UNIVERSITATIS MARIAECURIE-SKLODOWSKA LUBLIN - POLONIA

VOL. LII. 1, 4

ARMEN GRIGORYAN and MARIA NOWAK

Integral Means of Harmonic Mappings

Dedicated to Professor Eligiusz Zlotkiewicz on the occasion of his 60th birthday

Abstract

In this paper we prove that if f is a univalent, sense-preserving, harmonic mapping of the unit disc onto the symmetric strip $|\operatorname{Im} w|<\pi / 4$ such that $f(0)=0<f_{z}(0)$, then $f \in h^{p}$ for $0<p<1$. Moreover, we show that the harmonic Koebe function k_{0} given by formula (1) is not in h^{p} if $p>1 / 3$.

1. Introduction. Statement of results. Let Δ denote the open unit disc in the complex plane \mathbb{C} and S_{H} denote the class of all complex valued, harmonic, sense-preserving univalent functions f in Δ, with the normalization $f(0)=0<f_{z}(0)$. Each $f \in S_{H}$ can be expressed as $f=h+\bar{g}$ where $h(z)=\sum_{n=1}^{\infty} a_{n} z^{n}$ and $g(z)=\sum_{n=1}^{\infty} b_{n} z^{n}$ are analytic in Δ. The subclasses of S_{H} consisting of harmonic mappings onto convex and close-to-convex regions will by denoted by K_{H}, C_{H}, respectively.

Let $H^{p}\left(h^{p}\right), 0<p<\infty$, be the standard Hardy space of analytic (harmonic) functions on Δ. In 1990 Y. Abu-Muhanna and A. Lyzzaik [AL] proved that if $f=h+\bar{g} \in S_{H}$, then $h, g \in H^{p}$ and $f \in h^{p}$ for every p, $p \in\left(0,(2 A+2)^{-2}\right)$, where $A=\sup \left\{\left|a_{2}\right| / f_{z}(0): f \in S_{H}\right\}$. This result has been improved in $[\mathrm{N}]$ where the range of p was extended to $\left(0, A^{-2}\right)$. There
was also noticed that if $f=h+\bar{g} \in K_{H}$, then $g, h \in H^{p}$ and $f \in h^{p}$ for $0<p<1 / 2$. Moreover, an example of $f \in K_{H}$ such that $f \notin h^{p}$ for $p>1 / 2$ was given.

In [AS] the authors showed that if $f \in K_{H}$ is such that $f(\Delta)$ is an unbounded domain which is neither a strip nor a half-plane then $f \in h^{1}$.

Let $\Omega=\{z \in \mathbb{C}:|\operatorname{Im} z|<\pi / 4\}$ and $S_{H}(\Delta, \Omega)=\left\{f \in S_{H}: f(\Delta)=\Omega\right\}$. Here we prove the following

Theorem 1. If $f \in \mathcal{S}_{H}(\Delta, \Omega)$ then $f \in h^{p}$ for $0<p<1$.
Futhermore, we give an example of $f \in S_{H}(\Delta, \Omega)$ such that $f \in h^{1}$ and $f \notin h^{p}$ for $p>1$. For close-to-convex harmonic mappings the following theorem was proved in [N].

Theorem A. If $f=h+\bar{g} \in C_{H}$ then $h, g \in H^{p}$ and $f \in h^{p}$ for $0<p<\frac{1}{3}$.
Let $k_{0}: \Delta \rightarrow \mathbb{C} \backslash\left(\infty,-\frac{1}{6}\right]$ be the harmonic Koebe function given by the formula

$$
\begin{equation*}
k_{0}(z)=\frac{1}{6} \operatorname{Re}\left(\left(\frac{1+z}{1-z}\right)^{3}-1\right)+\frac{1}{4} i \operatorname{Im}\left(\frac{1+z}{1-z}\right)^{2}, \quad z \in \Delta(\text { see }[\mathrm{CS}]) \tag{1}
\end{equation*}
$$

The function k_{0} is in $h^{1 / 3}$ (see $[\mathrm{N}]$). In this paper we prove
Theorem 2. $k_{0} \notin h^{p}$ for $p>1 / 3$.
2. Proof of Theorem 1. In the proof of Theorem 1 we will need the Baernstein star-function. If u is a real valued integrable function on $[-\pi, \pi]$ then

$$
u^{*}(\theta)=\sup _{|E|=2 \theta} \int_{E} u(t) d t, \quad 0 \leq \theta \leq \pi
$$

The following properties of star-functions are well known [D2]:
(i) $(u+v)^{*}(\theta) \leq u^{*}(\theta)+v^{*}(\theta), \quad 0 \leq \theta \leq \pi$.

