ANNALES
 UNIVERSITATIS MARIAE CURIE-SKLODOWSKA LUBLIN - POLONIA

VOL. LII. 1, 7

SECTIO A
1998

STANISLAWA KANAS and JAN STANKIEWICZ

Univalence of Confluent Hypergeometric Functions

Dedicated to Professor Eligiusz Zlotkiewicz

Abstract

Conditions of univalence and convexity for a confluent hypergeometric function Φ with complex coefficients are obtained. Condition of starlikeness of $z \Phi(z)$ is given.

1. Introduction. Let H denote the class of functions with the classical normalization which are analytic in the open unit disk U and let S be the class of functions in H which are univalent in the disk U. Subclasses of the class S being the collection of starlike and convex functions are denoted by S^{*} and S^{c}, respectively.

By a confluent hypergeometric function, also known as a Kummer function, we mean the function

$$
\begin{equation*}
\Phi(a ; c ; z)={ }_{1} F_{1}(a ; c ; z)=1+\frac{a}{c} \frac{z}{1!}+\frac{a(a+1)}{c(c+1)} \frac{z^{2}}{2!}+\ldots, \tag{1.1}
\end{equation*}
$$

defined for $a, c \in \mathbb{C}$ with $c \neq 0,-1,-2, \cdots$. The series (1.1) is convergent throughout the z-plane and represents therefore an integral function.

[^0]A particular example is the exponential function: $\Phi(a ; a ; z)=\exp z$.
The function $\Phi(a ; c ; z)$ satisfies the confluent hypergeometric differential equation of Kummer

$$
\begin{equation*}
z w^{\prime \prime}(z)+(c-z) w^{\prime}(z)-a w(z)=0 \tag{1.2}
\end{equation*}
$$

Moreover, it is easy to verify that for $\operatorname{Re} c>\operatorname{Re} a>0$, (see, e.g. [3]),

$$
\begin{equation*}
\Phi(a ; c ; z)=\frac{\Gamma(c)}{\Gamma(a) \Gamma(c-a)} \int_{0}^{1} t^{a-1}(1-t)^{c-a-1} e^{t z} d t=\int_{0}^{1} e^{t z} d \mu(t) \tag{1.3}
\end{equation*}
$$

where $\mu(t)$ is a probability measure on $[0,1]$.
If f and g are analytic in U and $g \in S$, we say that f is subordinate to g if $f(0)=g(0)$ and $f(U) \subset g(U)$. Then we write $f \prec g$.

Lemma 1.1 ([1]). Let Ω be a set in the complex plane and let the function $\psi: \mathbb{C}^{3} \times U \rightarrow \mathbb{C}$ satisfy the condition: $\psi(i s, t, u+i v ; z) \notin \Omega$ for $z \in U$, $s, t, u, v \in \mathbb{R}$,

$$
t \leq-\frac{1+s^{2}}{2} \quad \text { and } \quad t+u \leq 0
$$

If $p(z)$ is analytic in U with $p(0)=1$ and $\psi\left(p(z), z p^{\prime}(z), z^{2} p^{\prime \prime}(z) ; z\right) \in \Omega$ for $z \in U$, then $\operatorname{Re} p(z)>0$ in U.

Properties of the hypergeometric functions was the subject of numerous investigations. A new method of obtaining different results concerning hypergeometric functions was proposed in [2]. Applying the theory of differential subordination the authors studied various properties of the function Φ with real coefficients. Among others they proved

Lemma 1.2 ([2]). If a and c are real and satisfy one of the conditions:
(i) $a>0$ and $c \geq a$,
(ii) $a \leq 0$ and $c \geq 1+\sqrt{1+a^{2}}$,
then $\operatorname{Re} \Phi(a ; c ; z)>0, z \in U$, where $\Phi(a ; c ; z)$ is a confluent hypergeometric function.

In this paper we determine the conditions on the complex-valued parameters a and c for which the function Φ is univalent, convex and $z \Phi(z)$ is starlike in U.

