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Abstract. The close relationship between the normalized univalent real 
classes of non-vanishing and bounded functions allows shifting coefficient 
body information from the latter to the former one. By means of this the 
extremal values of the coefficients A2 and A3 of the non-vanishing functions 
are determined.

1. Introduction. In this treatment we will use coefficient estimates con
cerning bounded normalized univalent functions f of the class S(6),

S(b) = {f I f(z) = b(z + a2z1 2 + ...), |z| < 1, |/(^)| < 1, 0 < 6 < 1}, 

SR(b) C S(6).
Here 5^(6) means the real subclass with all the a„-coefficients real.

Denote U = {z | |z| < 1} and consider the functions F defined in U and
satisfying the above univalence- and boundedness conditions with the addi
tional non-vanishing restriction 0 $ F’(fZ). Further, normalize the functions 
F so that

F(z) = B + AlZ + F(0) = B € ]0, 1[.
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If all the coefficients A„ are real, the requirement B = F'(O) > 0 implies 
F'(0) = > 0. While extending this requirement to concern also the
general case we may introduce the class notations

f S'(B) = {F | F(z) = B + AlZ + z e U J F(U) 1 0,
(2) J 0< B< l,Aj >0},

I S'R(B) c S'(fl),

where means again the real subclass. These notations emphasize the
relationship between the classes (1) and (2). The notations (2) differ from 
those used in the treatments to be mentioned next.

In [3] Prokhorov and Szynal give estimates concerning the coefficients A2 
and A3 in S'(B) and SR(B) by using Bieberbach-Eilenberg functions. In 
[4] Śladkowska applies variational method and in [5] the Lówner method for 
deriving in S'R(B) sharp bounds for the coefficient A^ in terms of B.

In [2] the Grunsky type inequality was for the first time applied for 
finding information concerning the coefficient body of 5(6)-functions. This 
optimized inequality idea was later extended up to the body (<14, <13, 02) in 
the class Sr^F) [1],

In [5] the estimations are based on the one-to-one relationship between 
the classes and S'R(B) realized by means of the function L:

(3)
' L = L(z) = K~' [^(A'^+l/4)], 

> A' = A(z) = z/(l - z)2.

Here K is the left Koebe function for which A'((/) is the complex plane with 
a left radial slit from —00 to —1/4. Thus L(U') is a left radial-slit domain 
i.e. a unit disc with a left radial slit from —1 to the origin. With suitably 
chosen parameters b, B there holds the mentioned relation

(4) L°feS'R(B), L-1 o f e sR(b).

In the present paper this basic connection found in [5] will be applied 
directly to coefficient bodies. Actually, the inequalities defining the body 
boundaries, are nothing else but the optimized Grunsky conditions.

The connection (4) shifts this information from class to class and hence 
the sharp inequalities of Sr(6) coefficients can be transformed to those of

2. The body (A2, Ai). From the inverse connection of w = A'(z),

z = K-\w~j= 1 -
1 + \/l + 4w ’
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we obtain for L,

1 - B + v/(l + B)2 + 16BA'(z)'

This yields for L(z) the expansion

y = £(z) = B + B\z + B2z2 + B3z3 + ..., where
B, = 4B(1 - B)/(l + B)_1,
B2 = 8B[(1 - B)/(l + B)-3](l - 2B - B2),

, B3 = 4B[(1 - B)/(l + B)~s](3 - 20B + 18B2 + 12B3 + 3B4).

For the inverse mapping we obtain

(6)

' z = L ’(y) = Cv(y - BY, where 
Ci = 1/Bj,
C2 = -B2/B3,

. C3 = 2Bl/Bl-B3,/B*.

Let F E Sr(B) be arbitrary. For the corresponding function f we thus 
have

00
Sfl(6) 9 f = L~\F) = ^C,(F - BY = CMi z + (CjA2 + C2X?) ? 

' 1
+ (C1A3 + 2C2Ai 42 + C343) z3 + ....

