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Abstract. In this paper we compare some known results on coefficient 
multipliers for Hardy and Bergman spaces. We also use them to prove an 
extension of the Bergman space version of the Hausdorff-Young Theorem 
(Sect. 3) and to answer in the negative open Problem 10 posed in the 
survey paper [CL] (Remark 3). Moreover, the multipliers of the Bergman 
space Bp , 0 < p < 2 , into BMOA and the multipliers of BMOA into the 
Bloch space are characterized.

1. Introduction. Notations. Let X and Y be two sequence spaces. 
A sequence of complex numbers A = {An} is called a multiplier from X to
Y if {Ana:n} € Y whenever {xn} € A. The set of all multipliers from X to
Y will be denoted by (A,K).

While dealing with spaces of analytic functions in the unit disc D we asso
ciate with each function /(z) = /(n)zn t^le corresponding sequence of
Taylor coefficients {/(n)} . On the other hand, any sequence A = {An} such 
that lim supn_oo ^/|An| < 1 may be considered as a holomorphic function 
in D, defined by A(z) = Anzn .
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w /(*) = o /(n)2” and 0(2) = Y,n=o tM2" then we write

OO
/*«(*) = ź(n)p(n)^n •

n=0

For a function f holomorphic in D and 0 < r < 1 we set

Mp(f,
271- \l/p

\f(ret6)\pd0 ) , 0 < p < 00 ,>}={L
MMr)= \f(re' |.

U V. (z \ 27T

The Hardy space Hp, 0 < p < 00, is the space of those / for which 
Mp(f,r) remains bounded as r —> 1“ .

Let da denote the normalized area measure on D. The Bergman space 
Bp , 0 < p < 00 consists, of all holomorphic functions on D such that

i/p
< 00.

Moreover, let /(p, </), 0 < p, q < 00 , denote the space of sequences {An} € C 
such that

=d|/(
B>> z)\pda(z)

II { An} ||(p,ę)

q/p\

E E i^r
in=o \ke/„ >

< 00,

where Iq = {0} and In = {k € N : 2n_1 < k < 2n} , n > 1 . In the cases p 
or q = 00 we replace the corresponding sum by a supremum. The following 
lemma, proved in [K], characterizes the multiplier space (l(r, s), l(p, </)). 

Lemma. Let 0 < r,s,p,q < 00 and define a and (3 by

111.,— =------- , if r > p, a = 00 , if r < p,
a p r
111.,- =------- , if s> q, (3 = 00, if s<q.
(3 q s

Then (l(r,s),l(p,qy) = l(a,/3).

We will also deal with the Bloch space B consisting of those functions f 
analytic on D for which ||/||e = supzeD,(l -1z\)|/,(^)| < 00 and with BMOA
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space of those functions f in H1 for which boundary functions (that will be 
also denoted by /) are of bounded mean oscillation, i.e.

II/IIbmo = sup \f(0) - f,\d0 < oo ,

where I is an interval contained in <90 and fj = (1/|/|) f(0)d0 .
Throughout this paper all functions f will be holomorphic on the unit

disc. We will denote by p' the conjugate exponent of p, i.e. l/p + 1/p' = 1, 
and by C a general constant that may vary from line to line.

The authoress is grateful to Professor Peter L. Duren for informing her 
about the papers [Hor] and [V].

2. Remarks on multipliers (Hp,Hq) and (Bp, Bq}. In 1941 Hardy 
and Littlewood [HL] proved the following:

Theorem HL. ff 1 < p < 2 < ę < oo, 1/s = (1/ę) — (1/p) + 1 and

(2.1) Afs(/',r)< 0<r<l,
1 — r

then f e(Hp,Hq).

Thirty years later C.N. Kellogg ([K]) obtained another necessary condi
tion for a membership in the multiplier space (Hp, Hq). Namely, he proved 

Theorem Kl. Ifl<p<2<q<oo and 1/t — (1/p) — (1/g) then

(2.2) /(t,oo)c(ffp,tf’).

Note that t = s', where s is defined in Theorem HL.
It seems interesting to decide which of these two theorems is stronger. 

