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Abstract. For /? < 1 let Tł(fi) denote the family of normalized analytic 
functions f defined in the unit disc A such that for some y € (—7r/2, jr/2) 
Re[e”(/'(z) — 0)] > 0 for z € A. Further, let g be univalent, or in 
Given the Gaussian hypergeometric function

F(a,6;c;z)
(a,n)(fe,n) _n 

“'o (c,n)(l,n)

we find conditions on the parameters a, b, c and 0 so that the Hadamard 
product f(z) = zF(a, b; c; z) * g(z) will have the starlikeness property given 
by \zf'(z)/f(z) — 1| < A where A > 0.

1. Introduction. Throughout, C denotes the complex plane and we denote 
the unit disc in C by A. Let A denote the family of all functions f analytic
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in A with the usual normalization /(O) = /'(0) -1 = 0. The following 
subfamilies of A have been studied extensively:

S = {/ € A | f is univalent in A}

<S*(0) = {/ e A | Re(z/'(z)//(z)) > /?, z € A}

where /? < 1. The functions in 5*(/3) are called starlike of order /3. It is 
well-known that 5*(/3) C 5*(0) = 5* C 5 for 0 < /? < 1, but for /? < 0 the 
functions in «S*(/3) need not be univalent. In addition to these basic classes 
of starlike functions, several subclasses and generalizations of 5*(/3) have 
been defined and studied over the years. In this paper we will in particular 
be concerned with the classes S%, A > 0, defined by

S *
X

zg\z)
9(z)

< A, z e A }■

It is long known that a sufficient condition for g(z) = z + 52^=2 to 
belong to the class 5* is that nl^nI < 1- In fact, the same condition
is also sufficient for g 6 «Sj C 5*, a result which has been proved by several 
authors, among others by Goodman [2]. A simple extension of this result 
is the following, by Silverman [12]:

OO

(1.1) £(n + A-i)|6n|<A=>5e«s;.
n=2

For A = 1/2 this was proved earlier by Schild [11].
We note that C 5*(1 — A). The classes have turned out to be

especially important in working with functions of the type

OO

(1-2) g(z) = z - ^2bAn, bn > 0.
n=2

When we restrict to functions with real and negative coefficients as in (1.2) 
we actually have 5^ = «S*(1 - A), and then the coefficient condition (1.1) 
becomes both necessary and sufficient for membership in 5* [12], [13]. In 
the case A = 1, the equivalence in (1.1) for functions of the type (1.2) was 
first proved by Ozaki [4, Theorem 1’] in 1934.

For (3 < 1 define

W) = {/£>! I 3 7/E (—7r/2,7r/2) | Re [e’’’(//(2) —/3)] > 0, z G A}.
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Note that when [3 > 0, we have 7Z(/3) C S, but for each /3 < 0, 72.(/3) contains 
also non-univalent functions. For any complex number a, we define the 
ascending factorial notation (a, n) = a(a + 1) • • - (a + n— 1) = a(a + 1, n — 1) 
for n > 1 and (a,0) = 1 for a 0. When a is neither zero nor a negative 
integer, we can write (a, n) = T(n + a)/T(a).

We shall consider the Gaussian hypergeometric function (series)

OO

F(a,6;c;z) =
n=0

(a, n)(6, n) _ n 
(c,n)(l,n) a, b,c e C,

where c is neither zero nor a negative integer. The following well-known 
formula

(1-3) F(a,6;c; 1)
r(c — a - f»)r(c) 
r(c-a)r(c-6)’

Re (c - a - 6) > 0,

will be used frequently. We recall that the function F(a, 6; c; 2) is bounded 
if Re (c — a — 6) > 0, and has a pole at z = 1 if Re (c — a - 6) < 0, see 
e.g. [1], Univalence, starlikeness and convexity properties of zF(a,b]c-,z') 
have been studied extensively e.g. in [7] and [10]. For f 6 A, we define 
the operator Io,j,;C(/) by [Io,fc;c(/)](^) = zF(a,b;c-,z) * f(z), where * 
denotes the usual Hadamard product (convolution) of power series. Using 
the integral representation

