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ABSTRACT. Conditions of univalence and convexity for a confluent hyper-
geometric function ¢ with complex coefficients are obtained. Condition of
starlikeness of z®(z) is given.

1. Introduction. Let H denote the class of functions with the classical
lormalization which are analytic in the open unit disk U and let S be the
class of functions in H which are univalent in the disk U. Subclasses of the
class § being the collection of starlike and convez functions are denoted by
S* and S¢, respectively.

By a confluent hypergeometric function, also known as a Kummer func-
tion, we mean the function
:  a(a+1)2?

(11 j2)= 1Fi(ge2) =1+ 22 2
R R GCLDE R

defined for a,c € C with ¢ # 0,—1,—2,.--. The series (1.1) is convergent

thrOllghout the z-plane and represents therefore an integral function.
-¥

1991 Mathematics Subject Classification. Primary 30C45; Secondary 33E05.
- Key words and phrases. Hypergeometric functions, confluent hypergeometric func-
tions, convex functions, univalent functions, starlike functions.



52 S. Kanas and J. Stankiewicz

A particular example is the exponential function: ®(a;a;z2) = exp z.
The function ®(a; ¢; z) satisfies the confluent hypergeometric differential
equation of Kummer

(1.2) zw"(2) + (¢ — 2)w'(2) — aw(z) = 0.
Moreover, it is easy to verify that for Re ¢ > Re a > 0, (see, e.g. [3]),

I'(e)

1 1
o /0 — a-1 _ yye—a-1_tz — tz
(1.3) ®(a;c;z) = fa)f(c—a) Jy = (1-1) e"*dt /0 e*du(t),

where p(t) is a probability measure on (0, 1].

If f and g are analytic in U and g € S, we say that f is subordinate to
g if f(0) = ¢(0) and f(U) C g(U). Then we write f < g.

Lemma 1.1 ([1]). Let Q be a set in the complex plane and let the function
¥ : C x U — C satisfy the condition: ¥(is,t,u + iv;z) ¢ Q for z € U,
s,t,u,v € R,

and t+u<0.

If p(z) is analytic in U with p(0) = 1 and ¥(p(z), zp'(2), 22p"(2); 2) € Q for
z € U, then Re p(z) >0 in U.

Properties of the hypergeometric functions was the subject of numer-
ous investigations. A new method of obtaining different results concerning
hypergeometric functions was proposed in [2]. Applying the theory of differ-
ential subordination the authors studied various properties of the function
® with real coefficients. Among others they proved

Lemma 1.2 ([2]). Ifa and c are real and satisfy one of the conditions:

(i) e>0andc?2 a,

(i) a<0andc>1+V1+a?,
then Re ®(a;c;2) > 0,z € U, where ®(a;c; z) is a confluent hypergeometric
function.

In this paper we determine the conditions on the complex-valued param-
eters a and c¢ for which the function & is univalent, convex and z®(z) is
starlike in U.
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2. Main results.

Theorem 2.1. If complex numbers a = a, + ia; and c satisfy one of the
following conditions:
(i) Rec > Rea > 0,
(i) Rea < 0 and Rec > 2+ y/aj + (1 + a2)?,
(iii) Rea = 0 and Rec > 2+ |Im a,
then Re ®(a;c;2) >0 forz e U.

Proof. If the condition (i) holds then the result follows from the equality
(1.3), so we may consider only the cases (ii) and (iii).

Write p(z) = ®(a;c; z). Then, obviously p(0) = 1. Since the function p
satisfies Kummer hypergeometric differential equation (1.2), we have

(2.1) 22p"(2) + (¢ — 2)2p'(2) — azp(z) = 0.

Let 9(ry,72,73;2) = 13+ (¢ — 2)r2 — azry and Q = {0}. Then (2.1) can be
rewritten in the form

(2.2) W(p(2),2p'(2), 22p"(2);2) € Q, z € U.

In order to prove Rep(z) > 0 we will use Lemma 1.1. Then for z = z +
1y, ¢ = ¢; +icy, a = a; + ia; we have

Rey(is,t,u+ iviz +iy) =u+t+t(cy — 1 - z) + s(azz + a1y).
Hence for u +t < 0,and t < —(1 + s?)/2

st 41

Re v(is,t,u+iv;z +1y) < - 2

(c1 = 1= ) + s(a2 + a1y) := Q(s)-

We have to prove that Q(s) < 0.
Suppose that the condition (ii) holds. Since ¢; > 2, Q(s) is a quadratic
Polynomial in s which attains its maximum Qg at so. If sp = 0 then

Qo= -1(e; -1-2) < 0. If 50 # 0 then 5o = :—’i-t“—‘i (Q'(s0) = 0) and
Y

Qo = —%(c1 —1-z)(s2-2s0+1)= ——;—(cl —1—=z)(s0 = 1)2.

Unless sy = 1, we have Qg < 0.
Suppose that sg = 1, or equivalently ¢; — 1 = (a2 + 1)z + a,y. Hence

a—1=|(a; + 1)z + a1y| < Vz* +y2\/af + (1 + a2)?