This yields for the coefficients of /:

' 6 = A/Bi,
a2 = A2/Al + (C2/Ci)4! = A2/A3 - (B2/B3)A3, 
a3 = A3/Ax + 2(C2/C^A2 + (C3/GM2

. = A3/A1 - 2(B2/B2)42 + (2B2/B4 - B3/B3) A2.

Observe that because of 6 6 ]0, 1],

(8) 0 < A < Bj.

The equality Ai = B\ implies 6=1 and thus f(z) = z € i.e.

^1 = 5! => 5^(B) 9 F = L.
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In Sfi(ó) the first optimized Grunsky condition is equivalent with the 
well-known limitations

(9) -2(1 - h) < a2 < 2(1 - 6),

where the right equality is attained by the left radial-slit mapping /,

(10) //(l-/)2=h[z/(l-z)2],

and the left equality holds for the right radial-slit mapping /,

(11) //(1 + /)2 = 6[z/(1 + z)2].

It follows from (7) and (9) that for any F 6 S'R{B) there hold the sharp 
estimates

This yields for Ai sharp bounds in terms of A\ and B and further, absolute 
bounds in terms of B.

•d.2 — — 2Aj T B(1 - B2)
= -B(l - B2) + 

> -B(l - B2).

(A-B(l-B2))' 
B(1 - B2)

Because of B(1 — B2) < Bi, the last equality is always attained:

2Ai -
2 + B 
1 - B2 A?

1-B2 B + 2 / 1-B2\2^1-B2
B + 2 _ 1 - B2 V 1 _ B + 2j ~ B + 2'A2 <

The last equality is attained provided (1 — B2)/(B + 2) < Bj O 
2/\/3 - 1 < B < 1. For B < 2/\/3 - 1 the upper bound of A2 is maxi
mized at B = Bi => Ai < B2. The estimates obtained may be stated as the 
following

Proposition. The first non-trivial coefficient body A2, A\ for S^B) func
tions F is determined by the sharp bounds

(12) —2>li +
B(1 - B2)

< A2 < 2A, - 2 + B A2
- 1 1-B21'

In the maximum case the extremal function F = L o f is obtained for 
b = Ai/B\ with f from (10), and from^ll) in the minimum case.



The First Coefficient Bodies of Bounded Real ... 181

The extremal functions F are thus left radial-slit mappings on the upper 
boundary arc 3 and left-right radial-slit mappings on the lower boundary 
arc 1 (Figure 1).

The lowest and highest points of the convex figure (A2, Ai) yield the 
absolute minima and maxima of A2:

(13)

Ai = B(1 — B2) = —min A2, 0 < B < 1,

Ai = (1 - B2)/(B + 2) = maxA2, 2/^-1 <B<1, 

Aj = Bi => B2 = max A2, 0 < B < — 1.

In the first two cases the minimal and maximal points are on the arcs 1 
and 3 respectively. In the last case the maximal point is P (Figure 1) and 
the extremal function is L.

The estimates (13) are those in [3], [4] and [5].

3. The lower boundary of the body (A3, A2, Aj). In SR(b) the next 
coefficient body (03, a2) is well known ([6], p. 220-235) and simple enough 
for shifting for Sr(B) functions. Start by considering the lower boundary 
which includes only one type of extremal 5r(6) functions.

According to [6], p. 222-223, the lower boundary of the body (03, a2) 
consists of the parabolic arc

(14) -l + b2 + a2 < 03, -2(1 - h) < a2 < 2(1 - h).

The extremal functions / correspond to left-right radial-slit mappings de
fined by

(15) h(/ + /_1) = z-1-2-1-a2-

The condition (14) implies, by means of (7), for S'R(B) functions:

A3
A,

A2 +

which implies

(16)
-4?

(1 - B2)2'

Observe that, according to (12), the ratio | A2/A\ | is bounded.
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Consider now the extremal function F of (16). If (Ai, A2) is any point 
of the coefficient body, we obtain from (7) and (14) the corresponding a„ 
coefficients

a2
A2 B2

i, a3 = M - 1 +

This fixes a point on the parabolic arc (14) which implies that the cor
responding f is in general left-right radial-slit type. Hence the extremal 
F = Lo f is always left-right type except for the arc 3, where left radial-slit 
mapping exists.