F<“- = wB, /' ‘‘''t1 - (T^F’

we can write

dt *
(1-2)“

-6-1 /(*z)

Some special cases of this operator should be mentioned explicitly. For 
a = 1, b = I+7 and c = 2 + 7 with Re 7 > -1, (1.4) turns into the so-called 
Bernard! operator

F;(2) = [Ill7+l;7+2(/)](2) = (1 + 7) /’ t^f(tz)dt, 

JO

which for 7 = 1,2 reduces to the Alexander and Libera transforms, re­
spectively. We remark that these three operators are all examples of the 
situation where c = a + b in Ia,6;C(/)- Further, we have

(1 -2)«+>
*/(2) = [Ii>6+i;1(/)](2), 6 >-1,
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which is known as the Ruscheweyh transform (derivative) studied in [8] 
(see also [9]), and later by a large number of authors. We observe that the 
Ruscheweyh transform represents the case c < a + b with a = 1,6 = 1 + 6 
and c = 1. For a survey of special cases of the operator Ia,6;o and more 
general operators, we refer to the article by Srivastava [14], where also a 
long list of other references can be found. Thus, the operator Ia,6;e(/), 
and hence the Gaussian hypergeometric function, is a natural object for 
studying inclusion properties related to the convolution product.

The investigations in this paper are mainly motivated by the desire for 
more information about how the operator Ia,6;c(/) acts on various classes 
of analytic functions. Problems of this type naturally fall into one of three 
categories, depending on whether Re(c — a — 6) is larger than, equal to or 
less than zero.

In each of these categories, with a, 6, c > 0, examples of univalence as well 
as non-univalence of the function zF(a, b; c; z) can be found in the recent 
paper of Ponnusamy and Vuorinen [7]. Some other special cases of the 
operator Ia,6;c(/) may also be found in [6], [10].

In these papers the methods applied are entirely different from the ones 
in the present paper. Our results here all deal with the case c > Re(a + 6), 
and we find conditions on a, b and c such that when = 7£(/3) or 5 and 
+2 = Sa the operator Ta,b;c maps into

We remark that our methods cannot be used in the case c < Re(a+6), and 
the reason for this is that then the series F(a, 6;c; 1) diverges. Starlikeness 
properties of integral transforms have also been studied by the authors in 
the recent paper [5] using duality theory for convolutions. We will develop 
some of the results from [5] a little further, and also compare these results 
with the results that we get with other methods.

2. Main results. The first results that we present deal with the case 
T7! = ft(/3) and Z2 =
Theorem 2.1.

Let a, 6 € <C\{0}, c > 0, |a| 1, |6| 1, c 1 and c > |a| + |6|. For
A € (0,1], assume that

(2-1)

r(c- |q[ - |6|)r(c) 
r(c-|a|)r(c-|6|)

(A-1)(C-H-|6|)- 
(H - 1)(|6| - 1)

1 1 , (A-l)(c-l)
2(1 —/3) J ' (|a| — 1)(|6| — 1)’

Then the operator la,b;c(f) maps 7£(/3) into S*.

In the case a = 1 we can formulate the following result.
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Theorem 2.2. Let b € C\{0}, c > 0, |h| / 1 and c > 1 +16|. For A € (0,1], 
assume that

+ (A - Wc - ! W(c - 6)) < A (l + ^L_) ,

where i/>(x) = r'(x)/r(x). Then the operator 2"i,(,;<.(/) maps TZ(/3) into S".

When A = 1, we see from the proof of the above theorems that we do not 
need to treat the case a = 1 separately, neither do we need the restriction 
|h| / 1 and c 1. In this case we get the following result, unifying Theorems 
2.1 and 2.2.

Corollary 2.3.

