ANNALES

UNIVERSITATIS MARIAE CURIE-SKLODOWSKA LUBLIN - POLONIA

VOL. LII. 1, 10
SECTIO A

ZDZISLAW LEWANDOWSKI and JAN SZYNAL

On the Krzyż Conjecture and Related Problems II

Dedicated to Professor Eligiusz Zlotkiewicz on the occasion of his 60th birthday

Abstract. The coefficient problem for holomorphic bounded and nonvanishing functions in the unit disk related to the Krzyí conjecture is discussed.

1. This note may be considered as a continuation of our work [2], where corresponding references can be found. Let $H(\mathbb{D})$ denote the set of holomorphic functions in the unit disk $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$. In the sequel we consider the following families of functions:

$$
\begin{align*}
\mathcal{B} & :=\left\{f \in H(\mathbb{D}): f(z)=a_{0}+a_{1} z+\cdots,|f(z)|<1, z \in \mathbb{D}\right\}, \tag{1}\\
\mathcal{B}_{0} & :=\{f \in \mathcal{B}: f(z) \neq 0, z \in \mathbb{D}\}, \\
\mathcal{P} & :=\left\{p \in H(\mathbb{D}): p(z)=1+p_{1} z+\cdots, \operatorname{Re} p(z)>0, z \in \mathbb{D}\right\} .
\end{align*}
$$

With no loss of generality we may assume for $f \in \mathcal{B}_{0}$ the normalization

$$
\begin{equation*}
a_{0}=e^{-t}, \quad t>0 . \tag{4}
\end{equation*}
$$

1991 Mathematics Subject Classification. 30C50.

The Krzyż conjecture [1] asserts that for $f(z)=e^{-t}+\sum_{n=1}^{\infty} a_{n} z^{n} \in \mathcal{B}_{0}$:

$$
\begin{equation*}
\max _{f \in \mathcal{B}_{0}}\left|a_{n}\right|=\frac{2}{e}=0.73575 \ldots, \quad n=1,2, \ldots, \tag{5}
\end{equation*}
$$

with the equality (up to the rotation) for the function $F_{n}(z)=F\left(z^{n}\right)$, $n=1,2, \ldots$, where

$$
\begin{equation*}
F(z)=\exp \left(\frac{z+1}{z-1}\right)=\frac{1}{e}-\frac{2}{e} z+\cdots, \quad z \in \mathbb{D} . \tag{6}
\end{equation*}
$$

The above conjecture has been proved for $n=1,2,3,4$ only, and in general, it is known that for every $n,\left|a_{n}\right|<0.99918 \ldots$.

The following lemmas will play a crucial role in our considerations [2].
Lemma 1. A function $f(z)=e^{-t}+\sum_{n=1}^{\infty} a_{n} z^{n} \in \mathcal{B}_{0}$ if and only if it has the representation

$$
\begin{equation*}
f(z)=\exp \{-t p(z)\}, \quad z \in \mathbb{D}, t>0 \tag{7}
\end{equation*}
$$

where $p \in \mathcal{P}$.
For the coefficients a_{n} of a function $f \in \mathcal{B}_{0}$ we have from (3) and (7) the following

Lemma 2. If $f(z)=e^{-t}+\sum_{n=1}^{\infty} a_{n} z^{n} \in \mathcal{B}_{0}$, then

$$
\begin{equation*}
a_{n}=(-t) \sum_{j=0}^{n-1}\left(1-\frac{j}{n}\right) a_{j} p_{n-j}, \quad a_{0}=e^{-t} \tag{8}
\end{equation*}
$$

The function $p_{0}(z)=\frac{1+z^{n}}{1-z^{n}} \in \mathcal{P}$ which corresponds to the extremal case in the Krzyż conjecture has the property: $p_{1}=p_{2}=\ldots=p_{n-1}=0$.

Because of this fact it is natural to consider the subcalsses of \mathcal{B}_{0} "generated" via formula (7) by such functions $p \in \mathcal{P}$ which are in some sense "close" to the function $p_{0}(z)$.