2. Main results.

Theorem 2.1. If complex numbers $a=a_{1}+i a_{2}$ and c satisfy one of the following conditions:
(i) $\operatorname{Re} c>\operatorname{Re} a>0$,
(ii) $\operatorname{Re} a<0$ and $\operatorname{Re} c>2+\sqrt{a_{1}^{2}+\left(1+a_{2}\right)^{2}}$,
(iii) $\operatorname{Re} a=0$ and $\operatorname{Re} c>2+|\operatorname{Im} a|$,
then $\operatorname{Re} \Phi(a ; c ; z)>0$ for $z \in U$.
Proof. If the condition (i) holds then the result follows from the equality (1.3), so we may consider only the cases (ii) and (iii).

Write $p(z)=\Phi(a ; c ; z)$. Then, obviously $p(0)=1$. Since the function p satisfies Kummer hypergeometric differential equation (1.2), we have

$$
\begin{equation*}
z^{2} p^{\prime \prime}(z)+(c-z) z p^{\prime}(z)-a z p(z)=0 \tag{2.1}
\end{equation*}
$$

Let $\psi\left(r_{1}, r_{2}, r_{3} ; z\right)=r_{3}+(c-z) r_{2}-a z r_{1}$ and $\Omega=\{0\}$. Then (2.1) can be rewritten in the form

$$
\begin{equation*}
\psi\left(p(z), z p^{\prime}(z), z^{2} p^{\prime \prime}(z) ; z\right) \in \Omega, \quad z \in U \tag{2.2}
\end{equation*}
$$

In order to prove $\operatorname{Re} p(z)>0$ we will use Lemma 1.1. Then for $z=x+$ $i y, c=c_{1}+i c_{2}, a=a_{1}+i a_{2}$ we have

$$
\operatorname{Re} \psi(i s, t, u+i v ; x+i y)=u+t+t\left(c_{1}-1-x\right)+s\left(a_{2} x+a_{1} y\right)
$$

Hence for $u+t \leq 0$, and $t \leq-\left(1+s^{2}\right) / 2$

$$
\operatorname{Re} \psi(i s, t, u+i v ; x+i y) \leq-\frac{s^{2}+1}{2}\left(c_{1}-1-x\right)+s\left(a_{2} x+a_{1} y\right):=Q(s)
$$

We have to prove that $Q(s)<0$.
Suppose that the condition (ii) holds. Since $c_{1}>2, Q(s)$ is a quadratic polynomial in s which attains its maximum Q_{0} at s_{0}. If $s_{0}=0$ then $Q_{0}=-\frac{1}{2}\left(c_{1}-1-x\right)<0$. If $s_{0} \neq 0$ then $s_{0}=\frac{a_{2} x+a_{1} y}{c_{1}-1-x},\left(Q^{\prime}\left(s_{0}\right)=0\right)$ and

$$
Q_{0}=-\frac{1}{2}\left(c_{1}-1-x\right)\left(s_{0}^{2}-2 s_{0}+1\right)=-\frac{1}{2}\left(c_{1}-1-x\right)\left(s_{0}-1\right)^{2}
$$

Unless $s_{0}=1$, we have $Q_{0}<0$.
Suppose that $s_{0}=1$, or equivalently $c_{1}-1=\left(a_{2}+1\right) x+a_{1} y$. Hence

$$
\begin{aligned}
c_{1}-1=\left|\left(a_{2}+1\right) x+a_{1} y\right| & \leq \sqrt{x^{2}+y^{2}} \sqrt{a_{1}^{2}+\left(1+a_{2}\right)^{2}} \\
& \leq \sqrt{a_{1}^{2}+\left(1+a_{2}\right)^{2}}<c_{1}-2
\end{aligned}
$$

i.e. $c_{1}-1<c_{1}-2$, a contradiction.

If $a_{1}=0$, (the condition (iii)), an analogous procedure gives the proof of $Q(s)<0$ under the assumption $c_{1}>2+\left|a_{2}\right|$. Then $s_{0}=a_{2} x /\left(c_{1}-1-x\right)$ and

$$
Q_{0}=-\frac{1}{2}\left(c_{1}-1-x\right)\left(s_{0}-1\right)^{2} .
$$

The condition $s_{0}=0$ implies $Q_{0}<0$, whereas $s_{0}=1$ gives $a_{2} x=c_{1}-1-x$ i.e. $\left(a_{2}+1\right) x=c_{1}-1$ and this contradicts the assumption $\left|a_{2}\right|+1<c_{1}-1$.