(2-2)

Let a,b£ C\{0} and c > |a| + |h|. Assume that

r(c - |o| - |fr|)r(c) i
r(c- |a|)r(c- |h|) - + 2(1 —/?)’

Then the operator Taib;c(f) maps 7£(/3) into 5*.

We now briefly present the situtation which we have studied more closely 
in [5]. Let 7r : [0,1] -* R be a non-negative function normalized so that 
Jq ?r(t)dt = 1, and define

l
[v,(/)](z) = feA.

0

Let n(t) = // 7r(s)ds/s, and assume that ZTI(t) —► 0 when t —> 0+. It is 
easy to verify that the class <S* (A > 0) can be characterized in terms of 
convolutions in the following way,

/(*) . hA(z)
f € S; O *

where h\(z) = 2(1 + £y^)/(l - z)2, |®| = 1- For A = 1 this result is stated 
in [9]. An application of Theorem 2.1 in [5] gives the following result.

Theorem 2.4. Let /3 be given by

p
1-/3

= -/’(')[2 - A(l + <) 2(A-1) log(l + t)
A(l-H) + A t dt.
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Then
V^d)) C <=> Ln(e~i9 h\(ei9 z)) > 0, z £ A,

where
1

o

We observe that the operator Ii,6;c(/) corresponds to V^(/) with

7r(<) = ^b,c(ł) =
r(c)

To apply Theorem 2.4 we would like to have conditions on b and c such that 
Lnb,c(h\) > 0 where

6-1 (6 - l)r(6)T(c - 6)
t^F^b- 1,1 + 6 — c; 6; Z),

b 1. Such conditions are not easy to establish in general, but we will look 
at some examples.

In [5, Theorem 4.2] it is proved that for Ih^Z) = 5(1 - t)4 we have

We pow extend this result to some other cases.

Proposition 2.5. For b = 2,3,4 and 5 we have Lnbc(hi) > 0 when c = 
26+2.

Remark 1. Theorem 2.4 seems to give sharp values of /?. We cannot 
prove that this is always the case, but in all the examples we have seen, 
it is so. We will give one such example later. However, the condition 
Ln(e~,eh\{e'6z)) > 0 is often difficult to check, and that makes the result 
less applicable. Theorems 2.1 and 2.2 have conditions that are easy to check, 
but the /3-values that we obtain from these results are expected to be not 
as good as the ones we get from Theorem 2.4. Also, keep in mind that 
Theorem 2.4 is more restricted in the sense that it only deals with the case 
a = 1. Combining Theorem 2.4 with Proposition 2.5 we can make a direct
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comparison with the results from Theorem 2.2. Based on this comparison 
we present the following table.

b c 0 obtained from Theorem 2.4 0 obtained from Theorem 2.2
2 6 667—960 log 2 111

664-960 log 2 “ 0.25

3 8 6720 log 2 —46o7 p 00*5
6720 log 2-4659 “ U.UUÓ... 0.333 ...

4 10 111793 —161280 log 2  p npp
111788 —161280 log 2 “ U.OUU... 0.375

5 12 887040 log 2—614848  p 7Q0
887040 log 2-614851  U. <•>»... 0.4

As we can see, the values obtained from Theorem 2.2 are much larger than 
the ones obtained from Theorem 2.4, which we believe to be sharp.

Remark 2. Here we prove that the 0 value obtained from Theorem 2.4 is 
sharp in the case b — 2, c = 6. Let

oo k
/(z) = Z + 2(l-/?)^2y.

fc=2

Then f 6 7£(/3), and with F(z) := [K2>6 (/)](*) we get

oo
F(z) = z + 40(.l-/?)£ / 

fc=2 /

(1 - t)3tkzk■dt

OO z 3 3
++ 1) k(k + 2) + 3)

and

Ac= 2

Substituting 2 = -1 we get, using 1 - 0 = 1/(320log2 - (664/3)) from 
Theorem 2.4,

zF'(z) = -1 + 40;~^ + 8l°g2
320 log 2-

Together with F(-l) / 0, this shows the sharpness.

