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Abstract. In this paper we prove that if f is a univalent, sense-preserving, 
harmonic mapping of the unit disc onto the symmetric strip |Imw| < x/4 
such that /(0) = 0 < /z(0), then f € hp for 0 < p < 1. Moreover, we show 
that the harmonic Koebe function ko given by formula (1) is not in hp if 
P > 1/3.

1. Introduction. Statement of results. Let A denote the open unit 
disc in the complex plane C and Sh denote the class of all complex valued, 
harmonic, sense-preserving univalent functions f in A, with the normaliza­
tion /(0) = 0 < A(0). Each f € Sh can be expressed as f = h + g where 

anZn and g(E) = bnZn are analytic in A. The subclasses
°f Sh consisting of harmonic mappings onto convex and close-to-convex re­
gions will by denoted by A'h, Ch, respectively.

Let Hp (hp), 0 < p < oo, be the standard Hardy space of analytic
(harmonic) functions on A. In 1990 Y. Abu-Muhanna and A. Lyzzaik [AL] 
proved that if f = h + g € Sh, then h,g G Hp and f £ hp for every p, 
P € (0,(2A + 2)~2), where A = sup {|a2|/A(0) : f € Sh} - This result has 
been improved in [N] where the range of p was extended to (0, A-2). There
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was also noticed that if f = h + g € Kfj, then g,h E Hp and f 6 hp for 
0 < p < 1/2. Moreover, an example of f € A'// such that f hp for p > 1/2 
was given.

In [AS] the authors showed that if f € A'// is such that /(A) is an 
unbounded domain which is neither a strip nor a half-plane then f € hl.

Let Q = {z E C : | Imz| < 7t/4} and S//(A,fl) = {/ € Sh : /(A) = Q} . 
Here we prove the following

Theorem 1. If f E 5//(A, fi) then f £ hp for 0 < p < 1.

Futhermore, we give an example of f E Sh(A,Q) such that f £ h} and 
f hp for p > 1. For close-to-convex harmonic mappings the following 
theorem was proved in [N].

Theorem A. If f = h + g € Ch then h,g E IIP and f € hp for 0 < p < j.

Let ko : A —> C\ (oo, — j] be the harmonic Koebe function given by the 
formula

The function ko is in h1/3 (see [N]). In this paper we prove 

Theorem 2. ko 0 hp for p > 1/3.

2. Proof of Theorem 1. In the proof of Theorem 1 we will need the 
Baernstein star-function. If u is a real valued integrable function on [—7r,7r] 
then

u*(0) = sup / u(Z)d<, 0 < 9 < 7T.
|£|=2eJE

The following properties of star-functions are well known [D2]:
(i) (u + u)*(0) < u*(0) -(- v*(0), 0 < 0 < 7T.

Equality occurs if both u and v are symmetrically decreasing.
(ii) If u(rc,e), t>(re‘e) are subharmonic in A and u is subordinate to v 

then for each r, 0 < r < 1, u*(re’2 * * * * * * 9) < v*(re'e).
For p > 0 and f harmonic on A set

|/(re’t)|pdt , 0<r<l.

The next result we need is the so called dual of the Hardy - Littlewood 
inequality and is due to T. Flett (see [FI], [F2]).
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Theorem B. Let 0 < p < 2 and h be an analytic function on A. If

- r)p 1 Mp(r,h')dr < oo ,

then h € Hp.

Proof of Theorem 1. First of all notice that for f € 5//(A,fl) and 
suitably chosen t > 0 and a £ R the affine transformation

w T(w) = te~ia(fz(0)w - A(O)w)

maps Q onto itself univalently [GS, Example 1.] and the composition 
T ° f ° Xa, where Xa : z e,az belongs to

5^(A,Q) = {/ e 5h(A,Q) : A(0) = 0}.