Equality occurs if both u and v are symmetrically decreasing.
(ii) If $u\left(r e^{i \theta}\right), v\left(r e^{i \theta}\right)$ are subharmonic in Δ and u is subordinate to v then for each $r, 0 \leq r<1, u^{*}\left(r e^{i \theta}\right) \leq v^{*}\left(r e^{i \theta}\right)$.
For $p>0$ and f harmonic on Δ set

$$
M_{p}(r, f)=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r e^{i t}\right)\right|^{p} d t, \quad 0 \leq r<1
$$

The next result we need is the so called dual of the Hardy - Littlewood inequality and is due to T. Flett (see [F1], [F2]).

Theorem B. Let $0<p \leq 2$ and h be an analytic function on Δ. If

$$
\int_{0}^{1}(1-r)^{p-1} M_{p}\left(r, h^{\prime}\right) d r<\infty
$$

then $h \in H^{p}$.
Proof of Theorem 1. First of all notice that for $f \in \mathcal{S}_{H}(\Delta, \Omega)$ and suitably chosen $t>0$ and $\alpha \in \mathbb{R}$ the affine transformation

$$
w \mapsto T(w)=t e^{-i \alpha}\left(f_{z}(0) w-f_{\bar{z}}(0) \bar{w}\right)
$$

maps Ω onto itself univalently [GS, Example 1.] and the composition $T \circ f \circ \lambda_{\alpha}$, where $\lambda_{\alpha}: z \mapsto e^{i \alpha} z$ belongs to

$$
S_{H}^{0}(\Delta, \Omega)=\left\{f \in S_{H}(\Delta, \Omega): f_{\bar{z}}(0)=0\right\}
$$

Hence we may restrict our attention to the subclass $S_{H}^{0}(\Delta, \Omega)$. W. Hengartner and G. Schober proved [HS] that $f \in \overline{S_{H}^{0}(\Delta, \Omega)}$ if and only if

$$
\begin{equation*}
f(z)=\operatorname{Re}\left\{\int_{0}^{z} \frac{p(\zeta) d \zeta}{1-\zeta^{2}}\right\}+\frac{i}{2} \arg \left(\frac{1+z}{1-z}\right) \tag{2}
\end{equation*}
$$

where p is an analytic function in Δ such that $\operatorname{Re} p>0$ and $p(0)=1$.
It is clear that $\operatorname{Im} f \in h^{\infty}$. Writing

$$
F(z)=\int_{0}^{z} \frac{p(\zeta) d \zeta}{1-\zeta^{2}}, \quad z \in \Delta
$$

we have

$$
\begin{equation*}
\log \left|F^{\prime}(z)\right|=\log \left|\frac{1}{1-z^{2}}\right|+\log |p(z)|, \quad z \in \Delta \tag{3}
\end{equation*}
$$

Since the function $z \mapsto 1 /\left(1-z^{2}\right)$ maps Δ onto the half-plane $\{z \in \mathbb{C}$: $\operatorname{Re} z>1 / 2\}$ and carries 0 to 1 , we conclude that it is subordinate to $z \mapsto$ $(1+z) /(1-z)$ and so is p. Hence in view of the above cited properties of the Baernstein star-function we get, for $0 \leq \theta \leq \pi$,

$$
\left(\log \left|\frac{1}{1-r^{2} e^{2 i \theta}}\right|\right)^{*} \leq\left(\log \left|\frac{1+r e^{i \theta}}{1-r e^{i \theta}}\right|\right)^{*}
$$

and

$$
\left(\log \left|p\left(r e^{i \theta}\right)\right|\right)^{*} \leq\left(\log \left|\frac{1+r e^{i \theta}}{1-r e^{i \theta}}\right|\right)^{*}
$$

