}}{3\left(5+4 B+B^{2}\right)}\left[4(2+B)+\sqrt{19+28 B+7 B^{2}}\right]
$$

Similarly as in the case 1° we decide that the minimum of $m\left(A_{1}, A_{2}\right)$ is derived from the order of the points $Q, A_{1}^{(2)}$ and $A_{1}^{(3)}$:

$$
\sqrt{2}-1 \leq B<1: A_{1}^{(2)}<A_{1}^{(3)}<Q \Rightarrow \min A_{3}=m_{2}\left(A_{1}^{(2)}\right) .
$$

These estimates imply the following
Proposition. In $S_{R}^{\prime}(B)$ the lower surface of the coefficient body $\left(A_{3}, A_{2}, A_{1}\right)$ is determined by the condition

$$
\begin{equation*}
A_{3} \geq \frac{A_{2}^{2}}{A_{1}}-A_{1}+\frac{A_{1}^{3}}{\left(1-B^{2}\right)^{2}} \tag{16}
\end{equation*}
$$

with the sign of equality for the left-right radial-slit mappings. The extremal function $F=L \circ f$ at the point $\left(A_{1}, A_{2}\right)$ is found from (15) with

$$
b=\frac{A_{1}}{B_{1}}, \quad a_{2}=\frac{A_{2}}{A_{1}}-\frac{B_{2}}{B_{1}^{2}} A_{1} .
$$

The absolute minima of A_{3} together with the validity intervals of B and the minimizing points E_{ν} are:
$\min A_{3}= \begin{cases}A_{3}\left(E_{1}\right)=\frac{2 B\left(1-B^{2}\right)}{27\left(1+B^{2}\right)^{2}}\left[54 B^{2}-10-\left(7-9 B^{2}\right)^{3 / 2}\right], & 0<B \leq \frac{\sqrt{3}}{6}, \\ A_{3}\left(E_{2}\right)=-\frac{2 \sqrt{3}}{9}\left(1-B^{2}\right), & \frac{\sqrt{3}}{6} \leq B<1 .\end{cases}$
Here E_{1} is located on the arc 1 at

$$
A_{1}^{(1)}=\frac{B\left(1-B^{2}\right)}{3\left(1+B^{2}\right)}\left(4+\sqrt{7-9 B^{2}}\right)
$$

and E_{2} lies on the line segment 2 at $E_{2}=\left(\left(1-B^{2}\right) / \sqrt{3}, 0\right) \cdot B=\sqrt{3} / 6$ is the transition value, for which $E_{1}=E_{2}=Q=(11 \sqrt{3} / 36,0)$.
4. The upper boundary of the body $\left(A_{3}, A_{2}, A_{1}\right)$. For $S_{R}(b)$ the upper boundary of the coefficient body (a_{3}, a_{2}) is determined in [6], p. 226-235, and details concerning the extremal functions are given in [2], p. 10. The results are the following.

For $\left|a_{2}\right| \leq 2 b|\ln b|$

$$
\begin{equation*}
a_{3} \leq 1-b^{2}+\left(1+\frac{1}{\ln b}\right) a_{2}^{2} \tag{17}
\end{equation*}
$$

where the extremal function f satisfies

$$
\begin{equation*}
-\frac{a_{2}}{\ln b} \ln f+b\left(f-f^{-1}\right)=-\frac{a_{2}}{\ln b} \ln z+z-z^{-1} \tag{18}
\end{equation*}
$$

For $\left|a_{2}\right|>2 b|\ln b|$

$$
\left\{\begin{array}{l}
a_{3} \leq 1-b^{2}+a_{2}^{2}-2 \sigma\left|a_{2}\right|+2(\sigma-b)^{2} \tag{19}\\
\sigma \ln \sigma-\sigma+b+\frac{\left|a_{2}\right|}{2}=0, \sigma \in[b, 1]
\end{array}\right.
$$

The extremal function $f=f(z, b)$ is determined by the conditions

$$
\left\{\begin{array}{l}
\sigma\left[f(z, \sigma)-f(z, \sigma)^{-1}\right]=z-z^{-1}+2 \sigma \ln \frac{f(z, \sigma)}{z} \tag{20}\\
f(z, b) /[1+f(z, b)]^{2}=(b / \sigma) \cdot f(z, \sigma) /[1+f(z, \sigma)]^{2}
\end{array}\right.
$$

By means of the relations (7) these optimized results for $S_{R}(b)$ functions are transformed to those of $S_{R}^{\prime}(B)$.

