ANNALES UNIVERSITATIS MARIAE CURIE – SKLODOWSKA LUBLIN – POLONIA

VOL. L II. 1, 4

SECTIO A

which the second data where and

1998

ARMEN GRIGORYAN and MARIA NOWAK

Integral Means of Harmonic Mappings

Dedicated to Professor Eligiusz Złotkiewicz on the occasion of his 60th birthday

ABSTRACT. In this paper we prove that if f is a univalent, sense-preserving, harmonic mapping of the unit disc onto the symmetric strip $|\operatorname{Im} w| < \pi/4$ such that $f(0) = 0 < f_z(0)$, then $f \in h^p$ for 0 . Moreover, we show $that the harmonic Koebe function <math>k_0$ given by formula (1) is not in h^p if p > 1/3.

1. Introduction. Statement of results. Let Δ denote the open unit disc in the complex plane C and S_H denote the class of all complex valued, harmonic, sense-preserving univalent functions f in Δ , with the normalization $f(0) = 0 < f_z(0)$. Each $f \in S_H$ can be expressed as $f = h + \bar{g}$ where $h(z) = \sum_{n=1}^{\infty} a_n z^n$ and $g(z) = \sum_{n=1}^{\infty} b_n z^n$ are analytic in Δ . The subclasses of S_H consisting of harmonic mappings onto convex and close-to-convex regions will by denoted by K_H , C_H , respectively.

Let $H^p(h^p)$, 0 , be the standard Hardy space of analytic $(harmonic) functions on <math>\Delta$. In 1990 Y. Abu-Muhanna and A. Lyzzaik [AL] proved that if $f = h + \bar{g} \in S_H$, then $h, g \in H^p$ and $f \in h^p$ for every p, $p \in (0, (2A+2)^{-2})$, where $A = \sup \{|a_2|/f_z(0) : f \in S_H\}$. This result has been improved in [N] where the range of p was extended to $(0, A^{-2})$. There was also noticed that if $f = h + \bar{g} \in K_H$, then $g, h \in H^p$ and $f \in h^p$ for $0 . Moreover, an example of <math>f \in K_H$ such that $f \notin h^p$ for p > 1/2 was given.

In [AS] the authors showed that if $f \in K_H$ is such that $f(\Delta)$ is an unbounded domain which is neither a strip nor a half-plane then $f \in h^1$.

Let $\Omega = \{z \in \mathbb{C} : |\operatorname{Im} z| < \pi/4\}$ and $S_H(\Delta, \Omega) = \{f \in S_H : f(\Delta) = \Omega\}$. Here we prove the following

Theorem 1. If $f \in S_H(\Delta, \Omega)$ then $f \in h^p$ for 0 .

Furthermore, we give an example of $f \in S_H(\Delta, \Omega)$ such that $f \in h^1$ and $f \notin h^p$ for p > 1. For close-to-convex harmonic mappings the following theorem was proved in [N].

Theorem A. If $f = h + \overline{g} \in C_H$ then $h, g \in H^p$ and $f \in h^p$ for 0 .

Let $k_0 : \Delta \to \mathbb{C} \setminus (\infty, -\frac{1}{6}]$ be the harmonic Koebe function given by the formula (1)

$$k_0(z) = \frac{1}{6} \operatorname{Re}\left(\left(\frac{1+z}{1-z}\right)^3 - 1\right) + \frac{1}{4}i \operatorname{Im}\left(\frac{1+z}{1-z}\right)^2, \quad z \in \Delta \text{ (see [CS])}.$$

The function k_0 is in $h^{1/3}$ (see [N]). In this paper we prove

Theorem 2. $k_0 \notin h^p$ for p > 1/3.

2. Proof of Theorem 1. In the proof of Theorem 1 we will need the Baernstein star-function. If u is a real valued integrable function on $[-\pi,\pi]$ then

$$u^*(\theta) = \sup_{|E|=2\theta} \int_E u(t)dt, \quad 0 \le \theta \le \pi$$

The following properties of star-functions are well known [D2]:

- (i) $(u+v)^*(\theta) \le u^*(\theta) + v^*(\theta), \quad 0 \le \theta \le \pi.$
- Equality occurs if both u and v are symmetrically decreasing.
- (ii) If $u(re^{i\theta})$, $v(re^{i\theta})$ are subharmonic in Δ and u is subordinate to v then for each r, $0 \le r < 1$, $u^*(re^{i\theta}) \le v^*(re^{i\theta})$.