It is easy to see that the function $\theta \mapsto \log \left|\left(1+r e^{i \theta}\right) /\left(1-r e^{i \theta}\right)\right|$ is symmetrically decreasing for each fixed $r \in(0,1)$. So, by (i)

$$
\left(\log \left|F^{\prime}\left(r e^{i \theta}\right)\right|\right)^{*} \leq\left(2 \log \left|\frac{1+r e^{i \theta}}{1-r e^{i \theta}}\right|\right)^{*}=\left(\log \left|\frac{1+r e^{i \theta}}{1-r e^{i \theta}}\right|^{2}\right)^{*}, 0 \leq \theta \leq \pi
$$

Applying Lemma 5 in [D2, p. 218] with $\phi: x \mapsto e^{p x}, p>0$, we conclude that

$$
\int_{-\pi}^{\pi}\left|F^{\prime}\left(r e^{i \theta}\right)\right|^{p} d \theta \leq \int_{-\pi}^{\pi}\left|\frac{1+r e^{i \theta}}{1-r e^{i \theta}}\right|^{2 p} d \theta
$$

Moreover, by a Lemma in [D1, p. 65] there exists $C_{p}>0$ such that for $p>1 / 2$

$$
\int_{0}^{2 \pi}\left|F^{\prime}\left(r e^{i \theta}\right)\right|^{p} d \vartheta \leq \frac{C_{p}}{(1-r)^{2 p-1}} \quad \text { for } 0<r<1
$$

Thus

$$
\int_{0}^{1}(1-r)^{p-1} M_{p}\left(r, F^{\prime}\right) d r \leq C_{p} \int_{0}^{1}(1-r)^{-p} d r<+\infty
$$

for $p \in(1 / 2,1)$. By Theorem B, the function F is in $H^{p}, 0<p<1$, and the desired result follows.

Remark. It follows from the proof of Theorem 1 that all functions from $\overline{S_{H}^{0}(\Delta, \Omega)}$ are in h^{p} for $0<p<1$. This improves the result contained in Lemma 2.2 in [CL].
3. Proof of Theorem 2. We start with the following, easily verifiable,

Lemma 1. If the functions

$$
f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}, \quad g(x)=\sum_{n=0}^{\infty} b_{n} x^{n}
$$

where $a_{k}, b_{k}>0, k=0,1,2, \ldots$ defined in the interval $(-1,1)$ are such that

$$
\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} g(x)=+\infty \quad \text { and } \quad \lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=A \in(0, \infty)
$$

then

$$
\lim _{x \rightarrow 1^{-}} \frac{f(x)}{g(x)}=A
$$

Proof of Theorem 2. We can assume that $p \in\left(\frac{1}{3}, \frac{1}{2}\right)$. Since $\operatorname{Im} k_{0} \in h^{p}$, $0<p<1 / 2$, it is enough to prove that

$$
\begin{equation*}
\lim _{r \rightarrow 1^{-}} \int_{0}^{2 \pi}\left|\operatorname{Re}\left(\frac{1+r e^{i \theta}}{1-r e^{i \theta}}\right)^{3}\right|^{p} d \theta=+\infty \tag{4}
\end{equation*}
$$

Using the inequality $|a+b|^{p} \geq|a|^{p}-|b|^{p}, 0<p<1$, we obtain

$$
\begin{align*}
\int_{0}^{2 \pi}\left|\operatorname{Re}\left(\frac{1+r e^{i \theta}}{1-r e^{i \theta}}\right)^{3}\right|^{p} d \theta & \geq 12^{p} r^{2 p}\left(1-r^{2}\right)^{p} \int_{0}^{2 \pi} \frac{\sin ^{2 p} \theta d \theta}{\left(1+r^{2}-2 r \cos \theta\right)^{3 p}} \\
& -\left(1-r^{2}\right)^{3 p} \int_{0}^{2 \pi} \frac{d \theta}{\left(1+r^{2}-2 r \cos \theta\right)^{3 p}} \tag{5}
\end{align*}
$$

