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Abstract. Conditions of univalence and convexity for a confluent hyper
geometric function 4> with complex coefficients are obtained. Condition of 
starlikeness of z$(z) is given.

!• Introduction. Let H denote the class of functions with the classical 
normalization which are analytic in the open unit disk U and let S be the 
class of functions in H which are univalent in the disk U. Subclasses of the 
class S being the collection of starlike and convex functions are denoted by 
•$* and Sc, respectively.

By a confluent hypergeometric function, also known as a Kummer func
tion, we mean the function

iFi(a;c;z) - 1 + +
c 1!

a(« + 1) z2 
c(c T 1) 2! +

defined for a, c e C with c / 0, —1,-2,•••. The series (1.1) is convergent 
throughout the z-plane and represents therefore an integral function.
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A particular example is the exponential function: 4>(a;a;.z) = exp z. 
The function <h(a; c; 2) satisfies the confluent hypergeometric differential

equation of Kummer

(1.2) zw'\z) + (c — z')w'(z') — aw(z) = 0.

Moreover, it is easy to verify that for Re c > Re a > 0, (see, e.g. [3]),

(1.3) *(a;c;z) = [' <-'(1 - = [' c'W),
1 (o)I (c — a) Jo Jo

where /z(Z) is a probability measure on [0,1].

If f and g are analytic in U and 3 E 5, we say that / is subordinate to 
g if /(0) = ^(O) and f(U) C g(U). Then we write f g.

Lemma 1.1 ([1]). Let Q be a set in the complex plane and let the function 
il> : C3 x U —» C satisfy the condition: ifi(is,t,u + iv-z) fl for z E U, 
s,t,u,v E K,

1 + s2t <----------and t + u < 0.
“ 2

If p(z) is analytic in U with p(0) = 1 and t/>(p(z), zp'(z), z2p"(z); z) E fl for 
z E U, then Re p(z) > 0 in U.

Properties of the hypergeometric functions was the subject of numer
ous investigations. A new method of obtaining different results concerning 
hypergeometric functions was proposed in [2]. Applying the theory of differ
ential subordination the authors studied various properties of the function 
4> with real coefficients. Among others they proved

Lemma 1.2 ([2]). If a and c are real and satisfy one of the conditions:
(i) a > 0 and c > a,

(ii) a < 0 and c > 1 + \/l + «2,
then Re <I>(a; c; z) > 0, z E U, where 3>(a; c; z) is a confluent hypergeometric 
function.

In this paper we determine the conditions on the complex-valued param
eters a and c for which the function <t> is univalent, convex and z$(z) is 
starlike in U.
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2. Main results.

Theorem 2.1. If complex numbers a = a\ + ia-2 and c satisfy one of the 
following conditions:

(i) Re c > Re a > 0,
(ii) Re a < 0 and Re c > 2 + + 0 + a2)2>
(iii) Rea = 0 and Rec > 2 + | Im a|, 

then Re 4>(a; c; z) > 0 for z € U.

Proof. If the condition (i) holds then the result follows from the equality
(1.3), so we may consider only the cases (ii) and (iii).

Write p(z) = 4>(a;c;z). Then, obviously p(0) = 1. Since the function p 
satisfies Rummer hypergeometric differential equation (1.2), we have 

(2.1) z2p"(z) + (c - z)zp'(z) - azp(z) = 0.

Let V’(ri, r2, i'3'i z) = r3 + (c — z)r2 ~ azr\ and H = {0}- Then (2.1) can be 
rewritten in the form

(2.2) ^p{z),zp\z),z2p"(z)\z) € Q, zeU.

In order to prove Rep(z) > 0 we will use Lemma 1.1. Then for z = x + 
iy, c = ej + ic2, a = aj + ia,2 we have

Ret/>(is, t, u + iv-x + iy) = u + t + t(cj — 1 — x) + s(a2x + aj p). 

Hence for u + t < 0, and t < —(1 + s2)/2

s2 + 1
Re t,u + iv; x + iy) <----- -—(ci - 1 - x) + s(a2x + ax y) := Q(s).

We have to prove that Q(s) < 0.
Suppose that the condition (ii) holds. Since ci > 2, Q(s) is a quadratic 

Polynomial in s which attains its maximum Qo at so- If so = 0 then
Qo = — |(ci - 1 - x) < 0. If s0 7^ 0 then so = —————, (Qz(«o) = 0) and 

* Cl — 1 — X

Qo = - j(ci - 1 - x)(s§ - 2s0 + 1) = - j(ci - 1 - x)(s0 - l)2. 