J.H. Hedlund [H] proved that for q = 2 Theorem Kl does include Theorem 
HL. The next statement shows that this is not true for all q > 2.

Proposition 1. Assume that l<p<2<q<oo and 1/s = (1/g) — 
(1/p) + 1. Ifs <2 (or equivalently p > 2q/(q + 2)) then

{/ : M,(/',r) = O ((1 - r)-1)} C /(s',oo).

If s>2 (or equivalently p < 2q/(q + 2)) then

l(s',oc)c{f: Ms(/',r) = 0((l-r)-1)} .
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Remark 1. The foregoing propositon is a generalization of Lemma 8 in 
[AS], which states that

(2.3) {/ : M2(/',r) = O ((1 - r)"1)} = /(2,oo)

and to show it we apply a similar reasoning to that in the proof of this 
result.

Proof of Proposition 1. Note that always s > 1. Assume first that 
s < 2 and < C/(l — r). Let g(z) = zf'(z) and gr(z) = g(rz) for
0 < r < 1 and z 6 D. Then the Hausdorff -Young theorem (cf. [D, p.94]) 
implies

£„«'|/(n)|”'rw‘'
n=l

oo

< < IlSrlli. < A/.''(/'.r) <

n=l

c
(1 - r)*' ‘

Taking r = 1 — i/N we obtain ^,n=i nS> |/(ra)|s = 0(N3 ) which is equiv
alent to the defining condition for /(s',oo).

Assume now that s > 2 and {/(n)} € /(s', oo). This implies (see 
[AS, p.262])

(j+l)rn

(2.4) £ |/(n)|a'<C, m,j=l,2,....
n=jm+1

Moreover, the dual part of the Hausdorff-Young theorem gives

(2.5) Ma(/',r)<C(f;(n|/(n)|r"r'

\n=l

In view of (2.4) we have, for 1 — 1/(A — 1) < r < 1 — 1/N ,

NOO

n=l

2N 3N

E+ E + E
<n=l n=7V+l n=2N+l

+... n4'|/(n)|4'(l-l/JV)4

< CN3' + C(2A)4'(1 - 1/A)Ns' + C(3A)4'(1 - l/A)2Ns' + ...

< CN3' (l + 2''(1 - 1/A)Ns' + 34'(1 - l/N)2Na‘ + ...)

OO
3‘ J2(fc + 1/2-*4' < CN3' < 2C(N - l)4' < ■_ 7 .

k=o r'
< CN
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This, together with (2.5), gives Ma(f',r) < (3/(1 — r).
□

It is well known that many results for Hp spaces have their analogues in 
the theory of Bergman spaces. The next two results due to J. Xiao and 0. 
Blasco are such analogues of Theorems HL and Kl, respectively.

Theorem X ([X]). Suppose that 1 < p < q < oo and 1/s = (1/q)— 
(1/p) + 1. If M.(f, r) = 0 ((1 - r)~1/a) , then f G (flp, B’).

Theorem B ([B]). Let I<P<2<<7<00 and 1/t — (1/p) — (I/9). ff 
{nV‘An} e l(t,00), then {An} G (BP,B").

The next statement provides us with a comparison of Theorems X and 
B for l<p<2<</<oo.

Proposition 2. If 1 < s < 2 , then

Ma(f',r) = O ((1 - r)-1/3) => |n1/s'/(n)} G/(s',00).

If s >2 then

p/?An}e/«H =>• MXA'^aO^l-r)-1/') ,

where A is a function defined by A(z) = Anzn , z € D.