Let

$$
\begin{align*}
I_{1}(r) & =12^{p} r^{2 p}\left(1-r^{2}\right)^{p} \int_{0}^{2 \pi} \frac{\sin ^{2 p} \theta d \theta}{\left(1+r^{2}-2 r \cos \theta\right)^{3 p}} \tag{6}\\
& =\frac{2 \cdot 12^{p} r^{2 p}\left(1-r^{2}\right)^{p}}{\left(1+r^{2}\right)^{3 p}} \int_{0}^{\pi} \frac{\sin ^{2 p} \theta d \theta}{(1-c \cos \theta)^{3 p}}
\end{align*}
$$

where $c=2 r /\left(1+r^{2}\right)$. Making the substitution $t=\cos \theta$ gives

$$
\begin{aligned}
\int_{0}^{\pi} \frac{\sin ^{2 p} \theta d \theta}{(1-c \cos \theta)^{3 p}} & =\int_{-1}^{1} \frac{\left(1-t^{2}\right)^{p-\frac{1}{2}} d t}{(1-c t)^{3 p}} \\
& >\int_{0}^{1} \frac{\left(1-t^{2}\right)^{p-\frac{1}{2}} d t}{(1-c t)^{3 p}} \geq 2^{p-\frac{1}{2}} \int_{0}^{1} \frac{(1-t)^{p-\frac{1}{2}} d t}{(1-c t)^{3 p}}
\end{aligned}
$$

Expanding the function $t \mapsto 1 /(1-c t)^{3 p}$ into a power series and integrating term by term we obtain

$$
\begin{equation*}
\int_{0}^{1} \frac{(1-t)^{p-\frac{1}{2}} d t}{(1-c t)^{3 p}}=\frac{1}{p+1 / 2}+\sum_{n=1}^{\infty} a_{n} c^{n}=: F_{1}(c) \tag{7}
\end{equation*}
$$

where

$$
a_{n}=\frac{3 p(3 p+1) \cdots(3 p+n-1)}{(p+1 / 2)(p+3 / 2) \cdots(p+1 / 2+n)}, \quad n=1,2, \ldots
$$

Now, if

$$
G_{1}(c)=\frac{1}{(1-c)^{2 p-1 / 2}}=\sum_{n=0}^{\infty} a_{n}^{\prime} c^{n}
$$

then by Gauss's formula (e.g. [Co], p. 174) we have

$$
\lim _{n \rightarrow \infty} \frac{a_{n}^{\prime}}{n^{2 p-3 / 2}}=\frac{1}{\Gamma(2 p-1 / 2)}
$$

and

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{a_{n}^{i}}=\frac{\Gamma(2 p-1 / 2) \Gamma(p+1 / 2)}{\Gamma(3 p)}=B(2 p-1 / 2, p+1 / 2)
$$

Hence by Lemma 1

$$
\lim _{c \rightarrow 1^{-}} \frac{F_{1}(c)}{G_{1}(c)}=B(2 p-1 / 2, p+1 / 2)
$$

This means that if we take any $\varepsilon>0$ then there exists $\delta>0$ such that for $c>1-\delta$

$$
\begin{equation*}
F_{1}(c) \geq(B(2 p-1 / 2, p+1 / 2)-\varepsilon) G_{1}(c) \tag{8}
\end{equation*}
$$

It follows from (6)-(8) that

$$
\begin{align*}
I_{1}(r) & \geq \frac{2 \cdot 12^{p} r^{2 p}\left(1-r^{2}\right)^{p}}{\left(1+r^{2}\right)^{3 p}} 2^{p-1 / 2}(B(2 p-1 / 2, p+1 / 2)-\varepsilon) G_{1}(c) \tag{9}\\
& =\frac{2^{p+1 / 2} \cdot 12^{p} r^{2 p}(1+r)^{p}}{\left(1+r^{2}\right)^{p+1 / 2}}(B(2 p-1 / 2, p+1 / 2)-\varepsilon) \cdot \frac{1}{(1-r)^{3 p-1}} .
\end{align*}
$$

Let now

$$
\begin{aligned}
I_{2}(r) & =\left(1-r^{2}\right)^{3 p} \int_{j_{0}}^{2 \pi} \frac{d \theta}{\left(1+r^{2}-2 r \cos \theta\right)^{3 p}} \\
& =\frac{2 \cdot\left(1-r^{2}\right)^{3 p}}{\left(1+r^{2}\right)^{3 p}} \int_{0}^{\pi} \frac{d \theta}{(1-c \cos \theta)^{3 p}}
\end{aligned}
$$

where again $c=\frac{2 r}{1+r^{2}}$. Using the same technique as above we will estimate $I_{2}(r)$. We have

$$
\int_{0}^{\pi} \frac{d \theta}{(1-c \cos \theta)^{3 p}}=\int_{-1}^{1} \frac{d t}{\sqrt{1-t^{2}}(1-c t)^{3 p}}
$$