= 0.

□

In our next theorem we obtain a result corresponding to Theorems 2.1 
and 2.2 by replacing the assumption f & 11(0) by f G S.
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Theorem 2.6. Let a, b G C\{0}, c > 2 + |a| + |6|. Suppose that a,b and 
A 6 (0,1] satisfy the condition

(2-3)

r(c- |a| - |6|)r(c) 
r(c - |a|)r(c - |6|) L(c - 1 - |a| - |6|)(c - 2 - |a| - |6|) 

(A + 2)|a6|

|a(a + 1)6(6+ 1)|

c — 1 — |a| — |6|
< 2A.+ + A

Then the operator la,b;c(f) maps S into S%.

We do not have a result corresponding to Theorem 2.4 with replaced 
by S because the duality theory cannot be applied to S in the same way as 
to 7£(/3).

3. Proofs. We first state the following lemma which will be used in proving 
the theorems.

Lemma 3.1. Let a,b, c > 0. Then we have the following:
(i) For c > a + 6 + 1,

£
n=0

(n + l)(a,n)(6,n) 
(c, n)(l,n)

r(c - a - 6)r(c) ab 
T(c — a)r(c - 6) c — 1- a- b +

(ii) For c > a + 6 + 2,

(n + l)2(a, n)(6,n)
(c,n)(l,n)

T(c — a — 6)T(c) f (a, 2)(6,2) 3a6
“ r(c-a)r(c-6) P + (c —2 —a —6,2) + c- 1 - a - 6

(iii) For a / 1, 6 / 1 and c 1 with c > max{0,a + 6-1},

(a, n)(6, n) = 1 |T(c + 1 - a - 6)r(c) _ .
(c,n)(l,n+1) (a —1)(6—1) L T(c - a)r(c - 6)

(iv) For 6 1 and c > 1 + 6,

(6,w). 1 
(c, n) n + 1 Y(V»(c-1)-V»(c-6)).
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Proof, (i) Using the ascending factorial notation, we can write

c _ Y' (n + l)(a,n)(6,n) _ y, (a,n)(fr,n) y, (a,n)(fe,n) 
(c,n)(l,n) " (c,n)(l,n-1) (c,n)(l,n)

ab y> (a + 1, n)(b + 1, n) y^ (a, n)(b, n)
~ c “(c + l,n)(l,n) (c,n)(l,n)'

The formula (1.3) and the condition c > 1 + a + b immediately give

T(c-a-6)r(c)' 
,r(c-a)r(c-f>).

_ r(c-o-6)r(c) ab ■
T(c — a)T(c — b) c-1- a-b +

and the conclusion follows.

r(c- a-b- l)r(c + 1)
s, = -c r(c-o)r(c-6)

(ii) Using the ascending factorial notation and by adjusting the coefficients 
suitably, we can write

ę _ V (n + l)2(a,n)(6,n) _ y, (a,n)(6,n)
Śo («>nXb») ^(c’nXb«)

y n(n + 3— l)(a,n)(6,n)
+ (c,n)(l,n)

_ y' (a,n)(ft,n) y (n - l)(a,n)(6,n) „ y (a,n)(6,n)
^(c,n)(l,n) (c,n)(l,n—1) (c,n)(l,n - 1)

_ y (a, w)(6,n) y (a,w + l)(6,n + 1)
~ (c’ra+ bo.n- 1)

+
(a + l,n - 1)(6 + 1, n - 1) 

(c + l,n - l)(l,n - 1)

y> (a,7t)(6,n) 
(c,7i)(l,n)

a(a + 1)6(6 + 1) 
c(c+ 1)

E
n=0

(a + 2, n)(6 + 2, n) 
(c + 2,n)(l,7i)

(a + l,n)(6 + l,ra) 
(c+l,n)(l,n)
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Therefore, by the formula (1.3), it follows that
r(c - a — 6)T(c) a(a + 1)6(6 + 1) T(c - 2 - a — 6)T(c + 2) 

0 2 = 777--------------- 7777------------77 +

+

T(c — a)T(c - 6) c(c + l)

3a6 T(c — 1 — a — 6)r(c + 1)

r(c - a)r(c - 6)

c r(c - a)r(c - 6) 
which after simplification gives the required conclusion.