Proof. Assume first that 1 < s < 2.
As in the proof of Proposition 1, we get 52n=i nS'\f(n)\s' = O^N3'"1) and 
this means that {n1/s /(n) J G /(s', 00). If s > 2 and j G /(s', 00),

then a reasoning similar to that used in the second part of the proof of 
Proposition 1 gives

00 00
£ns'|Anr'rn4' <Sra4'"ln|An|3'rn4' <
n=l n=l

c
(1 - r)4'-1

Thus, by (2.5) A/a(A', r) < C/(l - r)1'3.
□

Remark 2. Applying the equalities (cf. [D], [HL], [S])

(2.6) (B1,B2)={/: AL2(/',r) = 0 ((1 - r)-1)} = /(2,oo)
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we can easily prove the Paley result Hx C Z(oo,2). In fact, (2.6) implies 
Hl C (1(2, oo), H2) = (Z(2,oo),Z(2,2)) = Z(oo,2). Moreover, by Theorem 
3.1 in [X] (see also [V, p. 347]) and Proposition 2

(B1,B’)= {/: M2(/',r) = 0((l-r)-1/2)}

= {/ = {"1/2/(«)} € Z(2,oo)| .

Thus, an analogous reasoning gives Bx C {{An} : {nAn} € Z(oo,2)} .

Remark 3. Using relation (2.3) we can answer in the negative open Prob
lem 10 in [CL, p. 108] and show that the inclusion Hx C Z(2, oo) is not true. 
To this end consider the functions kp(z) = 1/(1 — z)p, z € D, 0 < p < 1. 
All these functions are in Hx . However, if 1/2 < p < 1, then

p2d0 \ 
\i - reie\2p+2 )

1/2

behaves like (1 — r) p x^2 , i.e. the ratio Al2(fcp,r)/(1 - r)p+1</2 has a pos
itive limit as r —> 1“ . So, by (2.3), kp £ Z(2,oo).

3. Extension of the Hausdorff-Young Theorem for Bergman spaces
In [K] the following extension of the Hausdorff-Young Theorem for Hp 
spaces was obtained

Theorem K2. If 1 < p <2 and f 6 Hp , then {f(n)} € Z(p',2) and 

||/(n)||(p.,2) < C\\f\\H,.

/fl < p< 2 and {An} € Z(p,2) then A 6 Hp' and ||A||Hp- < C||{An}||(Pi2).

For the Bergman space the following analogue of the Hausdorff-Young 
Theorem was proved by Ch. Horowitz [Hor].

Theorem H. Assume that l<p<2./f/G/?p, then
OO

^2n1_p'|/(n)|p' < oo. 
n=l

Conversely, n1-p|An)|p < oo , then A € Bp .

Here, using Theorem B we prove
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Theorem 1. ff/6Bp,l<p<2, then {n J/p/(n)} 6 /(p', 2) and

(3.1) IHn-1/’’/(»)}||(f,!) < C||/||fl,.

If {n~x/p An} € /(p, 2), 1 < p < 2 , then A € Bp' and

(3.2) l|A||B,. <C||{n-,/l’'A„}||,p,2|.

Proof. Assume first that f £ Bp, 1 < p < 2. Let 1/t = (1 /p) - (1 /2) and 
define A( = {{A„} : {n’/'An} €/(Z,oo)} . Then by Theorem B
A' C (Bp, B2). This implies

(3.3) BPC(A‘,B2).

Now, applying the facts
(1) fe B2 <=> {n-V2/(n)} e/2 = /(2,2),
(2) (/(Z, oo),/(2,2)) =/(p',2)

we get (A(,B2) = {{on} : {n-1/pan} 6 /(p',2)} . This and (3.3) give the 
inclusion Bp C {{an} : {n_1^fln} € /(p',2)} . Moreover, the closed graph 
theorem implies (3.1).

Now suppose that {An} is a sequence of complex numbers such that 
{n-1/p An} € /(p,2). For z £ D, let \n(z) = X^z + A2Z2 + ... + A2nz2 . 
Then, for any g € Bp ,

/ Xivgda —
I7d fc=l

< 12 E 1<X*5(*)I
n=l kel„

N / \ */p / \ Vp'
<E Eifc"1/p'Afe|P) Ei*_1/pW)

n=l \fc€/n / /

< fE f £ i^'-'A.r')’"j (£ (£ it-V’jmr'

\n=l \fce/n / / \n=l \kei„

1/2

By (3.1)

2/p-

*€/»

N
1/2

< »{n’1/''j(M}»(,'.!) < CHslls,.
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Thus we get
I/.Xjvgda < C||{n-'/p'An}||(p,!|||9||fl,

Since for 1 < p < oo the dual of Bp can be identified with Bp 
(e.g. [A, p.7]), taking supremum over all g 6 Bp such that ||p||j3p < 1 
we obtain
(3-4) ||An||Bp- <C|{n-1/p'An}||(Pi2).