The limitation of $\left|a_{2}\right|$ imposed by (17) implies for A_{2} :
(21) $\left(\frac{A_{1}}{B_{1}}\right)^{2}\left[B_{2}-2 B_{1}\left|\ln \frac{A_{1}}{B_{1}}\right|\right] \leq A_{2} \leq\left(\frac{A_{1}}{B_{1}}\right)^{2}\left[B_{2}+2 B_{1}\left|\ln \frac{A_{1}}{B_{1}}\right|\right]$.

The equality cases determine two arcs with the endpoints O and P. They divide the figure $\left(A_{2}, A_{1}\right)$ in three parts I, II and III (Figure 2). The upper parts of the body $\left(A_{3}, A_{2}, A_{1}\right)$ lie over them and are restricted by the conditions (17) and (19). At the point $\left(A_{1}, A_{2}\right) \in$ I or III we thus obtain from (19), by means of (7), the following restriction for A_{3} :

$$
\left\{\begin{array}{l}
A_{3} \leq\left[a_{3}+2\left(B_{2} / B_{1}^{2}\right) A_{2}+\left(B_{3} / B_{1}^{3}-2\left(B_{2}^{2} / B_{1}^{4}\right)\right) A_{1}^{2}\right] A_{1} \tag{22}\\
A_{2}=A_{1} a_{2}+\left(B_{2} / B_{1}^{2}\right) A_{1}^{2} \\
a_{2}= \pm 2\left(A_{1} / B_{1}-\sigma+\sigma \ln \sigma\right) ; \sigma \in\left[A_{1} / B_{1}, 1\right] \\
a_{3}=1-\left(A_{1} / B_{1}\right)^{2}+a_{2}^{2} \pm 2 \sigma a_{2}+2\left(\sigma-A_{1} / B_{1}\right)^{2}
\end{array}\right.
$$

Here the upper signs belong to I and the lower ones to III. The equality defines the upper boundary of the body over the regions I and III, expressed in the variables A_{1} and σ.

In the case II (17) yields

$$
\left\{\begin{array}{l}
A_{3} \leq\left[a_{3}+2\left(B_{2} / B_{1}^{2}\right) A_{2}+\left(B_{3} / B_{1}-2 B_{2}^{2} / B_{1}^{2}\right)\left(A_{1} / B_{1}\right)^{2}\right] A_{1} \tag{23}\\
a_{2}=A_{2} / A_{1}-\left(B_{2} / B_{1}\right) \cdot\left(A_{1} / B_{1}\right) \\
a_{3}=1-\left(A_{1} / B_{1}\right)^{2}+\left(1+\frac{1}{\ln \left(A_{1} / B_{1}\right)}\right) a_{2}^{2}
\end{array}\right.
$$

The equality belongs to the surface of the body over the region II, expressed in the variables A_{1} and A_{2}.

$B=0.3$

Figure 2.
When looking for the absolute maximum of A_{3} we have to determine the local extremal points $E_{\mathrm{I}}, E_{\mathrm{II}}$ and E_{III} in each of the regions I, II and III respectively. The necessary conditions for the variables A_{1} and σ belonging to E_{I} and $E_{\text {III }}$ will be determined first. The equality

$$
\frac{1}{A_{1}} \cdot \frac{\partial A_{3}}{\partial \sigma}=4 \ln \sigma\left(\frac{ \pm B_{2}+2}{B_{1}} A_{1}+2 \sigma \ln \sigma\right)=0
$$

implies

$$
\begin{equation*}
A_{1} / B_{1}=-\left[2 B_{1} /\left(2 B_{1} \pm B_{2}\right)\right] \sigma \ln \sigma . \tag{24}
\end{equation*}
$$