5\/af+(l+a2)2<c,—2,
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i.e. ¢ — 1< ¢y —2,a contradiction.
If a; = 0, (the condition (iii)), an analogous procedure gives the proof of
Q(s) < 0 under the assumption ¢; > 2 + |az|. Then 85 = azz/(¢y — 1 — z)

and ]
Qo = —E(CI ==z )0 = D%

The condition sp = 0 implies Q¢ < 0, whereas sq = 1 gives a;z =¢;—1—-2
i.e. (a3+1)z = ¢; —1 and this contradicts the assumption |as|+1 < ¢; — 1.

Thus, in the case (ii) and (iii) all assumptions of Lemma 1.1 are satisfied,
and so we have Rep(z) > 0 in U which is equivalent to Re ®(a;c;2) > 0.
This completes the proof.

Remark 2.1 In the case of real a,c, Theorem 2.1 reduces to Theorem 1.1,
due to Miller and Mocanu, [2].

Taking into account the relation ¢ ®'(a;c;2z) = a®(a + l;c + 1;2) we
obtain as a direct consequence of Theorem 2.1 the following condition of
univalence of the Kummer function.

Theorem 2.2. If a,c are complex numbers, a # 0, which satisfy one of the
following conditions:

(i) Re¢> Rea > -1,

(ii) Rea < —1 and Rec > 1 + /(1 + Rea)? + (1 + Ima)?,

(ii) Rea= -1 and Ree¢ > 1 + |Ima|,
then Re(c/a)®'(a;c;z) > 0in U, which means that ®(a;c;2) is univalent
inU.

Theorem 2.3. If a = a; + ta; and ¢ = ¢; + ic; witha # 0, a; > —1 are
complex numbers which satisfy the following conditions

1 02 lq . 1
|a1|+2+’2——+6§ if | 2 3,

(2.4) cy > ¢
32 2 2 lq 1
l_al+3+‘a2 |+ECE if |(11|S§

then ®(a;c;2) € S, z€ U.

Proof. Let the complex numbers a,c, satisfy the assumptions of theorem.
Then also conditions (i) - (iii) of Theorem 2.2 are satisfied, so ®'(a;c;z) # 0
in U. Hence the function

29" (2)

(2.5) q(z) =1+ o'(z)
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is analytic in U, with ¢(0) = 1. The function ®(a;c;z) satisfies the differ-
ential equality (1.2), and so the equality

2¢'(2) + ¢*(2) + (=2 —-2)g(z) —az—c+ 1 =0,

where ¢ is defined in (2.5).
Reasoning along the same lines as in the proof of Theorem 2.1, put

Y(r,re;2) =+ i+ (c—2-2)ry —az—c+1, and Q= {0}.
Then, setting z = z + iy and applying t < —(1 + s?)/2, we have
Re (is,t,2) =t —s* —s(c2 — y) - (a1 — agy) — ¢y + 1
< —gsz —s(c2—y)— (12 — azy) — 1 + % = Q(3).
We next show that Q(s) < 0 for all real s and z2 +y? < 1. The discriminant

A= (Cg - y)2 + 6ayy — 6a;z — 6¢c; + 3
< -z —6a,z + y(6ay — 2¢c2) + €3 — 6¢; + 4 := h(z),

and h'(z) = -2z — 6a; = 0, when zo = —3a;. Then for |a;| > 1/3,
h'(z) is either negative or positive in the interval (—1,1). Thus we have
h(z) < h(-1) or h(z) < h(1), respectively. Taking into account the first
condition in (2.4) we deduce

h(£1) = 6|ar| + ¢} — 6¢1 +3 4+ y(6az —2c;) < —|6a2 — 2c5| + y(6a; —2¢2) < 0,

for all y € (=1,1). If |a;| < 1/3 we have h(z) < h(zo). But, from the
Second condition in (2.4)

h(zo) = 9a? + ¢ — 6¢c1 +4 + y(6ay — 2¢3) < —|6az — 2¢2| + y(6az — 2¢;) < 0.

Thus, in both cases the discriminant is negative and so is Q(s) for all real
Sand 2% + 9% < 1.

By Lemma 1.1 we conclude that Re p(z) = Re [1 + z®"(2)/®'(z)] > 0
Which means that the function ®(a;¢;z) is convex in U.

By the relation (a — 1)2®(a;c;z) = (c — 1)z®'(a — 15¢ — 1;z) we arrive
at the following result:
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Theorem 2.4. If a = ay + tay and ¢ = ¢y + icy; with a # 0 are complex
numbers, which satisfy the following conditions

bl

3 c 1 .
[|a1—1|+-2—+|a2—§2|+6c§ if |ay —1]2
(2.6)

b}

W= W=

C1 > ¢
3 b C 1% Y
l§(a1—1)2+§+|a2—-§g|+6r§ 1f|a1—1|§

then z®(a;c;2) € S*, 2z € U.
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