For p > 0 and f harmonic on Δ set

$$M_p(r,f) = rac{1}{2\pi} \int_0^{2\pi} |f(re^{it})|^p dt , \quad 0 \le r < 1 .$$

The next result we need is the so called dual of the Hardy – Littlewood inequality and is due to T. Flett (see [F1], [F2]).

Theorem B. Let $0 and h be an analytic function on <math>\Delta$. If

$$\int_0^1 (1-r)^{p-1} M_p(r,h') dr < \infty \,,$$

then $h \in H^p$.

Proof of Theorem 1. First of all notice that for $f \in S_H(\Delta, \Omega)$ and suitably chosen t > 0 and $\alpha \in \mathbb{R}$ the affine transformation

$$w \mapsto T(w) = t e^{-i\alpha} (f_z(0)w - f_{\bar{z}}(0)\bar{w})$$

maps Ω onto itself univalently [GS, Example 1.] and the composition $T \circ f \circ \lambda_{\alpha}$, where $\lambda_{\alpha} : z \mapsto e^{i\alpha}z$ belongs to

$$S_H^0(\Delta, \Omega) = \{ f \in S_H(\Delta, \Omega) : f_{\bar{z}}(0) = 0 \}.$$

Hence we may restrict our attention to the subclass $S^0_H(\Delta, \Omega)$. W. Hengartner and G. Schober proved [HS] that $f \in \overline{S^0_H(\Delta, \Omega)}$ if and only if

(2)
$$f(z) = \operatorname{Re}\left\{\int_0^z \frac{p(\zeta)d\zeta}{1-\zeta^2}\right\} + \frac{i}{2}\operatorname{arg}\left(\frac{1+z}{1-z}\right)$$

where p is an analytic function in Δ such that $\operatorname{Re} p > 0$ and p(0) = 1.

It is clear that $\text{Im } f \in h^{\infty}$. Writing

$$F(z) = \int_0^z \frac{p(\zeta)d\zeta}{1-\zeta^2}, \quad z \in \Delta$$

we have

(3)
$$\log |F'(z)| = \log \left| \frac{1}{1-z^2} \right| + \log |p(z)|, \quad z \in \Delta.$$

Since the function $z \mapsto 1/(1-z^2)$ maps Δ onto the half-plane $\{z \in \mathbb{C} : \text{Re } z > 1/2\}$ and carries 0 to 1, we conclude that it is subordinate to $z \mapsto (1+z)/(1-z)$ and so is p. Hence in view of the above cited properties of the Baernstein star-function we get, for $0 \le \theta \le \pi$,

$$\left(\log\left|\frac{1}{1-r^2e^{2i\theta}}\right|\right)^* \le \left(\log\left|\frac{1+re^{i\theta}}{1-re^{i\theta}}\right|\right)^*$$

and

$$\left(\log \left| p(re^{i\theta}) \right| \right)^* \le \left(\log \left| \frac{1 + re^{i\theta}}{1 - re^{i\theta}} \right| \right)^*$$

It is easy to see that the function $\theta \mapsto \log |(1 + re^{i\theta})/(1 - re^{i\theta})|$ is symmetrically decreasing for each fixed $r \in (0, 1)$. So, by (i)

$$\left(\log\left|F'(re^{i\theta})\right|\right)^* \le \left(2\log\left|\frac{1+re^{i\theta}}{1-re^{i\theta}}\right|\right)^* = \left(\log\left|\frac{1+re^{i\theta}}{1-re^{i\theta}}\right|^2\right)^*, \ 0 \le \theta \le \pi.$$

Applying Lemma 5 in [D2, p. 218] with $\phi : x \mapsto e^{px}$, p > 0, we conclude that

$$\int_{-\pi}^{\pi} |F'(re^{i\theta})|^p d\theta \le \int_{-\pi}^{\pi} \left| \frac{1+re^{i\theta}}{1-re^{i\theta}} \right|^{2p} d\theta$$

Moreover, by a Lemma in [D1, p. 65] there exists $C_p > 0$ such that for p > 1/2

$$\int_0^{2\pi} |F'(re^{i\theta})|^p d\vartheta \leq \frac{C_p}{(1-r)^{2p-1}} \quad \text{for } 0 < r < 1.$$

Thus

$$\int_0^1 (1-r)^{p-1} M_p(r, F') dr \le C_p \int_0^1 (1-r)^{-p} dr < +\infty$$

for $p \in (1/2, 1)$. By Theorem B, the function F is in H^p , 0 , and the desired result follows.