By means of this the expression of $\partial A_{3} / \partial A_{1}$ can be simplified to yield the condition

$$
\begin{equation*}
\frac{\partial A_{3}}{\partial A_{1}}=1+2 \sigma^{2}+12 \sigma^{2} \ln \sigma+\frac{12}{\left(2 B_{1} \pm B_{2}\right)^{2}}\left(B_{1}^{2}-B_{2}^{2}+B_{1} B_{3}\right) \sigma^{2} \ln ^{2} \sigma=0 \tag{25}
\end{equation*}
$$

The order of the signs is the same as above.
For $E_{\text {II }}$ we obtain from $\partial A_{3} / \partial A_{2}=0$ that

$$
\begin{equation*}
A_{2}=\frac{B_{2}}{1+\ln \left(A_{1} / B_{1}\right)}\left(\frac{A_{1}}{B_{1}}\right)^{2}, A_{1} \neq B_{1} e^{-1} \tag{26}
\end{equation*}
$$

and hence

$$
\left\{\begin{array}{l}
\frac{\partial A_{3}}{\partial A_{1}}=1+\left(\frac{A_{1}}{B_{1}}\right)^{2}\left\{3\left(\frac{B_{3}}{B_{1}}-1\right)\right. \tag{27}\\
\left.\quad-\frac{B_{2}^{2}}{B_{1}^{2}}\left[\frac{3 \ln \left(A_{1} / B_{1}\right)}{\ln \left(A_{1} / B_{1}\right)+1}+\frac{1}{\left(\ln \left(A_{1} / B_{1}\right)+1\right)^{2}}\right]\right\}=0 \\
A_{1} \neq B_{1} e^{-1}
\end{array}\right.
$$

In the special case excluded above, we have

$$
\left\{\begin{array}{l}
\max A_{3}=B_{1} e^{-1}\left\{1+\left[2\left(B_{2}+2 B_{1}\right) \frac{B_{2}}{B_{1}^{2}}+\frac{B_{3}}{B_{1}}-2 \frac{B_{2}^{2}}{B_{1}^{2}}-1\right] \epsilon^{-2}\right\} \tag{28}\\
A_{2}=\left(B_{2}+2 B_{1}\right) e^{-2} \\
A_{1}=B_{1} e^{-1}
\end{array}\right.
$$

which means that this local extremal point $E_{\text {II }}$ lies on the arc II \cap III.
The extremal functions F belonging to the upper surface of the coefficient body are obtained from the corresponding $S_{R}(b)$ mappings f by means of the relation $F=L \circ f$. The types of the corresponding extremal domains are schematically drawn in Figure 2. The effect of L is pointed out through the double lines in the left radial slit.

The transition case from three slits to one forked slit is especially interesting. The border line between these two types is found by using the condition (18) in Schiffer's differential equation form:

$$
b^{2}\left(z \frac{f^{\prime}}{f}\right)^{2} \frac{\left(f-f_{1}\right)^{2}\left(f-f_{2}\right)^{2}}{f^{2}}=\frac{\left(z-z_{1}\right)^{2}\left(z-z_{2}\right)^{2}}{z^{2}}
$$

Here f_{1} and f_{2} are the starting points of the two slits, whereas z_{1} and z_{2} mean the pre-images of their endpoints. We need the expressions of f_{ν} :

$$
f_{\nu}=\frac{a_{2}}{2 b \ln b} \pm i \sqrt{1-\left(\frac{a_{2}}{2 b \ln b}\right)^{2}}, \quad\left|a_{2}\right|<2 b|\ln b|, \quad \nu=1,2
$$

Require that the function F,

$$
F(z)=L(f(z))=K^{-1}\left[\frac{4 B}{(1-B)^{2}}(K(f(z))+1 / 4)\right]
$$

maps them to the point $F=-1$. This implies

$$
\left\{\begin{array}{l}
-1 / 4=K(-1)=\frac{4 B}{(1-B)^{2}}\left(K\left(f_{\nu}\right)+1 / 4\right) \\
K\left(f_{\nu}\right)=\frac{1}{f_{1}+f_{2}-2}=\frac{b \ln b}{a_{2}-2 b \ln b}
\end{array}\right.
$$