For a given integer $n=3,4, \ldots$ and $k \in\{1,2, \ldots, n-1\}$, let $\mathcal{B}_{0}(n, k) \subset \mathcal{B}_{0}$ denote the class of functions generated via (7) by the class $\mathcal{P}(n, k) \subset \mathcal{P}$ consisting of functions $p(z)=1+p_{k} z+p_{n} z^{n}+\cdots$ with the property: $p_{1}=p_{2}=\ldots=p_{k-1}=p_{k+1}=\ldots p_{n-1}=0$.

In [2] we have proved that $\left|a_{n}\right| \leq 2 / e$ in the class $\mathcal{B}_{0}(n, 1)$. Because of the formula (8) we easily see that if $p_{1}=p_{2}=\ldots=p_{k}=0$ and $k \geq\left[\frac{n}{2}\right]$, then $\left|a_{n}\right|=t e^{-t}\left|p_{n}\right| \leq 2 / e$, and therefore an interesting question arises what would happen if one of the coefficients $p_{k} \neq 0$ for $k \leq\left[\frac{n}{2}\right]$.

2. We have

Theorem 1. Let $n=3,4, \ldots$ be a fixed integer and $s=2,3,4, \ldots$ For $f \in \mathcal{B}_{0}(n, k)$ we have:

$$
\begin{equation*}
a_{n}=\left(-t a_{0}\right) p_{n} \quad \text { if } \quad n=k s+l, l=1, \ldots, k-1 \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{n}=\left(-t a_{0}\right)\left[p_{n}+\frac{(-t)^{s-1}}{s!} p_{k}^{s}\right] \quad \text { if } \quad n=k s \tag{10}
\end{equation*}
$$

Corollary. If $f \in \mathcal{B}(n, k)$ and k is not a divisor of n then

$$
\left|a_{n}\right| \leq 2 t e^{-\ell} \leq 2 / e
$$

Therefore we have to consider only such $k \in\{1,2, \ldots, n-1\}$ that $n=$ $k s, s=2,3, \ldots$. Of course, the above remark implies that it is enough to consider only $k \leq\left[\frac{n}{2}\right]$.

Proof of Theorem 1. From (8) we obtain that for $f \in \mathcal{B}_{0}(n, k)$:

$$
a_{n}=(-t)\left[a_{0} p_{n}+\frac{k}{n} a_{n-k} p_{k}\right]
$$

Again by (8) we get

$$
\begin{aligned}
a_{n-k} & =(-t)\left[a_{0} p_{n-k}+\left(1-\frac{1}{n-k}\right) a_{1} p_{n-k-1}\right. \\
& \left.+\cdots+\left(1-\frac{n-k-1}{n-k}\right) a_{n-k-1} p_{1}\right]
\end{aligned}
$$

If $k>n-k$, i.e. $k>n / 2$, then $a_{n-k}=0$ and $a_{n}=-t a_{0} p_{n}$.
If $k=n / 2$ (therefore n is even), then $a_{n-k}=a_{n / 2}=-t a_{0} p_{n / 2}$ and

$$
a_{n}=\left(-t a_{0}\right)\left[p_{n}-\frac{1}{2} t p_{n / 2}\right]
$$

If $1 \leq k<n-k$, then there exists an integer s, such that $p_{n-k-s}=p_{k}$. Therefore $s=n-2 k$ and we have

$$
a_{n-k}=(-t)\left[\frac{k}{n-k} a_{n-2 k} p_{k}\right]
$$

which implies

$$
a_{n}=(-t)\left[a_{0} p_{n}+(-t) \frac{k}{n-k} \cdot \frac{k}{n} a_{n-2 k} p_{k}^{2}\right] .
$$

Continuing in this way, we conclude that if $k<n / s, s=2,3, \ldots$, then

$$
\begin{equation*}
a_{n}=(-t)\left[a_{0} p_{n}+\frac{(-t)^{s-1} k^{s}}{n(n-k) \ldots[n-(s-1) k]} a_{n-s k} p_{k}^{s}\right], \tag{11}
\end{equation*}
$$

and if $k \neq n / s$, then

$$
a_{n}=\left(-t a_{0}\right) p_{n}
$$

Using again (8) and (11) we obtain (10).
In order to estimate $\left|a_{n}\right|$ for $f \in \mathcal{B}_{0}(n, k)$ we will apply the special form of Carathéodory inequalities [2] for the class $\mathcal{P}(n, k)$. These inequalities are equivalent to the nonnegativity of all principal minors of the following determinant:

$$
\Delta_{n}^{\prime \prime}=\left|\begin{array}{ccccccc}
2 & 0 & \cdots & p_{k} & \ldots & \cdots & 0 \tag{12}\\
0 & 2 & \ddots & 0 & p_{k} & \ddots & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots & p_{k} \\
\overline{p_{k}} & 0 & \ddots & \ddots & \ddots & \ddots & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots & 0 \\
0 & \ldots & \overline{p_{k}} & \ldots & \ldots & \ddots & 2
\end{array}\right|_{n \times n}
$$

and nonnegativity of the determinant

$$
\Delta_{n+1}^{\prime \prime}=\left|\begin{array}{ccccccc}
2 & 0 & \cdots & p_{k} & \cdots & \cdots & p_{n} \tag{13}\\
0 & 2 & \ddots & 0 & p_{k} & \ddots & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots & 0 \\
\overline{p_{k}} & \ddots & \ddots & \ddots & \ddots & \ddots & p_{k} \\
0 & \ddots & \ddots & \ddots & \ddots & \ddots & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots & 0 \\
\bar{p}_{n} & \cdots & 0 & \overline{p_{k}} & \cdots & \ddots & 2
\end{array}\right|_{(n+1) \times(n+1)}
$$

Therefore, we will need explicit formulas for some special determinants.

Lemma 3. Let r_{1} and r_{2} denote the roots of the equation: $r^{2}-c r+a b=0$, where a, b, c are arbitrary complex numbers. For given integers $n=3,4, \ldots$ and $k=1,2, \ldots, n-1$ we consider the following $n \times n$ determinants:

$$
W_{n}^{k-1}=W_{n}^{k-1}(a, b, c)=\left|\begin{array}{ccccccc}
c & 0 & \ldots & a & 0 & \ldots & 0 \tag{14}\\
0 & c & \ddots & 0 & a & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots & 0 \\
b & \ddots & \ddots & \ddots & \ddots & \ddots & a \\
0 & b & \ddots & \ddots & \ddots & \ddots & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\
0 & \ldots & 0 & b & \ldots & 0 & c
\end{array}\right|_{n \times n}
$$

$$
V_{n}^{k-1}=V_{n}^{k-1}(a, b, c)=\left|\begin{array}{ccccccccc}
0 & 0 & \ldots & 0 & a & 0 & \ldots & \ldots & 0 \tag{15}\\
c & 0 & \ddots & \ddots & \ddots & a & \ddots & \ddots & 0 \\
0 & c & 0 & \ddots & \ddots & \ddots & \ddots & \ddots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ddots & a \\
b & 0 & \ddots & \ddots & c & \ddots & \ddots & \ddots & 0 \\
0 & b & 0 & \ddots & \ddots & \ddots & \ddots & \ddots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & 0 & b & 0 & \ldots & 0 & c & 0
\end{array}\right|_{n \times n}
$$

(The determinant W_{n}^{k-1} has only three non-zero diagonals consisting of the same elements: c 's on the main diagonal and a's and b's which start at $(k+1)$-th column and $(k+1)$-th row respectively.

The determinant V_{n}^{k-1} has only three non-zero diagonals consisting of the same elements: c 's which starts at the second row, a's which starts at the k-th column, and b's which starts at the $(k+2)$-th row).

We have the following formulae $(n=k s+l, s=0,1,2, \ldots, l=0,1, \ldots$, $k-1)$:

$$
\begin{equation*}
W_{n}^{k-1}=\left(\frac{r_{2}^{s+1}-r_{1}^{s+1}}{r_{2}-r_{1}}\right)^{k-l}\left(\frac{r_{2}^{s+2}-r_{1}^{s+2}}{r_{2}-r_{1}}\right)^{l} \tag{16}
\end{equation*}
$$

$$
\begin{array}{ll}
V_{n}^{k-1}=(-1)^{(n+1) s} a^{s}\left(\frac{r_{2}^{s+1}-r_{1}^{s+1}}{r_{2}-r_{1}}\right)^{k-1} & \text { if } l=0 \tag{17}\\
V_{n}^{k-1}=0 & \text { if } l=1,2, \ldots, k-1
\end{array}
$$

Proof. Two cases $n=k s$ and $n=k s+l, l=1, \ldots, k-1$ have to be considered separately. After some elementary manipulations with rows and columns in a similar way as it was done in [3] we obtain that each of the determinants W_{n}^{k-1} and V_{n}^{k-1} is the product of some blocks which have the form W_{s}^{0} or W_{s+1}^{0}. But it is well known that $W_{s}^{0}(a, b, c)=\frac{r_{2}^{s+1}-r_{1}^{s+1}}{r_{2}-r_{1}}$ [2], which ends the proof.