Remark. It follows from the proof of Theorem 1 that all functions from $\overline{S^0_H(\Delta, \Omega)}$ are in h^p for 0 . This improves the result contained in Lemma 2.2 in [CL].

3. Proof of Theorem 2. We start with the following, easily verifiable,

Lemma 1. If the functions

$$f(x) = \sum_{n=0}^{\infty} a_n x^n, \quad g(x) = \sum_{n=0}^{\infty} b_n x^n$$

9

where a_k , $b_k > 0$, k = 0, 1, 2, ... defined in the interval (-1, 1) are such that

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} g(x) = +\infty \quad \text{and} \quad \lim_{n \to \infty} \frac{a_n}{b_n} = A \in (0, \infty) \,,$$

then

$$\lim_{x \to 1^-} \frac{f(x)}{g(x)} = A \, .$$

Proof of Theorem 2. We can assume that $p \in (\frac{1}{3}, \frac{1}{2})$. Since Im $k_0 \in h^p$, 0 , it is enough to prove that

(4)
$$\lim_{r \to 1^{-}} \int_{0}^{2\pi} \left| \operatorname{Re} \left(\frac{1 + re^{i\theta}}{1 - re^{i\theta}} \right)^{3} \right|^{p} d\theta = +\infty$$

Using the inequality $|a + b|^p \ge |a|^p - |b|^p$, 0 , we obtain

$$\int_{0}^{2\pi} \left| \operatorname{Re} \left(\frac{1+re^{i\theta}}{1-re^{i\theta}} \right)^{3} \right|^{p} d\theta \ge 12^{p} r^{2p} (1-r^{2})^{p} \int_{0}^{2\pi} \frac{\sin^{2p} \theta d\theta}{(1+r^{2}-2r\cos\theta)^{3p}}$$

$$(5) \qquad \qquad -(1-r^{2})^{3p} \int_{0}^{2\pi} \frac{d\theta}{(1+r^{2}-2r\cos\theta)^{3p}} .$$

Let

(6)
$$I_{1}(r) = 12^{p} r^{2p} (1 - r^{2})^{p} \int_{0}^{2\pi} \frac{\sin^{2p} \theta d\theta}{(1 + r^{2} - 2r \cos \theta)^{3p}} \\ = \frac{2 \cdot 12^{p} r^{2p} (1 - r^{2})^{p}}{(1 + r^{2})^{3p}} \int_{0}^{\pi} \frac{\sin^{2p} \theta d\theta}{(1 - c \cos \theta)^{3p}},$$

where $c = 2r/(1+r^2)$. Making the substitution $t = \cos \theta$ gives

$$\int_0^{\pi} \frac{\sin^{2p} \theta d\theta}{(1 - c\cos\theta)^{3p}} = \int_{-1}^1 \frac{(1 - t^2)^{p - \frac{1}{2}} dt}{(1 - ct)^{3p}}$$
$$> \int_0^1 \frac{(1 - t^2)^{p - \frac{1}{2}} dt}{(1 - ct)^{3p}} \ge 2^{p - \frac{1}{2}} \int_0^1 \frac{(1 - t)^{p - \frac{1}{2}} dt}{(1 - ct)^{3p}}.$$

Expanding the function $t \mapsto 1/(1-ct)^{3p}$ into a power series and integrating term by term we obtain

(7)
$$\int_0^1 \frac{(1-t)^{p-\frac{1}{2}}dt}{(1-ct)^{3p}} = \frac{1}{p+1/2} + \sum_{n=1}^\infty a_n c^n =: F_1(c)$$

where

$$a_n = \frac{3p(3p+1)\cdots(3p+n-1)}{(p+1/2)(p+3/2)\cdots(p+1/2+n)}, \quad n = 1, 2, \dots$$

Now, if

$$G_1(c) = \frac{1}{(1-c)^{2p-1/2}} = \sum_{n=0}^{\infty} a'_n c^n$$

then by Gauss's formula (e.g. [Co], p. 174) we have

$$\lim_{n \to \infty} \frac{a'_n}{n^{2p-3/2}} = \frac{1}{\Gamma(2p - 1/2)}$$

and

$$\lim_{n \to \infty} \frac{a_n}{a_n^i} = \frac{\Gamma(2p - 1/2)\Gamma(p + 1/2)}{\Gamma(3p)} = B(2p - 1/2, p + 1/2).$$