Using similar arguments one can show that {A^/} is a Cauchy sequencein 
Bp , so it converges to A(z) = An2n in Bp‘ . Taking N oo in (3.4)
we get (3.2).

□

4. (Bp, BMOA), 0 < p < 2 . It was shown in [S] and [SZ] that for p = 1 
condition (2.1) in Theorem HL is also necessary i.e. if 2 < q < oo , then

(4.1) /e(^1,//’) <=> M,,(/»<0 < r < 1.

Using this fact and a duality argument M. Mateljevic and M. Pavlovic [MP] 
proved that for 1 < p < 2

(HP,BMOA) = {f : Mp.(/Z,r) = O ((1 - r)’1) , 0 < r < l} .

They also showed that (H1, BMOA) = (H\B) = B. The last result was 
extended in [N] where the following characterization of the space (HP,B), 
0 < p < oo , was obtained

(i) if 1 <p<oo,then(ff”,Z?)= {/: Mp,(/',r) = 0 ((1 - r)’1)} ,
(ii) if 0 < p < 1 and n is an integer such that 1/p < (n + 1), then 

(tfp,tf°°) = (Hp, BMOA) = (HP,B)

= {<7 : r) = O ((1 - r)-n-i+d/P)) } = An

The proof of (ii) was based on the equality (Hp, H°°) = An (due to Duren 
and Shields [DS]).

Recently J. Xiao [X] proved the following: 
if 1 < p < oo then

(4.2) (Bp,B)={f: Mp,(/zz,r) = o((l -r)-1-1/p')} ,

if 0 < p < 1 and n is an integer such that 2/(n + 1) < p < ^In, 
then

(4.3) (flp,tf°°)={p: Aloo(p("),r) = 0((l-r)-"-1+^} = 5n.
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We can now prove the main result of this section

Theorem 2. If 1 < p < 2, then

(4.4) (BP,BMOA) = {/: r) = 0 ((1 - rf1/”') } .

If 0 < p < 1 , then

(4.5) (flp, tf°°) = (Bp, BMOA) = (flp, B) = Bn .

Proof. Assume first that 1 < p < 2. Let g be a function such that 
Mp'(g, r') = 0 ((1 - r)_1/p ) and f € Bp . We have to show that h = f*g is

in BMOA. Let the multiplier transformation Dsg of 5, 5(2) = <7(71)2",
be defined by Dsg{z) = 52^L0(n4- l)sg(n)zn, s being any real number. We 
have

|£>2/i(r2e‘‘)| = 1-^- [ D'ftre^D'gfre^-^dO 
I ‘^7r Jo

< M^'g^Mp^r) < ----- C—^Mp(r,D'r>
(1-r) p

Hence

|/t"(r2e’<)|p(l - r)2p_1 < c [ \D*f(rei6)\p(l - r)pdO .
Jo

Integrating both sides of this inequality with respect to r we get

M^h",r)(l-r)2p~ldr <c [' Z ’\D'f(reie)\p(l - r)pd6dr.
Jo Jo Jo

Since f G Bp , by Theorem 9 in [HL] the integral on the right-hand side of 
the last inequality is finite. We will show that for any p, 0 < p < 2,

hG BMOA .(4.6) f M^^h",r)(l - r)2p 'dr <00 
Jo

By the Hardy-Littlewood Lemma (see e.g. [MP, p.75])
(4.7)

[ M^(h",r)(l-r)2p-'dr <00 => [ M^ti,r)(l - r)p-'dr < 
Jo Jo

00
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Furthermore, it has been noticed by Stroethoff [Str, p.417] that if for some 
p,0 < p < 2,

then f G BMOA. It follows from the above that

oJo

which implies h GBMOA.
So we have proved the inclusion

{/: Mp-(/',r) = 0((l-r)-1/p')} c(Bp,BMOA).