Unless so = 1, we have Qo < 0.
Suppose that so = 1, or equivalently Ci — 1 = (a2 + l)x + apy. Hence

Ci - 1 = |(a2 + l)x + thpl < \/x2 + p2 af + (1 + a2)2 

< yja\ + (1 + a2)2 < C! - 2,
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i.e. ci — 1 < cj — 2, a contradiction.
If oi = 0, (the condition (iii)), an analogous procedure gives the proof of 

Q(s) < 0 under the assumption Cj > 2 + |«t21 • Then so = «2x/(ci — 1 — x) 
and

Qo = “|(ci “ 1 “ a:)(so - I)2-

The condition so = 0 implies Qo < 0, whereas so = 1 gives a2x = ci — 1 — x 
i.e. («t2 + l)x = Ci — 1 and this contradicts the assumption |a21 + 1 < ci — 1.

Thus, in the case (ii) and (iii) all assumptions of Lemma 1.1 are satisfied, 
and so we have Rep(z) > 0 in U which is equivalent to Re$(a;c;z) > 0. 
This completes the proof.

Remark 2.1 In the case of real a,c, Theorem 2.1 reduces to Theorem 1.1, 
due to Miller and Mocanu, [2].

Taking into account the relation c 4>'(a; c; z) = a$(a+ l;c + 1; z) we 
obtain as a direct consequence of Theorem 2.1 the following condition of 
univalence of the Rummer function.

Theorem 2.2. If a,c are complex numbers, a ± 0, which satisfy one of the 
following conditions:

(i) Rec > Re a > -1,
(ii) Rea<—landRec>l + ^/( 1 + Re a)2 + (1 + Im a)2,
(iii) Re a = — 1 and Re c > 1 + | Im a|,

then Re(c/a)4>'(a; c; z) > 0 in U , which means that $(a; c; z) is univalent 
in U.

Theorem 2.3. If a = ai + ia^ and c = ci + ic2 with a 0, ai > — 1 are 
complex numbers which satisfy the following conditions

(2-4) Cl > <

f I I 1 1lail + 2 + 1 C2 1«2--|

3 2 2I 2°> + 3 +
1 C2 1 I02" ?!

+ 6C’ if kil > j, 
if l<*i| < j,

then $(a;c;z) € Sc, z 6 U.

Proof. Let the complex numbers a,c, satisfy the assumptions of theorem. 
Then also conditions (i) - (iii) of Theorem 2.2 are satisfied, so ^'(a; c; z) / 0 
in U. Hence the function

(2-5) q(z) = 1 +
z4>"(z)
4>'(z)
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is analytic in {/, with ę(0) = 1. The function <h(a;c;z) satisfies the differ
ential equality (1.2), and so the equality

zq'(z) + ę2(2) + (c - 2 - 2)9(2) -az - c + 1 =0, 

where q is defined in (2.5).
Reasoning along the same lines as in the proof of Theorem 2.1, put 

^(n, r2‘, 2) = r2 -f- r2 + (c - 2 - 2)7-1 - az - c + 1, and Q = {0}.

Then, setting z = x + iy and applying t < —(1 + s2)/2, we have

Re z} = t — s2 - s(c2 - Jf) - (aii - a2y) - ci + 1
3 1< ~2s2 - s(c2 - y) - («1Z - fl2y) - Cl + - := Q(s).

We next show that Q(s) < 0 for all real s and x2 + y2 < 1. The discriminant

A = (c2 - y)2 + 6a2y - 6axx - 6ci + 3
< -x2 — 6aix + y(6a2 - 2c2) + c2 - 6ci + 4 := h(i),

and h.'(x') = —2x — 6ai = 0, when xo = -3aj. Then for |a21 > 1/3, 
h'(®) is either negative or positive in the interval (-1,1). Thus we have 
^(®) < h(-l) or h(x) < h(l), respectively. Taking into account the first 
condition in (2.4) we deduce

h(±l) = 6|ai| + c2 - 6ci +3 + y(6a2 — 2c2) < -|6a2 — 2c21 + y(6a2 -2c2) < 0,

for all y £ (-1,1). If |aj| < 1/3 we have h(i) < h(xo)- But, from the 
second condition in (2.4)

h(*o) = 9a2 + c2 -6ci +4 + y(6a2 -2c2) < -|6a2 — 2c2| + j/(6a2 — 2c2) < 0.

Thus, in both cases the discriminant is negative and so is Q(s) for all real 
s and x2 + y2 < 1.

By Lemma 1.1 we conclude that Re p(z) = Re [1 + z4>"(z)/4>'(z)] > 0 
which means that the function <J>(a;c;2) is convex in U.

By the relation (a - l)z4>(a; c; 2) = (c — l)2<J>'(a - 1; c - 1; 2) we arrive 
at the following result:
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Theorem 2.4. If a = a\ + ia,2 and c = ej + tC2 with a / 0 are complex 
numbers, which satisfy the following conditions

(2.6) ci > <

if |oi - 1| > j, 

if |ai - 1| < j,

then z$(a; c; z) E S*, z E U.
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