Note that

$$
\int_{-1}^{0} \frac{d t}{\sqrt{1-t^{2}}(1-c t)^{3 p}} \leq \int_{0}^{1} \frac{d t}{\sqrt{1-t}}=2
$$

and

$$
\begin{aligned}
\int_{0}^{1} \frac{d t}{\sqrt{1-t^{2}}(1-c t)^{3 p}} & \leq \int_{0}^{1} \frac{d t}{\sqrt{1-t}(1-c t)^{3 p}} \\
& =2+\sum_{n=1}^{\infty} b_{n} c^{n}=: F_{2}(c)
\end{aligned}
$$

where

$$
b_{n}=\frac{3 p(3 p+1) \cdots(3 p+n-1)}{(1 / 2)(1 / 2+1) \cdots(1 / 2+n)}, \quad n=1,2, \ldots
$$

Now we compare the behaviour of F_{2} and the function

$$
G_{2}(c)=\frac{1}{(1-c)^{3 p-1 / 2}}=\sum_{n=0}^{\infty} b_{n}^{\prime} c^{n}
$$

In this case we get

$$
\lim _{n \rightarrow \infty} \frac{b_{n}^{\prime}}{n^{3 p-3 / 2}}=\frac{1}{\Gamma(3 p-1 / 2)}
$$

and

$$
\lim _{n \rightarrow \infty} \frac{b_{n}}{b_{n}^{\prime}}=\frac{\Gamma(1 / 2) \Gamma(3 p-1 / 2)}{\Gamma(3 p)}=B(1 / 2,3 p-1 / 2) .
$$

Therefore

$$
\lim _{c \rightarrow 1^{-}} \frac{F_{2}(c)}{G_{2}(c)}=B(1 / 2,3 p-1 / 2)
$$

This implies that for $\varepsilon>0$ there exists $\delta_{1}>0$ such that

$$
F_{2}(c) \leq(B(1 / 2,3 p-1 / 2)+\varepsilon) G_{2}(c) \text { for } c>1-\delta_{1} .
$$

It follows from the above estimates that

$$
\begin{align*}
I_{2}(r) & \leq \frac{2 \cdot\left(1-r^{2}\right)^{3 p}}{\left(1+r^{2}\right)^{3 p}}\left(2+G_{2}(c)(B(1 / 2,3 p-1 / 2)+\varepsilon)\right) \tag{10}\\
& =\frac{4 \cdot\left(1-r^{2}\right)^{3 p}}{\left(1+r^{2}\right)^{3 p}}+\frac{2 \cdot(1+r)^{3 p}}{\left(1+r^{2}\right)^{1 / 2}}(B(1 / 2,3 p-1 / 2)+\varepsilon) \frac{1}{(1-r)^{3 p-1}} .
\end{align*}
$$

Now, combining inequalities (5), (9) and (10), we obtain

$$
\begin{aligned}
& \int_{0}^{2 \pi}\left|\operatorname{Re}\left(\frac{1+r e^{i \theta}}{1-r e^{i \theta}}\right)^{3}\right|^{p} d \theta \geq-\frac{4 \cdot\left(1-r^{2}\right)^{3 p}}{\left(1+r^{2}\right)^{3 p}}+\frac{2(1+r)^{p}}{\left(1+r^{2}\right)^{1 / 2}} \cdot \frac{1}{(1-r)^{3 p}} \\
& \times\left[\frac{2^{p-\frac{1}{2}} 12^{p} r^{2 p}}{\left(1+r^{2}\right)^{p}}\left(B\left(p+\frac{1}{2}, 2 p-\frac{1}{2}\right)-\varepsilon\right)-(1+r)^{2 p}\left(B\left(\frac{1}{2}, 3 p-\frac{1}{2}\right)+\varepsilon\right)\right] .
\end{aligned}
$$

