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ABSTRACT. Let ' ={z:|z]=1, 2z€C} and A ={z:|z] <1, z € C}. For
each function f:T — C and for each real numbers ¢ and s define

D(f;t,s) = f(e"'=") — 2f(e') + f(''~)).

We prove that if f € H* and I(t) = f:r L”"f—"l [Iog %ﬁ-] ds is integrable
on [—m, x], then f is a multiplier of the class of analytic Cauchy integrals of
logarithmic potentials on A.

1. Introduction. Let A = {z:|z<1,2€ C} and let T = {z : |z| = 1,
2 € C}. Let M denote the set of complex-valued Borel measures on T. Let
Fo denote the family of functions f having the property that there exists a
Measure u on M such that

(1) f(2) = £(0) + ]T log(

) dp(z)
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for |z| < 1. In (1) and throughout this paper each logarithm means the
principal branch. ¥y is a Banach space with respect to the norm defined by
Ifll=, = inf {||x||} + | f(0)] where u varies over all measures in M for which
(1) holds. A function f is called a multiplier of Fy if fg € F, for every g
in .7:0.

Let M, denote the set of multipliers of F¢. In [2] it was proved that if
f' € HP for some p > 1 then f € M, while f' € H! is not sufficient for
f € M,. In [3] it was proved that fu] log 2 [7_|f"(re*®)|dfdr < +o0, for f
analytic on A, implies f € M,. Finally in [4] an example was constructed of
a function f € M, which is not continuous in A. In this paper we generalize
the theorem from [3] mentioned above. For each function f : T — C and for
each real numbers t and s define D(f;t,s) = f(e'(**2))—2f(e't)+ f(e'(*=*).

The following theorem is the main result of this paper.

Theorem 1. Suppose f € H*® and I(t) = ffﬂlu—f':;‘in [log ﬁ] ds. If
ffﬂ I(t)dt < 400, then f € M,.

2. Preliminary lemmas.

Lemma 1. Suppose 0 <t < 7 and z > 2. Then there exists a constant C,
such that

log =
=

(2) log Zrt—z <Gy

Proof. Note that for 0 <t < 7 and z > 2 we have

tlog %% tlogm y tlogt p mlogm |tlog t|

(3) logz  logz " logz ~ log?2 f log2 ~

It is easily verified that |tlogt| < mlogm on 0 < t < 7 and so we infer from
(3) that (2) holds with Cy = (27 log7)/(log2) + .

Lemma 2. Let

1(1-1)"log 1
t) = : =0
I(ﬂ)Tv ) /0 ll — re“|‘f+1 T

and suppose 3 > —1 and v > B + 1. Then there exists a constant Cy such
that

[log 27 /|t|]

(@) HBY =13 < G

for 0<|t] <.
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Proof. Since I(8,7,t) = I(8,7,—t) for 0 < |t| < ™ we may assume that
0<t<m Then |l —ret|? = 1-2rcost+ 1> = (1—r)+4rsin® L >
(1-7)2 4+ 4r%? /72 for 0 < r < 1. Hence

1. (1=r)Plog
ORE (R T mdr = J(6,7).
o v+ 127
The change of variables z = (2t)/7 - 7/(1 — r) yields 1/(1—r) =1+ nz/2t
and dr = (r/2t)(1 — r)?dz and so

* (14 % ) log (1+ 3¥)
(6) J(B,7) = 2t/ (]+£2J17_ dr

Where §=y-38-1>0.
For ¥ > 1 we have 1 + v < 2y and so 1 4+ (7/2)(z/t) < 1+ 7/t < 27/t for
0 <z < 2. Likewise for z > 2 we have 1 4 (7/2)(z/t) < nz/t. Hence

r [ /2r\° 10g2T’r
J(ﬂ,‘Y)SE/ (—) (1—+'—,_I_1d1'

o B (7T 6 log F
+_
) (1+z2)+

2t jz
Oy g

7r6+1 !oo 6 log

dz.
2t6 _/2 (1 + :L‘2)

+

Using (4) we infer from (7) that

2r)° 2 - 1
J(B,7) < ;tézf lg(%)/ TR Lo

(8) 0 (1+42%)7
o r5+1C, /°° z°log x el
2t6+1 2 (1 +z2)l;_l ’

Now 1 < 2log[27/1] for 0 < t < 7 and so (8) yields

r(2r)® (2:r) /" 1
J(B, 7)< 2L 1og | = B
P B T ) Jy iy

(9)
ri+l (27r) /‘° zllogz
+ lh;l ng -———sz.
t6+1 t 9 (1 + zZ)'T'
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Since v + 1 -6 = §+2 > 1 the last integral in (9) is finite.
Note also that 6 + 1 = y¥ — 3. Define

logz

Cy = m(2m)° /2 1 o d:c+7r6+101/ T BT _4r
2 0 (1+a22)T 2 (14 22) 7

Now (5) and (9) imply (4) for 0 < t < 7 which gives (4) for 0 < |t| < .