Next ask for the absolute minimum of A3 satisfying the restriction (16). 
Denote

m(Ai, 42) = — - _^2)2-

Clearly, m is minimized for minimal values of |A2|, i.e. at a point which is 
located on one of the arcs 1, 2 or 3 of the body (A2, Aj). According to the 
location of the point P (Figure 1) we have to consider two main cases.

1°. 0 < B < y/2 - 1

The point P is not below the A\ axis. The extremal point lies necessarily 
either on the arc 2 or 1. It is convenient to denote the extremal point 
according to its location: E„ 6 arc v (1/ — 1,2,3). Similar notation (v = 
1,2,3) is useful also for the corresponding functions minimizing m(Ai, A2):

m(Ai, A2) = *
A3m2(Ai) = m(Ai, 0) = —Ai + ^2)2 >

mi(Ai) = m (.Ai, — 2Aj + J3(i_łg2)^ ,

0 < Ai < Q,

Q < Aj < .

Here Q = 2B( 1 — B2) and

mi(Ai) = 3Ai 4 A2 , 1 + B2 A3
B(1 - B2) 1 B2(l - B2)2 r

ZO)
The local minimizing point A) 7 of to2(Ai) is the positive zero of the de

rivative m^Aj), Aj2’ = [1 — B2]/\/3. For m^Ai) the corresponding point 
is the greater zero of m^Aj):

A’1)= 30 + ^O+V"7-952) €R, Be]0,^-l].



The First Coefficient Bodies of Bounded Real ... 183

Since these derivates are of second degree, the order of the points Q, Aj1^ 
and Aj 1 determines the minimum of m(Ai, A2) in the following way:

0 < B < 73/6 : > Q < A^ <£i=> min A3 = m^Aj1'),

B = 73/6 : Aj1' = Aj2) = Q < Bx => min A3 = mi(Q) = m2(Q),

73/6 < B < 72 - 1 : Aj2) < Aj1* < Q < Bx => min A3 = m2(A(12)).

Figure 1.

2°. 72 - 1 < B < 1
The point P lies below the Aj-axis and the extremal point is necessarily 

either on the arc 2 or 3. The functions m„ minimizing m(Ai, A2) are:

m2(Ai) = m(A], 0) = —Ai + , 0 < Aj < Q,

m3(Ai) = m^Ai, 2Aj - pĄp-A^, Q < Ai < B3,

where now Q = 2(1 - 52)/(2 + 5) and

m(Ai, A2) = <

/ 4 s „ , 2 + 5 2 B~ + 45 + 53
m3(Ai) = 3Ai - _ £2 Ax + _ ^2j—^i-

The greater zero of m3(^4i) is

A0) = ____
1 3(5 + 45+ 52)

[4(2 + 5) + 719 + 285 + 752].
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Similarly as in the case 1° we decide that the minimum of m(Ai, A2) is 
derived from the order of the points Q, Aj2^ and A,'^:

y/2 — 1 < B < 1 : j4]2) < Aj3' < Q => min A3 = m2 (A^). 

These estimates imply the following

Proposition. In S'R(B) the lower surface of the coefficient body (A3, A2, Ai) 
is determined by the condition

<16> +

with the sign of equality for the left-right radial-slit mappings. The extremal 
function F = L o f at the point (Aj, A2) is found from (15) with

b =
A
Bi’

A2 h2
“2 =

The absolute minima of A3 together with the validity intervals of B and 
the minimizing points E„ are:

min A3
/ A3(B,)= ^^[54B2-10-(7-9B2)3/2], 

. A3(£2) = -^(l-B2),

0 < B <

& < B < 1.

Here Ex is located on the arc 1 at

A‘-,,=w$(4+'/7Z’5J)

and £2 Bes on the line segment 2 at E2 — ((1 — B2)/\/3, O) . B = \/3/6 is 
the transition value, for which E\ = E2 = Q = (ll\/5/36, 0).