Equality (4.4) follows from (4.2) and the inclusion (Bp, BMOA) C (£p,f?). 
In case p = 1 (4.2) and (4.3) imply that (BP,H°°) = (BP,B) and the 
inclusions H°° C BMOA C B give (4.5). To prove (4.5) for 0 < p < 1 it 
is enough to apply arguments similar to that in the proof of Theorem 2 in 
[N].

□

5. (BMOA,6). Since BMOA is in some sense the natural limit of Hp as 
p —» oo , the next result can be treated as an extension of result (i) from 
the preceding section.

Theorem 3.

(5.1) (BMOA,B) = (VMOA,B)= {g:Mi(9',r) = O((l-r)-'))} .

Proof. If f G BMOA then there exists a bounded function b on the unit 
circle such that f = Pb, where P denotes the Szegó projection and norms 
||/||bmcm = |/(0)| + H/Hbmo and H&Hoo are equivalent. If g is a function 
satisfying the condition (5.1) and 0 < r < 1, then we have

1
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= I [2n b^g^re^-^e^-^dO 
2tt I Jo

which means that f * g € B .
Now assume that g is an analytic function on D such that f -kg € B for 

each f G BMOA. Then by the closed graph theorem

(5-2) 11/C||/||bmoa •

Let for 0 < r < 1, gr(z) = g(rz), z G D. Since the Hardy space H1 
is equivalent to the dual of VMOA (equipped with the BMOA norm, see 
e.g.[Zhu]) we have

Mi(g',r) = \\g'r\\jji < C -I
2?r I Jo f(e~ie)g'(reie)d6

< C sup
fEBMOA

II/I|bmox<i

sup
fEVMOA

II/IIbmox<1

<

<c|(/*9)'WI<ct4

□

Remark 4. It was shown in [MZ] that the functions given by the formula

OO

9aM = IS
n=0

r(q + n + 2) n 
I (q T iA 4” tz T 2) a > 0, A G R,

are multipliers from BMOA into B. In view of Theorem 3 this implies that 
W,«J,r) = 0((l-r)-') .

To prove the next theorem we will need the Abel dual. The Abel dual of 
a sequence space A, denoted by Aa , is defined to be the space of sequences 
{An} such that lim,.-,! S^Li ^nanrn exists for all {an} G A . Let Bo denotes 
the little Bloch space, i.e. the space of analytic functions in D such that 
(1 - |z|2)|/'(^)| —> 0 as |z| —» 1. It follows from [A, pp.14-20] that

(5.3) < / : n/(n)zn G B »
„ n=l ,
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and

(5.4) (£o)a = nf(ji)zn e B' >
n=0

f

Moreover, by Theorem 3.1 in [X]

(B1, B1) = {p : Afi(pz,r) = O ((1 — r)-1))} .

Using these facts and a duality argument, we can prove

Theorem 4. (B,B) = {g : Afi(p',r) = O ((1 - r)-1))} •

Proof. Since for sequence spaces A, B (A, B) C (Ba,Aa) and A C Aaa 
(see [AS]) we get (B^B1) C (B,B) C (B0,B) C ((B)a,(B0)a) C (B^B1). 
This implies (B1, B1) = (B, B). □

Similar arguments yield

Theorem 5. For 1 < p < oo , (Zp, B) = Z(p,' oo).

Proof. It has been shown in [B, p.55] and in [DS] that for 1 < q < oo

(5.5) (B1,/9) = {{A„} : {nA„} £/(</,oo)} .

In view of the inclusions (B1,/9) C (Z9 ^B1)01) C ((B1)00,/9) C (B1,/9) we 
get (B1,/9) = (Z’^B1)0). This, combined with (5.5) and (5.3), gives us 
the desired result.

□

Remark 5. Note that, by [MP, p. 82], for 1 < p < 2 (Zp, B) = (Zp, BMOA).
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