Since $b=A_{1} / B_{1}$ and $a_{2}=A_{2} / A_{1}-\left(B_{2} / B_{1}\right) \cdot\left(A_{1} / B_{1}\right)$, we obtain from this the condition

$$
\begin{equation*}
A_{2}=\left(\frac{A_{1}}{B_{1}}\right)^{2}\left[B_{2}+2 B_{1} \frac{1-6 B+B^{2}}{(1+B)^{2}} \ln \frac{A_{1}}{B_{1}}\right] . \tag{29}
\end{equation*}
$$

This defines an arc between the points O and P, dividing the region II in two parts, II_{1} and II_{2} (Figure 2).

The extremal conditions do not allow explicit maximal expressions for A_{3}. However, the form of these conditions is sufficiently explicit for the comparisons needed for determining numerical values for maximal A_{3}.

Proposition. The upper surface of the coefficient body $\left(A_{3}, A_{2}, A_{1}\right)$ of $S_{R}^{\prime}(B)$ is governed by the equality cases in the conditions (22) and (23). The extremal mappings are those illustrated in Figure 2. The absolute maximum of A_{3} is obtained at the extremal points E_{I} and $E_{\text {III }}$ determined by (24) and (25) and at $E_{\text {II }}$ the maximum is obtained from (26) and (27).

In the Table below there are examples of maximum values and corresponding maximizing points for $B \in] 0,1[$. If $\left.B \in] 0, \beta_{1}\right]$ the maximum value B_{3} is obtained at $P=\left(B_{1} B_{2}\right)$. For $B=\beta_{2}$ the maximizing point lies on the border line II \cap III. For each of the values $B=\beta_{3}, \beta_{4}$ and β_{5} there exists a twin-peaks phenomenon, i.e. two simultaneous maximizing points are located at separate regions.

B	Region	A_{1}	A_{2}	A_{3}
0.01	P	0.039207921	0.075325638	0.105566789
$0.060105 \quad 284=\beta_{1}$	P	0.213158597	0.332373655	0.314860116
0.1	II	0.241141826	0.334023937	0.314988562
0. $109^{\circ} 182397=\beta_{2}$	II 11 II	0. 241221180	0.331789344	0.312934771
0.3	III	0.200349599	0.278285612	0.262412647
$0.405845580=\beta_{3}$	III	0.174554994	0.243446874	0.229546135
$0.405845 \quad 580=\beta_{3}$	II	0.344062167	0.013299315	0.229546135
0.42	II	0.346687179	-0.008 980725	0.232983603
$0.432135879=\beta_{4}$	II	0.348410265	-0.027 243544	0.232983603
$0.432135879=\beta_{4}$	I	0.177778082	-0.247 079018	0.232983603
0.5	I	0.195570967	-0.266 921939	0.251816372
$0.585010730=\beta_{5}$	I	0.212438561	-0.279 106032	0.263857404
$0.585010730=\beta_{5}$	II	0.345784659	-0.185 955551	0.263857404
0.7	II	0.322067767	-0.226 047206	0.267596511
0.9	II	0.165022768	-0.148 752486	0.154710631

Table

In Figure 3 there is the graph of $\max A_{3}=A_{3}(B)$. This curve has the following local extrema:

$$
\begin{aligned}
& \max \max A_{3}=A_{3}(0.076881330)=0.317962191 \\
& \max \max A_{3}=A_{3}(0.658414400)=0.270056828 \\
& \min \max A_{3}=A_{3}\left(\beta_{3}\right)=0.229546135
\end{aligned}
$$

Figure 3.
In Figure 4 there are nets visualizing the coefficient body $\left(A_{3}, A_{2}, A_{1}\right)$ for $B=0.3$. The points in the foreground are those belonging to the region I.

$B=0.3$

Figure 4.