Lemma 3. If f € H® then there exists a constant Cy such that

/_:(/ log1 |f'(re )|dr)dt

2

£ w ([ llog ]
SC3[w /_7r | |2 I f,t,S)ldS

Proof. It was shown in [5] that if f € H° then

-1 +s
anireenis 2 [T{EEEES o sas.

We infer from (11) that

1
lo
/o Si
1% l(l—r)zlogllr J
(12) g;/o [/0 T e ID(fit,)lds

ey lgn
+7ffo l_jo 7'”'|4

|7 (el

r| |D(f;t,s)|ds.

Note that (4) and (12) yield constants A; and A3z such that

Ps 1 1 .

~/—1r (/o dogi = r|f'(“f")|dr) dt

13 |
( ) 1 L m 1(1_1.)210g11r

s ;/ /o /o |1 = reis[d dr | |D(f;t,s)|ds| dt
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e "2 : 10811—,. ]
+’r/—1r [/0 7 (/0 md" |D(f;t,5)|ds| dt

r [ pm lﬁg'?
< l/ / Ay ——|D(f;t, s)|ds:| dt
0

T | |
[ pm log 2;" J
+ l/ / Agzs? P!D(f;t,s)|ds dt.
T J—r i 0 |3|

Since 1/s < w/s? for 0 < s < 7 and h’—‘%"ﬁﬂﬂlD(f; t,s)| is an even
function of s, (13) implies (10) with C3 = (A; + A3)/m.

Lemma 4. Let f € H*® and set z = re''. Then there exists a constant Cy

such that
T 1 1 ¢
/ (/ log |f“(re”)|dr) dt
- 0 1—7r

504/_: [/_: T |D(f,ts)|ds}dt

Proof. Let P(r,s) denote the Poisson kernel. ~We have [1, p.77]
fu(z) = 3= [T Py(r,s)D(f;1,8)ds. Hence

(14)

1 "
(15) @) < 5= [ 1P s)ID(S3 s
-
r?sin? s TCOSS
Where P”(T,S) = (1 7 TZ) (l—grcos s+r)T T (1—23(:05 .1-+-r7)'*‘.Jl .

o 201 4(1—
Since | Py,(r,s)| < !I?A_r:,—,l’—'g)- + IIA—'FT')I"’ we have

: 2 - 1-1r 10 i L8
/ log ——|P.u(r, s)ldr < 165 f d-nloei=
0 -1 g

|1 — rets|6

1(1-r)log ;2
+4/ ———( 3, o.gl_rdr
0

|1 —rets|4

(16)

Now (16) and two applications of (4) give constants, say A4 and As, such
that

(17) /01 log

! 27

logzr
n+415 ri_As T;T
|s|* |s]? |s|

=| Pys(ry 8)|dr < 163.44
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where Ag = 1644 + 4A;. It follows from (15) and (17) that

1
| 1o e

an  <g [ ([ s rirat i) DGt ses

As [ logm
— A A :
or ), T (DUt

If we let Cy = Ag/27 then (18) implies (14).

<

Proof of Theorem 1. Suppose f € H*® and z = re't, then we have
f'(z) = ;ly{if,(z) — fu(2)}. Fix rg in (0,1). Then if rp < r < 1, since
|£:(2)| < |f'(2)| we have

(19)  If"(2) < ;‘g{mml +lful2)l} < ;%{If’(z)l Flful2)N)
It follows from (10), (14) and (19) that

/_: (/1 log — |f"(re“)|dr) dt

< i/r (/ 1og1 |f(re“)|dr) dt
e ) ([ e )“‘

/ ( |2 |D(f,t s)|ds) dt

(20)

IA
|Q onro cnl"‘ ;

/ < - | B ID(f,t 8)|ds}\ dt

/—7r (/_., IgltTU) f’tas)ldS}I dt.

Recalling that I(t) = _f” M [log f—f[] ds we see that (20) and our
assumption that I(t) is mtegrable implies that

(21) /j (/: log l ir|f"(re"‘)|dr) dt < +o00.

It follows from Theorem 1 in [3] that f € M.

2
0

+
T'
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