Thus, in the case (ii) and (iii) all assumptions of Lemma 1.1 are satisfied, and so we have $\operatorname{Re} p(z)>0$ in U which is equivalent to $\operatorname{Re} \Phi(a ; c ; z)>0$. This completes the proof.

Remark 2.1 In the case of real a, c, Theorem 2.1 reduces to Theorem 1.1, due to Miller and Mocanu, [2].

Taking into account the relation $c \Phi^{\prime}(a ; c ; z)=a \Phi(a+1 ; c+1 ; z)$ we obtain as a direct consequence of Theorem 2.1 the following condition of univalence of the Kummer function.

Theorem 2.2. If a, c are complex numbers, $a \neq 0$, which satisfy one of the following conditions:
(i) $\operatorname{Re} c>\operatorname{Re} a>-1$,
(ii) $\operatorname{Re} a<-1$ and $\operatorname{Re} c>1+\sqrt{(1+\operatorname{Re} a)^{2}+(1+\operatorname{Im} a)^{2}}$,
(iii) $\operatorname{Re} a=-1$ and $\operatorname{Re} c>1+|\operatorname{Im} a|$,
then $\operatorname{Re}(c / a) \Phi^{\prime}(a ; c ; z)>0$ in U, which means that $\Phi(a ; c ; z)$ is univalent in U.

Theorem 2.3. If $a=a_{1}+i a_{2}$ and $c=c_{1}+i c_{2}$ with $a \neq 0, a_{1} \geq-1$ are complex numbers which satisfy the following conditions

$$
c_{1}> \begin{cases}\left|a_{1}\right|+\frac{1}{2}+\left|a_{2}-\frac{c_{2}}{3}\right|+\frac{1}{6} c_{2}^{2} & \text { if }\left|a_{1}\right| \geq \frac{1}{3} \tag{2.4}\\ \frac{3}{2} a_{1}^{2}+\frac{2}{3}+\left|a_{2}-\frac{c_{2}}{3}\right|+\frac{1}{6} c_{2}^{2} & \text { if }\left|a_{1}\right| \leq \frac{1}{3}\end{cases}
$$

then $\Phi(a ; c ; z) \in S^{c}, z \in U$.
Proof. Let the complex numbers a, c, satisfy the assumptions of theorem. Then also conditions (i) - (iii) of Theorem 2.2 are satisfied, so $\Phi^{\prime}(a ; c ; z) \neq 0$ in U. Hence the function

$$
\begin{equation*}
q(z)=1+\frac{z \Phi^{\prime \prime}(z)}{\Phi^{\prime}(z)} \tag{2.5}
\end{equation*}
$$

is analytic in U, with $q(0)=1$. The function $\Phi(a ; c ; z)$ satisfies the differential equality (1.2), and so the equality

$$
z q^{\prime}(z)+q^{2}(z)+(c-2-z) q(z)-a z-c+1=0,
$$

where q is defined in (2.5).
Reasoning along the same lines as in the proof of Theorem 2.1, put

$$
\psi\left(r_{1}, r_{2} ; z\right)=r_{2}+r_{1}^{2}+(c-2-z) r_{1}-a z-c+1, \text { and } \Omega=\{0\} .
$$

Then, setting $z=x+i y$ and applying $t \leq-\left(1+s^{2}\right) / 2$, we have

$$
\begin{aligned}
\operatorname{Re} \psi(i s, t, z) & =t-s^{2}-s\left(c_{2}-y\right)-\left(a_{1} x-a_{2} y\right)-c_{1}+1 \\
& \leq-\frac{3}{2} s^{2}-s\left(c_{2}-y\right)-\left(a_{1} x-a_{2} y\right)-c_{1}+\frac{1}{2}:=Q(s) .
\end{aligned}
$$