Hence by Lemma 1

$$\lim_{c \to 1^{-}} \frac{F_1(c)}{G_1(c)} = B(2p - 1/2, p + 1/2).$$

This means that if we take any $\varepsilon > 0$ then there exists $\delta > 0$ such that for $c > 1 - \delta$

(8)
$$F_1(c) \ge (B(2p-1/2, p+1/2) - \varepsilon)G_1(c).$$

It follows from (6)-(8) that

(9)

$$I_{1}(r) \geq \frac{2 \cdot 12^{p} r^{2p} (1-r^{2})^{p}}{(1+r^{2})^{3p}} 2^{p-1/2} \left(B(2p-1/2,p+1/2)-\varepsilon \right) G_{1}(c)$$

= $\frac{2^{p+1/2} \cdot 12^{p} r^{2p} (1+r)^{p}}{(1+r^{2})^{p+1/2}} \left(B(2p-1/2,p+1/2)-\varepsilon \right) \cdot \frac{1}{(1-r)^{3p-1}}.$

Let now

$$I_2(r) = (1 - r^2)^{3p} \int_0^{2\pi} \frac{d\theta}{(1 + r^2 - 2r\cos\theta)^{3p}}$$
$$= \frac{2 \cdot (1 - r^2)^{3p}}{(1 + r^2)^{3p}} \int_0^{\pi} \frac{d\theta}{(1 - c\cos\theta)^{3p}},$$

where again $c = \frac{2r}{1+r^2}$. Using the same technique as above we will estimate $I_2(r)$. We have

$$\int_0^{\pi} \frac{d\theta}{(1-c\cos\theta)^{3p}} = \int_{-1}^1 \frac{dt}{\sqrt{1-t^2}(1-ct)^{3p}}.$$

Note that

$$\int_{-1}^{0} \frac{dt}{\sqrt{1-t^2}(1-ct)^{3p}} \leq \int_{0}^{1} \frac{dt}{\sqrt{1-t}} = 2,$$

and

$$\int_0^1 \frac{dt}{\sqrt{1-t^2}(1-ct)^{3p}} \le \int_0^1 \frac{dt}{\sqrt{1-t}(1-ct)^{3p}}$$
$$= 2 + \sum_{n=1}^\infty b_n c^n =: F_2(c) ,$$

where

$$b_n = \frac{3p(3p+1)\cdots(3p+n-1)}{(1/2)(1/2+1)\cdots(1/2+n)}, \quad n = 1, 2, \dots$$

Now we compare the behaviour of F_2 and the function

$$G_2(c) = rac{1}{(1-c)^{3p-1/2}} = \sum_{n=0}^{\infty} b'_n c^n \, .$$

In this case we get

$$\lim_{n \to \infty} \frac{b'_n}{n^{3p-3/2}} = \frac{1}{\Gamma(3p-1/2)}$$

and

$$\lim_{n \to \infty} \frac{b_n}{b'_n} = \frac{\Gamma(1/2)\Gamma(3p - 1/2)}{\Gamma(3p)} = B(1/2, 3p - 1/2).$$

Therefore

$$\lim_{c \to 1^{-}} \frac{F_2(c)}{G_2(c)} = B(1/2, 3p - 1/2).$$

This implies that for $\varepsilon > 0$ there exists $\delta_1 > 0$ such that

$$F_2(c) \le (B(1/2, 3p - 1/2) + \varepsilon)G_2(c) \quad \text{for } c > 1 - \delta_1$$

It follows from the above estimates that (10)

$$\begin{split} I_2(r) &\leq \frac{2 \cdot (1-r^2)^{3p}}{(1+r^2)^{3p}} \left(2 + G_2(c) \left(B(1/2, 3p-1/2) + \varepsilon\right)\right) \\ &= \frac{4 \cdot (1-r^2)^{3p}}{(1+r^2)^{3p}} + \frac{2 \cdot (1+r)^{3p}}{(1+r^2)^{1/2}} \left(B(1/2, 3p-1/2) + \varepsilon\right) \frac{1}{(1-r)^{3p-1}} \,. \end{split}$$