4. The upper boundary of the body (A3, A2, Aj). For Sr(&) the upper 
boundary of the coefficient body (03, 02) is determined in [6], p. 226-235, 
and details concerning the extremal functions are given in [2], p. 10. The 
results are the following.

For |<i21 < 26| In 6|

(17) a3 < 1 - b2 + a 2
2»
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where the extremal function f satisfies

(18) .JŁlB/ + ł(Z.r.) = .j^lllz + z.z-..

(19)

For |ct21 > 26| In 6|

' a3 < 1 - b2 + a2 — 2<t|o2| + 2(<x - b)2,
<

, cr In a - a + b + = 0, a € [6, 1],

The extremal function / = f{z, 6) is determined by the conditions 

' tr[/(z, cr) - /(z, o’)-1] = z - z-1 + 2<r In
(20)

/(*, + /(*> &)]2 = (VCT) • /(*, ^)/[l + /(*> <r)]2-

By means of the relations (7) these optimized results for functions
are transformed to those of W)-

The limitation of |ct21 imposed by (17) implies for A2:
2 r

(21) (ft) B2 - 2Bi < A2 In
Bi

B2 + 2Bj

The equality cases determine two arcs with the endpoints 0 and P. They 
divide the figure (A2, Ai) in three parts I, II and III (Figure 2). The upper 
parts of the body (A3, A2, Ai) lie over them and are restricted by the 
conditions (17) and (19). At the point (Aj, A2) € I or III we thus obtain 
from (19), by means of (7), the following restriction for A3:

(22)

’ A3< [a3 + 2(B2/B2)A2 + (B3/B?-2(B22/B?)) -4?] ^1, 

A2 = A\a2 + (B2/B2)A2,

a2 = ±2 (Aj/#! - a + <7In cr); 0 6 [A1/B1, 1],

. a3 = 1 - (A1/B1)2 + a2 ± 2aa2 + 2(cr - Ax/Bi)2 .

Here the upper signs belong to I and the lower ones to III. The equality 
defines the upper boundary of the body over the regions I and III, expressed 
in the variables Ai and a.

In the case II (17) yields

’ A3 < [o3 + 2(B2/B2)A2 + (B3/Bx - 2B2/B2) (A,/Bx)2] Aj,

(23) a2 = A2/A1 — (B2/Bi) • (A1/B1),

a3 = 1 - (Aj/Bi)2 + (l + a2-
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The equality belongs to the surface of the body over the region II, expressed 
in the variables Ai and A2.

B = 0.3

Figure 2.

When looking for the absolute maximum of A3 we have to determine the 
local extremal points E\, Ejj and in each of the regions I, II and III 
respectively. The necessary conditions for the variables Aj and a belonging 
to Ei and Ejii will be determined first. The equality

1 dA3 n /±B2 + 2 a , n , \ „— • —- = 4 In (T ----------Ai + 2(7 In (T =0
Ai da \ Bi J

implies

(24) A1/B1 =-[2Bi/(2fli ± fl2)]<rln(7.

By means of this the expression of dA3/dA\ can be simplified to yield the 
condition

(25) j£=1+2^+12^+_2i_ (Bl~B22 + BiB3)a2hi2a = 0.

The order of the signs is the same as above. 
For Eu we obtain from 9A3/dA2 = 0 that

(26) A2 b2 MiV
l + lnMi/BjAflrJ ’ At / Bie-1,
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and hence

(27)

a?=>+(*)’{’(&-*)

[uJ’ZXT+i+ d.M.Ao+tp]}=°>

± Bxe~\

In the special case excluded above, we have

max43 = Bxe 1 <{ 1 + 12( B2 + 2BX)^ + — 1 .—2 }•

(28) j a2 
I Ax

= (B2+2B1)e-2, 

= Bxe-\

which means that this local extremal point 2?n lies on the arc II fl III.
The extremal functions F belonging to the upper surface of the coefficient

body are obtained from the corresponding 5^(6) mappings / by means of 
the relation F = L o f. The types of the corresponding extremal domains 
are schematically drawn in Figure 2. The effect of L is pointed out through 
the double lines in the left radial slit.