We next show that $Q(s)<0$ for all real s and $x^{2}+y^{2}<1$. The discriminant

$$
\begin{aligned}
\Delta & =\left(c_{2}-y\right)^{2}+6 a_{2} y-6 a_{1} x-6 c_{1}+3 \\
& <-x^{2}-6 a_{1} x+y\left(6 a_{2}-2 c_{2}\right)+c_{2}^{2}-6 c_{1}+4:=h(x),
\end{aligned}
$$

and $h^{\prime}(x)=-2 x-6 a_{1}=0$, when $x_{0}=-3 a_{1}$. Then for $\left|a_{1}\right| \geq 1 / 3$, $h^{\prime}(x)$ is either negative or positive in the interval $(-1,1)$. Thus we have $h(x)<h(-1)$ or $h(x)<h(1)$, respectively. Taking into account the first condition in (2.4) we deduce
$h(\pm 1)=6\left|a_{1}\right|+c_{2}^{2}-6 c_{1}+3+y\left(6 a_{2}-2 c_{2}\right) \leq-\left|6 a_{2}-2 c_{2}\right|+y\left(6 a_{2}-2 c_{2}\right)<0$,
for all $y \in(-1,1)$. If $\left|a_{1}\right| \leq 1 / 3$ we have $h(x) \leq h\left(x_{0}\right)$. But, from the second condition in (2.4)
$h\left(x_{0}\right)=9 a_{1}^{2}+c_{2}^{2}-6 c_{1}+4+y\left(6 a_{2}-2 c_{2}\right) \leq-\left|6 a_{2}-2 c_{2}\right|+y\left(6 a_{2}-2 c_{2}\right)<0$.
Thus, in both cases the discriminant is negative and so is $Q(s)$ for all real s and $x^{2}+y^{2}<1$.

By Lemma 1.1 we conclude that $\operatorname{Re} p(z)=\operatorname{Re}\left[1+z \Phi^{\prime \prime}(z) / \Phi^{\prime}(z)\right]>0$ which means that the function $\Phi(a ; c ; z)$ is convex in U.

By the relation $(a-1) z \Phi(a ; c ; z)=(c-1) z \Phi^{\prime}(a-1 ; c-1 ; z)$ we arrive at the following result:

Theorem 2.4. If $a=a_{1}+i a_{2}$ and $c=c_{1}+i c_{2}$ with $a \neq 0$ are complex numbers, which satisfy the following conditions

$$
c_{1}> \begin{cases}\left|a_{1}-1\right|+\frac{3}{2}+\left|a_{2}-\frac{c_{2}}{3}\right|+\frac{1}{6} c_{2}^{2} & \text { if }\left|a_{1}-1\right| \geq \frac{1}{3}, \tag{2.6}\\ \frac{3}{2}\left(a_{1}-1\right)^{2}+\frac{5}{3}+\left|a_{2}-\frac{c_{2}}{3}\right|+\frac{1}{6} c_{2}^{2} & \text { if }\left|a_{1}-1\right| \leq \frac{1}{3},\end{cases}
$$

then $z \Phi(a ; c ; z) \in S^{*}, z \in U$.

Acknowledgments. The authors wish to thank the referee for helpful suggestions on an earlier draft of this paper.

References

[1] Miller, S. S. and P.T. Mocanu, Differential subordinations and inequalities in the complex plane, J. Differential Equations 67, 2 (1987), 199-211.
[2] , Univalence of Gaussian and confluent hypergeometric functions, Proc. Amer. Math. Soc. 110(2) (1990), 333-342.
[3] Sansone, G. and J. Gerretsen, Lectures on the theory of functions of a complex variable, Vol. II, Wolters-Noordhoof Publishing, Groningen, The Netherlands, 1969..

Department of Mathematics
received February 23, 1998
Technical University of Rzeszów
ul. W. Pola 2, 35-959 Rzeszów, Poland
e-mail: skanas@prz.rzeszow.pl
e-mail: jstan@prz.rzeszow.pl

[^0]: 1991 Mathematics Subject Classification. Primary 30C45; Secondary 33E05.
 Key words and phrases. Hypergeometric functions, confluent hypergeometric functions, convex functions, univalent functions, starlike functions.