Now, combining inequalities (5), (9) and (10), we obtain

$$\begin{split} &\int_{0}^{2\pi} \left| \operatorname{Re} \left(\frac{1+re^{i\theta}}{1-re^{i\theta}} \right)^{3} \right|^{p} d\theta \geq -\frac{4 \cdot (1-r^{2})^{3p}}{(1+r^{2})^{3p}} + \frac{2(1+r)^{p}}{(1+r^{2})^{1/2}} \cdot \frac{1}{(1-r)^{3p}} \\ &\times \left[\frac{2^{p-\frac{1}{2}} 12^{p} r^{2p}}{(1+r^{2})^{p}} \left(B\left(p+\frac{1}{2}, 2p-\frac{1}{2}\right) - \varepsilon \right) - (1+r)^{2p} \left(B\left(\frac{1}{2}, 3p-\frac{1}{2}\right) + \varepsilon \right) \right]. \end{split}$$

sold in study of

Let $U(p, r, \varepsilon)$ denote the expression in the square brackets in the last inequality. Then

$$\lim_{r \to 1^{-}} U(p, r, \varepsilon) = \frac{12^{p}}{\sqrt{2}} B\left(p + \frac{1}{2}, 2p - \frac{1}{2}\right) - 2^{2p} B\left(\frac{1}{2}, 3p - \frac{1}{2}\right) - \varepsilon \left(\frac{12^{p}}{\sqrt{2}} + 2^{2p}\right).$$

Consider now the function

$$\alpha(p) = \frac{12^p}{\sqrt{2}} B(p+1/2, 2p-1/2) - 2^{2p} B(1/2, 3p-1/2) \quad \text{for} \quad p \in \left(\frac{1}{3}, \frac{1}{2}\right) \,.$$

In view of the formula

$$B(a, 1-a) = rac{\pi}{\sin a\pi}, \quad 0 < a < 1$$

we have $\alpha(1/3) = \pi(12^{1/3}2^{1/2} - 2^{2/3}) =: 2\alpha_0 > 0$. The continuity of $\alpha(p)$ implies $\alpha(p) \ge \alpha_0 > 0$ for $p \in (1/3, 1/3 + \gamma), \gamma > 0$. Taking $\varepsilon > 0$ small enough we get

$$\lim_{r\to 1^-} U(p,r,\varepsilon) > 0 \, .$$

Note that $\lim_{r \to 1^{-}} -4(1-r^2)^{3p}/(1+r^2)^{3p} = 0$ for $p \in (1/3, 1/2)$.

Consequently, there exists a positive constant A > 0 such that

$$\int_0^{2\pi} \left| \operatorname{Re} \left(\frac{1+re^{i\theta}}{1-re^{i\theta}} \right)^3 \right|^p d\theta \ge \frac{A}{(1-r)^{3p-1}} \underset{r \to 1^-}{\longrightarrow} \infty$$

which completes the proof.

4. Example. Let f be defined by

$$f(z) = \frac{1}{2} \operatorname{Re} \left(\frac{z}{1+z} + \frac{z}{1-z} \right) + \frac{i}{2} \operatorname{arg} \left(\frac{1+z}{1-z} \right) , \ z \in \Delta .$$

It follows from Theorem 2.9 in [HS] that $f \in S^0_H(\Delta, \Omega)$. We claim that $f \in h^1$ and that $f \notin h^p$ if p > 1. It is enough to show that $\operatorname{Re} f \in h^1$.

For 0 < r < 1 we have

$$\begin{split} &\int_{0}^{2\pi} \left| \operatorname{Re} \frac{r e^{i\theta}}{1 - r e^{i\theta}} \right| d\theta = 2r \int_{0}^{\pi} \frac{|\cos \theta - r| d\theta}{1 + r^{2} - 2r \cos \theta} \\ &= 2r \int_{0}^{\arccos r} \frac{(\cos \theta - r) d\theta}{1 + r^{2} - 2r \cos \theta} + 2r \int_{\arccos r}^{\pi/2} \frac{(r - \cos \theta) d\theta}{1 + r^{2} - 2r \cos \theta} \\ &+ 2r \int_{\pi/2}^{\pi} \frac{(r - \cos \theta) d\theta}{1 + r^{2} - 2r \cos \theta} \\ &\leq 2r \int_{0}^{\arccos r} \frac{(\cos \theta - r) d\theta}{1 + r^{2} - 2r \cos \theta} + 2r(2 + \pi) \,. \end{split}$$