(iii) Let a, 6 be positive real numbers such that a 1, 6 1 and c / 1 with
c > max{0, a + 6 — 1}. Then we find that 

(a,n)(6,n) c-1 (a - 1, n + 1)(6 — 1, n + 1)S (c,„)(i,n+i) (a_ i)(6_ i) 2L, (c-l,n + l)(l,n+l) 

c — 1
(a - 1)(6- 1)

and the result follows.

(iv) Let 6^1, and c > 1 + 6. We can write 

(6,ra) 1

r(c + 1 - a - 6)r(c - 1) 
r(c-a)r(c-6)

where

This gives
OO

E

V' T----- 7----------Z^<c’n)n + 1

f^)=^^zn+1 = zF(l,b-,c-,z)
n=0 ^C,n'

r(c)
r(«c tz-dt.

= (V»(c- 1)-V»(c- 6)). □

dt J
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Proof of Theorem 2.1. Let a, b 6 C\{0} and c > |a| +16|, |a| / 1, |6| / 1, 
c / 1. Suppose that /(z) = z + “n2" € 7£(/3). Then, from [3] we know
that

(3-1) w <
2(1 - /?) 

n
Consider zF(a, 6; c; z) * /(z) = z + where Bj = 1 and for n > 1

_ (a, n— !)(£>, n — 1) 
n (c,n — l)(l,n — 1)°"'

Therefore, according to (1.1), we need only to show that
OO

(3.2) T= £(n + A-l)|Bn| < A.
n=2

In the sequel we will use the triangle inequality for (a, n):

(3.3) |(a,n)| = |a(a+ l)(a + 2)---(a + n - 1)| < (|a|,n).

Then, we have
OO

T = £(n-1 + A)
n=2

|(a,n- l)(fr,n- 1)|
(c, n — 1)(1, n — 1) 1 n|

OO

<2(1-/?)£(»-1 +A)
n=2

(|a|,n- l)(|ft|,ra — 1) 
(c,n - l)(l,n - l)n

(by (3.1) and (3.3))

OO

= 2(1 - (3) ^[(n + 1) + (A - 1)]
n=l

(|a|,n)(|fr|,n) 
(c,n)(l,n)(n + 1)

= 2(1-/?) (|q|,w)(|fe|,ra) , _ n y' (l«l,»)(!&!,»)
(c,n)(l,n) “ (c,»)(l,n+1)

Using the formula (1.3) and Lemma 3.1 (iii), we find that

Ti
r(c- |a| - |d|)r(c) 
r(c-|a|)r(c-|6|)

:=TX.

+ (A
1

(|a|-l)(|6|-l)
r(c+i-iai-|bi)r(c)

r(c-|«l)r(c-|h|)
T(c - |a| - |h|)r(c) ( (A - l)(c - |a| — |fr|) 1 
|_r(c — |a|)r(c - |6|) V + (|a| - 1)(|6| - 1) j

(A- l)(c- 1) 
(|a| - 1)(|6| - 1)

< A, by (2.1).
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Thus, we have T < T\ < A and therefore (3.2) holds. From this, we 
conclude that the function zF(a, b; c; z)*/(z) belongs to <S^, which completes 
the proof. □

Proof of Theorem 2.2. The proof follows the same pattern as the proof 
of Theorem 2.1 until we reach the definition of the number T\ which now 
takes the form

(|6|,n)
Tx:=:= 2(1 -/J)

(c,ra) “j(c>«)(«+!)