References

[1] Jokinen, O . and O . Tammi, On determining the points of second coefficient body (a_{4}, a_{3}, a_{2}) for bounded real univalent functions, Kodai Math. J. 17, No. 1 (1994), 82-100.
[2] Kortram, R. and O. Tammi, On the first coefficient regions of bounded univalent functions, Ann. Acad. Sci. Fenn. Ser. A 592 (1974), 27.
[3] Prokhorov, D.V., J. Szynal, Coefficient estimates for bounded nonvanishing functions, Bull. Polish Acad. Sci. Sér Sci. Math. 29 (1981), 223-230.
[4] Śladkowska, J., On univalent, bounded, non-vanishing and symmetric functions in the unit disk, Ann. Polon. Math. 64(3) (1996), 291-299.
[5] , Estimations of the second coefficient of the univalent, bounded, symmetric and non-vanishing function by means of Loewner's parametric method (to appear ibid).
[6] Tammi, O., Extremum problems for bounded univalent functions. Lecture Notes in Mathematics,646, Springer-Verlag, Berlin-Heidelberg-New York, 1978.

SF-00400 Helsinki, Finland

ANNALES

UNIVERSITATIS MARIAE CURIE - SK£ODOWSKA LUBLIN - POLONIA

1. S. Atsushiba, W. Takahashi: Approximating Common Fixed Points of Nonexpansive Semigroups by the Mann Iteration Process
2. J. M. Ayerbe, S. Francisco Cutillas: A Modulus for the Near Uniform Convexity
3. R. Bader: Fixed Point Theorems for Compositions of Set-Valued Maps with SingleValued Maps
4. K. Bolibok: Construction of a Lipschitzian Retraction in the Space c_{0}
5. P. Oliveira Collaço, A. Sarychev: An Example of a Contractive Mapping Without Fixed Point
6. K. Czarnowski: Structure of Fixed Point Sets of Condensing Maps in Bo Spaces with Applications to Differential Equations in Unbounded Domain
7. P. N. Dowling, CH. J. Lennard, B. Turett: Asymptotically Perturbed Norms of Classical Sequence Spaces with Applications to Fixed Point Theory
8. K. Goebel, W. Kaczor: Remarks on Failure of Schauder's Theorem in Noncompact Settings
9. J. Górnicki: On Some Generalization of Lipschitzian Mappings in a Hilbert Space
10. A. Idzik, D. Miklaszewski: Borsuk-Ulam Type Theorems I
11. J. R. Jachymski: Some Consequences of Fundamental Ordering Principles in Metric Fixed Point Theory
12. M. Á. Japón Pineda: A New Constant in Banach Spaces and Stability of the Fixed Point Property
13. V. Khatskevich, S. Reich, D. Shoikhet: Semi-complete Holomorphic Vector Fields on Homogeneous Open Unit Balls in Banach Spaces
14. T. H. Kim, J. Soo Jung: Approximating Fixed Points of Nonlinear Mappings in Banach Spaces
15. W. A. Kirk: Remarks on Approximation and Approximate Fixed Points in Metric Fixed Point Theory
16. A. Kryczka, T. Kuczumow: The Denjoy-Wolff-Type Theorem for Compact $k_{B_{H^{-}}}$ Nonexpansive Maps on a Hilbert Ball
17. T. Kuczumow, S. Reich: An Application of Opial's Modulus to the Fixed Point Theory of Semigroups of Lipschitzian Mappings
18. B. S. Lee, G. M. Lee, S. S. Chang: Generalized Vector Variational Inequalities for Multifunctions
19. C. H. Morales: Approximation of Fixed Points for Locally Nonexpansive Mappings
20. S. Park: Fixed Points in Homeomorphically Convex Sets
21. S. Reich, D. Shoikhet: The Denjoy-Wolff Theorem
22. B. E. Rhoades: Using General Principles to Prove Fixed Point Theorems
23. N. Shioji: Strong Convergence Theorems for Nonexpansive Mappings and Nonexpansive Semigroups
24. W. Takahashi: Weak and Strong Convergence Theorems for Families of Nonexpansive Mappings and Their Applications
25. Hong-Kun Xu: Banach Space Properties of Opial's Type and Fixed Point Theorems of Nonlinear Mappings

$$
\begin{aligned}
& 4050 \frac{52}{1} \\
& 1998
\end{aligned}
$$