The substitution $t = \cos \theta$ gives

$$\int_0^{\arccos r} \frac{(\cos \theta - r)d\theta}{1 + r^2 - 2r\cos \theta} = \frac{1}{1 + r^2} \int_r^1 \frac{(t - r)dt}{(1 - ct)\sqrt{1 - t^2}} \\ \leq \frac{1 - r}{1 + r^2} \int_0^1 \frac{dt}{(1 - ct)\sqrt{1 - t}},$$

where $c = 2r/(1+r^2)$. Proceeding as in the proof of Theorem 2 we see that there exists a positive constant C such that

$$\int_0^1 \frac{dt}{(1-ct)\sqrt{1-t}} \le \frac{C}{(1-c)^{1/2}}$$

This means that

$$\int_0^{\arccos r} \frac{(\cos \theta - r)d\theta}{1 + r^2 - 2r\cos \theta} \le \frac{C}{\sqrt{1 + r^2}} \le C.$$

Since

$$\int_{0}^{2\pi} \left| \operatorname{Re} \frac{r e^{i\theta}}{1 - r e^{i\theta}} \right| d\theta = \int_{0}^{2\pi} \left| \operatorname{Re} \frac{r e^{i\theta}}{1 + r e^{i\theta}} \right| d\theta,$$

the desired statement follows.

Assume now that $p \in (1,2)$. For $z = re^{i\theta}$ we have

Re
$$f(z)$$
 = Re $\frac{z}{1-z^2} = \frac{r\cos\theta(1-r^2)}{1-2r^2\cos2\theta+r^4}$

Hence

$$\int_{0}^{2\pi} |\operatorname{Re} f(re^{i\theta})|^{p} d\theta = 2r^{p}(1-r^{2})^{p} \int_{0}^{\pi} \frac{|\cos\theta|^{p} d\theta}{(1-2r^{2}\cos 2\theta + r^{4})^{p}}$$

$$\geq 2r^{p}(1-r^{2})^{p} \int_{0}^{\pi/4} \frac{\cos^{p} \theta d\theta}{(1-2r^{2}\cos 2\theta + r^{4})^{p}}$$

$$> 2r^{p}(1-r^{2})^{p} \int_{0}^{\pi/4} \frac{\cos^{p}(2\theta) d\theta}{(1-2r^{2}\cos 2\theta + r^{4})^{p}}$$

In a similar way we obtain

$$\int_0^{2\pi} |\operatorname{Re} f(re^{i\theta})|^p d\theta > C \cdot \frac{r^p}{(1-r^2)^{p-1}} \xrightarrow[r \to 1^-]{\infty} .$$

diam'r.

REFERENCES

- [AL] Abu-Muhanna, Y. and A. Lyzzaik, The boundary behaviour of harmonic univalent maps, Pacific J. Math. 141 (1990), 1-20.
- [AS] Abu-Muhanna, Y. and G. Schober, Harmonic mappings onto convex domains, Canad. J. Math. 39 (1987), 1489-1530.
- [CL] Cima, J.A. and A.E. Livingston, Integral smoothness properties of some harmonic mappings, Complex Variables 11 (1989), 95-110.
- [Co] Conway, J.B., Functions of one complex variable, Springer-Verlag, New York -Heidelberg - Berlin, 1973.
- [CS] Clunie, J. and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser.A I Math. 9 (1984), 3-25.
- [D1] Duren, P.L., Theory of H^p spaces, Academic Press, New York London, 1970.
- [D2] Duren, P.L., Univalent functions, Springer-Verlag, New York Tokyo, 1983.
- [F1] Flett, T.M., Lipschitz spaces of functions on the circle and the disc, J. Math. Anal. Appl. 39 (1972), 125-158.
- [F2] Flett, T.M., The dual of an inequality of Hardy and Littlewood and some related inequalities, ibid., 38 (1972), 746-765.
- [GS] Grigoryan, A. and W. Szapiel, Two-slit harmonic mappings, Ann. Univ. Mariae Curie-Sklodowska Sect. A 49 (1995), 59-84.
- [HS] Hengartner, W. and G. Schober, Univalent harmonic functions, Trans. Amer. Math. Soc. 299 (1987), 1-31.
- [N] Nowak, M., Integral means of univalent harmonic maps, Ann. Univ. Mariae Curie-Sklodowska Sect. A 50 (1996), 155-162.

Wydział

received December 1, 1997

Matematyczno-Przyrodniczy KUL Al. Racławickie 14 20-950 Lublin, Poland e-mail: armen@zeus.kul.lublin.pl

Frm G

Instytut Matematyki UMCS pl. Marii Curie-Skłodowskiej 1 20-031 Lublin, Poland

e-mail: nowakm@golem.umcs.lublin.pl