Using (1.3) and Lemma 3.1 (iv) we get

T' - 2<‘ - «[r{ć:'i)'nc-r|(t|)+ <A - Ct *
= 2(l-/3)

<2(1-/J)
2(1

H))- = A,A 1 +

by assumption. □

Proof of Proposition 2.5. In order to prove that Lnb c(hi) > 0, it suffices 
to prove that

^6,c(2z) - J <IM*) (1 +t2_ 2yt^i + f)2 dt > o.
0

The explanation of this can be found in [5], so we will not repeat that here. 
The proof is based on direct computation, and we only show the b = 3 
case. (The 6 = 2 case is proved in [5].) When 6 = 3 and c = 8 we get 
n3,8(f) = 78(1 - i)5(l + 5f)/8 and hence

/(I - Z)5(l + 5f)(l — 2< — <2) 
(1 + t2 -2j/Z)(l + Z)2

t(l - f)5(l + 5t)(f2 + 2f - 1) 
(1 + Z2 -2i/t)(l + f)2

dt

dt
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7 1<(l-t)5(l + 5<)(l-2<-<2)
y (1 + 04 * *0

1
_7 [ Z(1 -Z)3(l + 5Z)(Z2 + 2Z-1)

2 J (1-H)2
dt

V2-1

dt

510587
60

1313272
3 - 3346 log 2 > 0.

□

Proof of Theorem 2.6. Let a G C\{0}, c > 2 + |a| + |6| and A G (0,1]. 
Assume that (2.3) holds. Let /(z) = z + “n2" € Consider
zF(a, b; c; z) * /(z) = z + where B\ = 1 and for n > 1

_ (n,n- l)(fr,n- 1)
" (c,n-l)(l,n-l) "•

Therefore, according to (1.1), we need only to show that
OO

T= £(n + A-l)|Bn| < A. 
n=2

Since f G S, we have |an| < n, and therefore

£
n=2

ra(n — 1 + A) l(a,n
(c,n

- l)(6,n- 1)| 
-l)(l,n-l)

<(*->)£ (n + l)(|a|,n)(|b|,n) (n + l)2(|a|,n)(|6|,n)

n=l (c,n)(l,n)
n=l

(c,n)(l,n)
:=T2.

From Lemma 3.1 (i) and (ii) and (2.3), we see that the inequality T2 < A 
holds, which implies T < A. Therefore, the operator Ta,6;c(/) maps 5 into 
5*, and the proof is complete. □

T <

4. Concluding remarks. Clearly, the condition on the parameters a, b
and c for the univalence of functions zF(a,6;c;z) and zF(a, b; c; z2) are dif­
ferent. In [7, Theorem 4.1] Ponnusamy and Vuorinen determined conditions
on a, b, c > 0 for the function zF(a,6;c;z2) to be close-to-convex with re­
spect to the convex function (l/2)log((l + z)/(l - z)). On the other hand, 
not much is known about the starlikeness of an odd function zF(a, b; c; z2). 
One of the known results in this direction is the following [7, Theorem 6.8]:
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Theorem 4.1. Let -1 < a < 0, 0 < 6, 6^1 and for 0 < (3 < 1, let 

c > 1 + max {l -/J + |o + 6 + 1 + 2/)|, 1 - <.6 - J .

Then the odd hypergeometric function zF(a,b-,c;z2) is in

Finally we state a result giving simple conditions for zF(a,b-,c;z2) to 
belong to 5^. The exact range of the parameters for which F(a,b-c;z2) 
belongs to 5 or S* remains an open problem.

Theorem 4.2. Let a, b E <C\{0}, c > 1 + |a| + |6| and A € (0,1] . If c 
satisfies the condition

r(c — |a| — |6|)r(c) f 2|af>| 
r(c-|a|)r(c-|6|) [c- 1 - |a| - |6|

then the odd hypergeometric function zF(a, b; c; z2) is in

The proof of this result is similar to the proof of Theorem 2.1.
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