The transition case from three slits to one forked slit is especially in
teresting. The border line between these two types is found by using the 
condition (18) in Schiffer’s differential equation form:

r\2(/-/i)2(/-/2)2 _ (z-zx)\z-z2y 
Vf) f2 *2

Here fx and f2 are the starting points of the two slits, whereas zx and z2 
mean the pre-images of their endpoints. We need the expressions of f„:

Require that the function F,

F(z) = L(f(z)) = K-1 (A’(A0) + 1/4)],

maps them to the point F = -1. This implies

J -1/4 = tf(-l) = (*(/„) + 1/4),

I 7<(/p) = /,+/2_2 ~ a2-2f>In b‘
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Since b = A\/B\ and ci2 = A2/Ai — (B2/Bi)‘(Ai/Bi), we obtain from this 
the condition

2

(29) A2 B2 + 2B\
1 - 6B + B2 

(i + sy
In Ąi

B,

This defines an arc between the points 0 and P, dividing the region II in 
two parts, IIj and II2 (Figure 2).

The extremal conditions do not allow explicit maximal expressions for 
A3. However, the form of these conditions is sufficiently explicit for the 
comparisons needed for determining numerical values for maximal A3.

Proposition. The upper surface of the coefficient body (A3, A2, Ai) of 
S'R(B) is governed by the equality cases in the conditions (22) and (23). 
The extremal mappings are those illustrated in Figure 2. The absolute 
maximum of A3 is obtained at the extremal points Ei and Em determined 
by (24) and (25) and at Bn the maximum is obtained from (26) and (27).

In the Table below there are examples of maximum values and corre
sponding maximizing points for B € ]0, 1[. If B €]0,the maximum 
value B3 is obtained at P = (B\ B2). For B = /?2 the maximizing point lies 
on the border line II fl III. For each of the values B = /J3, fa and fa there 
exists a twin-peaks phenomenon, i.e. two simultaneous maximizing points 
are located at separate regions.

B Region A, A2 A3
0.01 P 0.039 207 921 0.075 325 638 0.105 566 789

0.060 105 284=/3i P 0.213 158 597 0.332 373 655 0.314 860 116
0.1 II 0.241 141 826 0.334 023 937 0.314 988 562

0. 1091182 397=/?2 iinin 0. 241 221 180 0.331 789 344 0.312 934 771
0.3 hi 0.200 349 599 0.278 285 612 0.262 412 647

0.405 845 580=/?3 iii 0.174 554 994 0.243 446 874 0.229 546 135
0.405 845 580=/33 11 0.344 062 167 0.013 299 315 0.229 546 135

0.42 11 0.346 687 179 -0.008 980 725 0.232 983 603
0.432 135 879=/34 11 0.348 410 265 -0.027 243 544 0.232 983 603
0.432 135 879=/34 1 0.177 778 082 -0.247 079 018 0.232 983 603

0.5 1 0.195 570 967 -0.266 921 939 0.251 816 372
0.585 010 730=/35 1 0.212 438 561 -0.279 106 032 0.263 857 404
0.585 010 730=/?5 11 0.345 784 659 -0.185 955 551 0.263 857 404

0.7 11 0.322 067 767 -0.226 047 206 0.267 596 511
0.9 11 0.165 022 768 -0.148 752 486 0.154 710 631

Table
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In Figure 3 there is the graph of max A3 = A3(B). This curve has the 
following local extrema:

maxmaxA3 = A3(0.076881330) = 0.317962 191, 
max max A3 = A3(0.658414400) = 0.270 056 828, 
min max A3 = A3(/?3) = 0.229 546 135.

Figure 3.

In Figure 4 there are nets visualizing the coefficient body (A3, A2, Ai) for 
B — 0.3. The points in the foreground are those belonging to the region I.

B = 0.3

Figure 4.
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