Let $U(p, r, \varepsilon)$ denote the expression in the square brackets in the last inequality. Then
$\lim _{r \rightarrow 1^{-}} U(p, r, \varepsilon)=\frac{12^{p}}{\sqrt{2}} B\left(p+\frac{1}{2}, 2 p-\frac{1}{2}\right)-2^{2 p} B\left(\frac{1}{2}, 3 p-\frac{1}{2}\right)-\varepsilon\left(\frac{12^{p}}{\sqrt{2}}+2^{2 p}\right)$.
Consider now the function
$\alpha(p)=\frac{12^{p}}{\sqrt{2}} B(p+1 / 2,2 p-1 / 2)-2^{2 p} B(1 / 2,3 p-1 / 2)$ for $p \in\left(\frac{1}{3}, \frac{1}{2}\right)$.
In view of the formula

$$
B(a, 1-a)=\frac{\pi}{\sin a \pi}, \quad 0<a<1,
$$

we have $\alpha(1 / 3)=\pi\left(12^{1 / 3} 2^{1 / 2}-2^{2 / 3}\right)=: 2 \alpha_{0}>0$. The continuity of $\alpha(p)$ implies $\alpha(p) \geq \alpha_{0}>0$ for $p \in(1 / 3,1 / 3+\gamma), \gamma>0$. Taking $\varepsilon>0$ small enough we get

$$
\lim _{r \rightarrow 1^{-}} U(p, r, \varepsilon)>0 .
$$

Note that $\lim _{r \rightarrow 1^{-}}-4\left(1-r^{2}\right)^{3 p} /\left(1+r^{2}\right)^{3 p}=0$ for $p \in(1 / 3,1 / 2)$.
Consequently, there exists a positive constant $A>0$ such that

$$
\int_{0}^{2 \pi}\left|\operatorname{Re}\left(\frac{1+r e^{i \theta}}{1-r e^{i \theta}}\right)^{3}\right|^{p} d \theta \geq \frac{A}{(1-r)^{3 p-1}} \underset{r \rightarrow 1^{-}}{\longrightarrow} \infty
$$

which completes the proof.
4. Example. Let f be defined by

$$
f(z)=\frac{1}{2} \operatorname{Re}\left(\frac{z}{1+z}+\frac{z}{1-z}\right)+\frac{i}{2} \arg \left(\frac{1+z}{1-z}\right), \quad z \in \Delta .
$$

It follows from Theorem 2.9 in [HS] that $f \in S_{H}^{0}(\Delta, \Omega)$. We claim that $f \in h^{1}$ and that $f \notin h^{p}$ if $p>1$. It is enough to show that $\operatorname{Re} f \in h^{1}$.

For $0<r<1$ we have

$$
\begin{aligned}
& \int_{0}^{2 \pi}\left|\operatorname{Re} \frac{r e^{i \theta}}{1-r e^{i \theta}}\right| d \theta=2 r \int_{0}^{\pi} \frac{|\cos \theta-r| d \theta}{1+r^{2}-2 r \cos \theta} \\
& =2 r \int_{0}^{\arccos r} \frac{(\cos \theta-r) d \theta}{1+r^{2}-2 r \cos \theta}+2 r \int_{\arccos r}^{\pi / 2} \frac{(r-\cos \theta) d \theta}{1+r^{2}-2 r \cos \theta} \\
& +2 r \int_{\pi / 2}^{\pi} \frac{(r-\cos \theta) d \theta}{1+r^{2}-2 r \cos \theta} \\
& \leq 2 r \int_{0}^{\arccos r} \frac{(\cos \theta-r) d \theta}{1+r^{2}-2 r \cos \theta}+2 r(2+\pi) .
\end{aligned}
$$

The substitution $t=\cos \theta$ gives

$$
\begin{aligned}
\int_{0}^{\arccos r} \frac{(\cos \theta-r) d \theta}{1+r^{2}-2 r \cos \theta} & =\frac{1}{1+r^{2}} \int_{r}^{1} \frac{(t-r) d t}{(1-c t) \sqrt{1-t^{2}}} \\
& \leq \frac{1-r}{1+r^{2}} \int_{0}^{1} \frac{d t}{(1-c t) \sqrt{1-t}}
\end{aligned}
$$

where $c=2 r /\left(1+r^{2}\right)$. Proceeding as in the proof of Theorem 2 we see that there exists a positive constant C such that

$$
\int_{0}^{1} \frac{d t}{(1-c t) \sqrt{1-t}} \leq \frac{C}{(1-c)^{1 / 2}}
$$

This means that

$$
\int_{0}^{\arccos r} \frac{(\cos \theta-r) d \theta}{1+r^{2}-2 r \cos \theta} \leq \frac{C}{\sqrt{1+r^{2}}} \leq C
$$