Now we can prove our main result.
Theorem 2. Let $n=3,4, \ldots$ be a given integer and assume that $f(z)=$ $e^{-t}+\sum_{n=1}^{\infty} a_{n} z^{n} \in \mathcal{B}_{0}(n, k)$. We have the following sharp bounds:
(a) If $\left|p_{k}\right|<1$ and $\kappa=\sqrt{1-\left|p_{k}\right|^{2}}$, then we have:

$$
\left|a_{n}\right| \leq t e^{-t} \cdot\left\{\begin{array}{lr}
\frac{(1+\kappa)^{s+1}-(1-\kappa)^{s+1}+2 \kappa\left(1-\kappa^{2}\right)^{s / 2}}{(1+\kappa)^{s}-(1-\kappa)^{s}}-\left(1-\kappa^{2}\right)^{s / 2} \frac{t^{s-1}}{s!} \tag{18}\\
\frac{(1+\kappa)^{s+1}-(1-\kappa)^{s+1}}{(1+\kappa)^{o}-(1-\kappa)^{o}} & \text { for } t<t_{1}(\kappa) \\
\frac{\text { for } t=t_{1}(\kappa)}{} \\
\frac{(1+\kappa)^{s+1}-(1-\kappa)^{s+1}-2 \kappa\left(1-\kappa^{2}\right)^{s / 2}}{(1+\kappa)^{s}-(1-\kappa)^{s}}+\left(1-\kappa^{2}\right)^{s / 2} \frac{t^{s-1}}{s!} \\
\text { for } t>t_{1}(\kappa)
\end{array}\right.
$$

where

$$
\begin{equation*}
t_{1}(\kappa)=\left[\frac{2 \kappa s!}{(1+\kappa)^{s}-(1-\kappa)^{s}}\right]^{1 /(s-1)}, \kappa \in[0,1] . \tag{19}
\end{equation*}
$$

(b) If $\left|p_{k}\right|=1$, then we have

$$
\left|a_{e}\right| \leq t e^{-t} \cdot \begin{cases}1+\frac{2}{s}-\frac{t^{o-1}}{s!} & \text { for } t<\sqrt[-1]{(s-1)!} \tag{20}\\ 1+\frac{1}{s} & \text { for } t=\sqrt[-1]{(s-1)!} \\ 1+\frac{t^{\prime-1}}{s!} & \text { for } t>\sqrt[-1]{(s-1)!}\end{cases}
$$

(c) If $1<\left|p_{k}\right| \leq\left[\cos \frac{\pi}{s+1}\right]^{-1}$ and $\cos \varphi=\frac{1}{\left|p_{k}\right|}, \sin \varphi=\frac{1}{\left|p_{k}\right|} \sqrt{\left|p_{k}\right|^{2}-1}$, then we have

$$
\left|a_{n}\right| \leq t e^{-t} \cdot \begin{cases}\frac{\sin (s+1) \varphi+\sin \varphi}{\cos \varphi \sin s \varphi}-\frac{1}{\cos ^{\circ} \varphi} \cdot \frac{t^{s-1}}{s!} & \text { for } t<t_{2}(\varphi) \tag{21}\\ \frac{\sin (s+1) \varphi}{\cos \varphi \sin s \varphi} & \text { for } t=t_{2}(\varphi) \\ \frac{\sin (s+1) \varphi-\sin \varphi}{\cos \varphi \sin s \varphi}+\frac{1}{\cos ^{s} \varphi} \cdot \frac{t^{0-1}}{s!} & \text { for } t>t_{2}(\varphi)\end{cases}
$$

where

$$
\begin{equation*}
t_{2}(\varphi)=\left[s!\frac{\cos ^{s-1} \varphi \sin \varphi}{\sin s \varphi}\right]^{1 /(s-1)}, 0 \leq \varphi \leq \frac{\pi}{s+1} \tag{22}
\end{equation*}
$$

All above estimates are sharp.
Proof. If $f \in \mathcal{B}_{0}(n, k)$, then $f(z)=\exp \{-t p(z)\}$ where $p \in \mathcal{P}(n, k)$ and by (10) we have

$$
a_{n}=\left(-t a_{0}\right)\left[p_{n}+\frac{(-t)^{s-1}}{s!} p_{k}^{s}\right], n=k s
$$

By (12) and (13) the Carathéodory inequalities have the form:

$$
\begin{aligned}
& \Delta_{1}^{\prime \prime}=2>0, \quad \Delta_{2}^{\prime \prime}=2^{2}, \ldots, \quad \Delta_{k}^{\prime \prime}=2^{k}>0 \\
& \Delta_{q}^{\prime \prime}=W_{q}^{k-1}\left(p_{k}, \bar{p}_{k}, 2\right) \geq 0, \quad q=k+1, k+2, \ldots, \quad n=k s \\
& \Delta_{n+1}^{\prime \prime} \geq 0
\end{aligned}
$$

By the formula (16) we have

$$
\begin{equation*}
\Delta_{q}^{\prime \prime}=\left(\frac{r_{2}^{m+1}-r_{1}^{m+1}}{r_{2}-r_{1}}\right)^{k-1}\left(\frac{r_{2}^{m+2}-r_{1}^{m+2}}{r_{2}-r_{1}}\right)^{\prime} \tag{23}
\end{equation*}
$$

$q=k m+l, m=1,2, \ldots, s-l, l=0,1, \ldots, k-1$ where r_{1} and r_{2} are the roots of the equation $r^{2}-2 r+\left|p_{k}\right|^{2}=0$.
If $\left|p_{k}\right|<1$, then $r_{2}=1+\sqrt{1-\left|p_{k}\right|^{2}}, r_{1}=1-\sqrt{1-\left|p_{k}\right|^{2}}$ and $\Delta_{q}^{\prime \prime}>0, q=$ $k+1, \ldots, n$.
If $\left|p_{k}\right|=1$, then $r_{2}=r_{1}=1$ and $\Delta_{q}^{\prime \prime}=(m+1)^{k-l}(m+2)^{l}>0, \quad m=$ $0, \ldots, s, l=0,1, \ldots, k-1$.
If $1<\left|p_{k}\right| \leq 2$, then denoting by $\cos \varphi=\frac{1}{\left|p_{k}\right|}, \sin \varphi=\frac{1}{\left|p_{k}\right|} \sqrt{\left|p_{k}\right|^{2}-1}$ we have $r_{2}=\left|p_{k}\right| e^{i \varphi}, r_{1}=\left|p_{k}\right| e^{-i \varphi}$. In this case we have

$$
\begin{align*}
\Delta_{q}^{\prime \prime}=\left|p_{k}\right|^{m(k-\ell)}\left\{\frac{\sin (m+1) \varphi}{\sin \varphi}\right\}^{k-1}\left|p_{k}\right|^{l(m+1)}\left\{\frac{\sin (m+2) \varphi}{\sin \varphi}\right\}^{\prime} & \tag{24}\\
& m=0,1, \ldots, s-1
\end{align*}
$$

Therefore all $\Delta_{q}^{\prime \prime}$ are nonnegative if $\sin (s+1) \varphi \geq 0$ which holds if $0 \leq$ $\varphi \leq \frac{\pi}{s+1}$ which is equivalent to the inequality $1<\left|p_{k}\right| \leq \frac{1}{\cos \frac{r}{s+1}}, s=2, \ldots$, which further has to be assumed.