Since

$$
\int_{0}^{2 \pi}\left|\operatorname{Re} \frac{r e^{i \theta}}{1-r e^{i \theta}}\right| d \theta=\int_{0}^{2 \pi}\left|\operatorname{Re} \frac{r e^{i \theta}}{1+r e^{i \theta}}\right| d \theta
$$

the desired statement follows.
Assume now that $p \in(1,2)$. For $z=r e^{i \theta}$ we have

$$
\operatorname{Re} f(z)=\operatorname{Re} \frac{z}{1-z^{2}}=\frac{r \cos \theta\left(1-r^{2}\right)}{1-2 r^{2} \cos 2 \theta+r^{4}}
$$

Hence

$$
\begin{aligned}
\int_{0}^{2 \pi}\left|\operatorname{Re} f\left(r e^{i \theta}\right)\right|^{p} d \theta & =2 r^{p}\left(1-r^{2}\right)^{p} \int_{0}^{\pi} \frac{|\cos \theta|^{p} d \theta}{\left(1-2 r^{2} \cos 2 \theta+r^{4}\right)^{p}} \\
& \geq 2 r^{p}\left(1-r^{2}\right)^{p} \int_{0}^{\pi / 4} \frac{\cos ^{p} \theta d \theta}{\left(1-2 r^{2} \cos 2 \theta+r^{4}\right)^{p}} \\
& >2 r^{p}\left(1-r^{2}\right)^{p} \int_{0}^{\pi / 4} \frac{\cos ^{p}(2 \theta) d \theta}{\left(1-2 r^{2} \cos 2 \theta+r^{4}\right)^{p}}
\end{aligned}
$$

In a similar way we obtain

$$
\int_{0}^{2 \pi}\left|\operatorname{Re} f\left(r e^{i \theta}\right)\right|^{p} d \theta>C \cdot \frac{r^{p}}{\left(1-r^{2}\right)^{p-1}} \underset{r \rightarrow 1^{-}}{\longrightarrow} \infty
$$

References

[AL] Abu-Muhanna, Y. and A. Lyzzaik, The boundary behaviour of harmonic univalent maps, Pacific J. Math. 141 (1990), 1-20.
[AS] Abu-Muhanna, Y. and G. Schober, Harmonic mappings onto convex domains, Canad. J. Math. 39 (1987), 1489-1530.
[CL] Cima, J.A. and A.E. Livingston, Integral smoothness properties of some harmonic mappings, Complex Variables 11 (1989), 95-110.
[Co] Conway, J.B., Functions of one complex variable, Springer-Verlag, New York Heidelberg - Berlin, 1973.
[CS] Clunie, J. and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser.A I Math. 9 (1984), 3-25.
[D1] Duren, P.L., Theory of H^{p} spaces, Academic Press, New York - London, 1970.
[D2] Duren, P.L., Univalent functions, Springer-Verlag, New York -Tokyo, 1983.
[F1] Flett, T.M., Lipschitz spaces of functions on the circle and the disc, J. Math. Anal. Appl. 39 (1972), 125-158.
[F2] Flett, T.M., The dual of an inequality of Hardy and Littlewood and some related inequalities, ibid., 38 (1972), 746-765.
[GS] Grigoryan, A. and W. Szapiel, Two-slit harmonic mappings, Ann. Univ. Mariae Curie-Sklodowska Sect. A 49 (1995), 59-84.
[HS] Hengartner, W. and G. Schober, Univalent harmonic functions, Trans. Amer. Math. Soc. 299 (1987), 1-31.
[N] Nowak, M., Integral means of univalent harmonic maps, Ann. Univ. Mariae CurieSklodowska Sect. A 50 (1996), 155-162.

Wydział
Matematyczno-Przyrodniczy KUL
received December 1, 1997
Al. Racławickie 14
20-950 Lublin, Poland
e-mail: armen@zeus.kul.lublin.pl
Instytut Matematyki UMCS
pl. Marii Curie-Sklodowskiej 1
20-031 Lublin, Poland
e-mail: nowakm@golem.umcs.lublin.pl