The inequality $\Delta_{n+1}^{\prime \prime} \geq 0$ gives the precise region of variability of p_{n} in terms of p_{k} and we have [see [2], formula (20) and (21)]

$$
\begin{equation*}
\Delta_{n+1}^{\prime \prime} \geq 0 \Leftrightarrow\left|p_{n}-w_{n}^{\prime \prime}\right| \leq R_{n}^{\prime \prime} \tag{25}
\end{equation*}
$$

where

$$
\begin{equation*}
w_{n}^{\prime \prime}=(-1)^{n} \frac{C_{n}^{\prime \prime}}{\Delta_{n-1}^{\prime \prime}}, R_{n}^{\prime \prime}=\frac{\Delta_{n}^{\prime \prime}}{\Delta_{n-1}^{\prime \prime}}, n=k s, s=2,3, \ldots \tag{26}
\end{equation*}
$$

By Lemma 3 and formula (16) and (17) we obtain:

$$
\begin{gathered}
\Delta_{n}^{\prime \prime}=W_{k s}^{k-1}\left(p_{k}, \bar{p}_{k}, 2\right)=\left(\frac{r_{2}^{s+1}-r_{1}^{s+1}}{r_{2}-r_{1}}\right)^{k} \\
\begin{cases}=\left[\frac{\left(1+\sqrt{1-\left|p_{k}\right|^{2}}\right)^{s+1}-\left(1-\sqrt{1-\left|p_{k}\right|^{2}}\right)^{s+1}}{2 \sqrt{1-\left|p_{k}\right|^{2}}}\right]^{k} & \text { if }\left|p_{k}\right|<1 \\
(s+1)^{k} & \text { if }\left|p_{k}\right|=1 \\
\left|p_{k}\right|^{k s}\left(\frac{\sin (s+1) \varphi}{\sin \varphi}\right)^{k} & \text { if } 1<\left|p_{k}\right|\end{cases} \\
\Delta_{n-1}^{\prime \prime}=W_{k s-1}^{k-1}\left(p_{k}, \bar{p}_{k}, 2\right)=\left(\frac{r_{2}^{s}-r_{1}^{s}}{r_{2}-r_{1}}\right)\left(\frac{r_{2}^{s+1}-r_{1}^{s+1}}{r_{2}-r_{1}}\right)^{k-1}
\end{gathered}
$$

$$
\begin{cases}\frac{\left[\left(1+\sqrt{1-\left|p_{k}\right|^{2}}\right)^{s}-\left(1-\sqrt{1-\left|p_{k}\right|^{2}}\right)^{v}\right]\left[\left(1+\sqrt{1-\left|p_{k}\right|^{2}}\right)^{s+1}-\left(1-\sqrt{1-\left|p_{k}\right|^{2}}\right)^{s+1}\right]^{k-1}}{\left(2 \sqrt{1-\left|p_{k}\right|}\right)^{k}} \tag{28}\\ s(s+1)^{k-1} & \text { if }\left|p_{k}\right|<1 \\ \left|p_{k}\right| \frac{\sin s \varphi}{\sin \varphi} \cdot\left(\frac{\sin (s+1) \varphi}{\sin \varphi}\right)^{k-1} & \text { if }\left|p_{k}\right|=1 \\ (& \text { if } \\ 1<\left|p_{k}\right|\end{cases}
$$

$$
\begin{equation*}
C_{n}^{\prime \prime}=V_{k s}^{k-1}\left(p_{k}, \bar{p}_{k}, 2\right)=(-1)^{(n+1) s} p_{k}^{s}\left(\frac{r_{2}^{s+1}-r_{1}^{s+1}}{r_{2}-r_{1}}\right)^{k-1} \tag{29}
\end{equation*}
$$

where r_{1} and r_{2} are as above depending on whether $\left|p_{k}\right|<1$ or $\left|p_{k}\right|=1$ or $\left|p_{k}\right|>1$.

Now we can write by (10) and (25) ($\left.n=k s, k=1,2, \ldots,\left[\frac{n}{2}\right]\right)$

$$
\left.\left.\begin{array}{rl}
\left|a_{n}\right| & =t e^{-t}\left|p_{n}+\frac{(-t)^{s-1}}{s!} p_{k}^{s}\right| \leq t e^{-t}\left|w_{n}^{\prime \prime}+R_{n}^{\prime \prime} e^{i \psi}+\frac{(-t)^{s-1}}{s!} p_{k}^{s}\right| \\
& =t e^{-t} \left\lvert\,(-1)^{n}(-1)^{(n+1) s} p_{k}^{s} \frac{\Delta_{n}^{\prime \prime}}{\Delta_{n-1}^{\prime \prime}} \cdot \frac{r_{2}-r_{1}}{r_{2}^{s+1}-r_{1}^{s+1}}\right. \\
& +\frac{\Delta_{n}^{\prime \prime}}{\Delta_{n-1}^{\prime \prime}} e^{i \psi}+\left.\frac{(-t)^{s-1}}{s!} p_{k}^{s}\right|_{p_{k}=\left|p_{k}\right| e^{i \theta}} \\
& \left.=\left.t e^{-t}\left|\frac{\Delta_{n}^{\prime \prime}}{\Delta_{n-1}^{\prime \prime}} e^{i \psi}+(-1)^{s} e^{i \theta s}\right| p_{k}\right|^{s}\left[(-1)^{k s+k s^{2}} \frac{r_{2}-r_{1}}{r_{2}^{s+1}-r_{1}^{s+1}}-\frac{t^{s-1}}{s!}\right] \right\rvert\, \\
& \leq t e^{-t}\left[\frac{\Delta_{n}^{\prime \prime}}{\Delta_{n-1}^{\prime \prime}}+\left|p_{k}\right|^{s} \left\lvert\, \frac{r_{2}-r_{1}}{r_{2}^{s+1}-r_{1}^{s+1}}-\frac{t^{s-1}}{s!}\right.\right.
\end{array}\right] .\right]
$$

where ψ and θ can be chosen in such a manner that the sign of equality is always possible.

Applying formulas (27) and (28) we conclude the proof.
Remark 1. We may observe that the right hand side of the inequalities (18), (20) and (21) is exactly the same as in the inequalities (23), (25) and (26) in [2], where for n we have to substitute s and in the place of p_{1} we have to put p_{k}.

Therefore the rest of the conclusions is exactly the same as in [2] and we omit them. The special case $p=2$ (not covered by the results in [2]) follows from the same formulas.

Finally we have
Corollary. Let $n=3,4, \ldots$ be a given fixed integer and assume that $f(z)=e^{-t}+\sum_{m=1}^{\infty} a_{m} z^{m} \in \mathcal{B}_{0}(n, k)$. Then we have $\left|a_{n}\right| \leq 2 / e$.

Remark 2. One should emphasize the importance of inequality (25) which can be formulated as follows.

If $p(z)=1+p_{k} z^{k}+p_{n} z^{n}+\ldots \in \mathcal{P}(n, k)$, then the region of variability of $\left\{p_{n}\right\}$ is the closed disk

$$
\left|p_{n}-(-1)^{s} p_{k}^{s} \frac{r_{2}^{s+1}-r_{1}^{s+1}}{r_{2}-r_{1}}\right| \leq \frac{r_{2}^{s+1}-r_{1}^{s+1}}{r_{2}-r_{1}} \quad \text { if } \quad n=k s
$$

and

$$
\begin{equation*}
\left|p_{n}\right| \leq \frac{r_{2}^{s+1}-r_{1}^{s+1}}{r_{2}-r_{1}} \text { if } n=k s+l, l=1, \ldots, k-1 \tag{30}
\end{equation*}
$$

where r_{1} and r_{2} are the roots of equation $r^{2}-2 r+\left|p_{k}\right|^{2}=0$.

References

[1] Krzyż, J. G. Problem 1, posed in:, Fourth Conference on Analytic Functions, Ann. Polon. Math. 20 (1967-68), Lódí 1966, 314.
[2] Lewandowski, Z. and J. Szynal, On the K'rzyż conjecture and related problems, XVIth Rolf Nevanlinna Colloquium, Laine/Martio, Walter de Gruyter \& Co., Berlin-New York, 1996, pp. 257-268.
[3] Olivier, P., Q. I. Rahman and J. Szynal, On the ($C, 1$) Means of a Power Series and the Positive Definiteness of an Associated Matrix, Bull. Polish Acad. Sci. Math. 37 (1989), 339-350.
[4] Szapiel, W., A new approach to the K'rzyż conjecture, Ann. Univ. Mariae CurieSklodowska Sect. A 48 (1994), 169-192.

Maria Curie-Skłodowska University
received April 6, 1998
20-031 Lublin, Poland