Hence we may restrict our attention to the subclass 5^(A,B). W. Hen- 
gartner and G. Schober proved [HS] that f € S^(A,fi) if and only if

...

where p is an analytic function in A such that Rep > 0 and p(0) = 1. 
It is clear that Im f € h°°. Writing

*€A

we have

(3) log|F'(z)| = log + log |p(z)|, z e A.

Since the function z 1/(1 - z2) maps A onto the half-plane {z € C : 
Re 2 > 1/2} and carries 0 to 1, we conclude that it is subordinate to z i-> 
(1 + z)/(l - 2) and so is p. Hence in view of the above cited properties of 
the Baernstein star-function we get, for 0 < 0 < tt ,

(log 1 — r2e2,e

and
(log |p(re*e)|)* < (log * + r̂ .e )

1
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It is easy to see that the function 0 >-> log |(1 + re,s)/(l — re*9)| is symmet­
rically decreasing for each fixed r € (0,1). So, by (i)

(log|P'(re,#)|)* < ^2 log
1
1 + re ie

re id
1 + re'6
1 — re ie , 0 < 0 < 7T

Applying Lemma 5 in [D2, p. 218] with </> : x epx, p > 0, we conclude 
that 2p

dO.

Moreover, by a Lemma in [DI, p. 65] there exists Cp > 0 such that for 
p> 1/2

Thus

/ |F'(re‘»)|W <

/" (1 — r)p_1Alp(r, F')dr < Cp f (1 — r)~pdr < +00 
Jo Jo

r)2p-i for 0 < r < 1 .

for p € (1/2,1). By Theorem B, the function F is in Hp, 0 < p < 1, and 
the desired result follows.

Remark. It follows from the proof of Theorem 1 that all functions from 
S^(A,D) are in hp for 0 < p < 1. This improves the result contained in 
Lemma 2.2 in [CL],

3. Proof of Theorem 2. We start with the following, easily verifiable,

Lemma 1. If the functions

00 00

f(x)=^JanXn, g(x) = bnXH ,
„=0 n=0

where , bk > 0 , k = 0,1,2,... defined in the interval (—1,1) are such 
that

lim f(x) = lim g(x) = +00 and lim t^ = A6(0,oo),
I-.1- n—>oo bn

then
lim 44 = ^ 

r-1- g(x)
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Proof of Theorem 2. We can assume that p £ (|, . Since Im k0 £ hp,
0 < p < 1/2, it is enough to prove that

(4)
y27T /1 + re'9 V
/ Re I , iaZo \ 1 — re'9 /

d3 = +oo

Using the inequality |a + 6|p > |a|p — |6|p, 0 < p < 1, we obtain

(5) - (1 - r2)3p I
Jo

Let

(1 + r2 - 2rcos#)3? 

2’ d3

(6)

A(r) = 12pr2p(l - r2)p [ 
Jo

(1 + r2 — 2r cos0)3p

sin2p 3d3
(1 + r2 — 2r cos 0)3p 

2 • 12pr2p(l - r2)p sin2p 3d3J(l + r2)3p Jo (l-ccos#)3?’

where c = 2r/(l + r2). Making the substitution t = cos 3 gives

r sin2p 3d3 _ r1 (1 -t2)p~*<ft
Jo (1 - CCOS0)3P y_! (1 - Cf)3P

> i1 +7 > 2»-i [' u-<)*"*■“
Jo (1 ~

z
(1 - Cf)3P C<)3P

Expanding the function 11/(1 —c/)3p into a power series and integrating 
term by term we obtain

(7)

where

zx(l-t)p-i</Z 1

^n. —

(l-ct)3P p+1/2 n=1

3p(3p + 1) • • -(3p + n - 1)

+ ^ancn =: Fi(c),

” (p + l/2)(p + 3/2) • • • (p + 1/2 + n)
, n — 1,2,...

Now, if

^(C) = Q _ c)2p-l/2 = 52 “nC ’

n=0
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then by Gauss’s formula (e.g. [Co], p. 174) we have

r a'n = 1
n-*oo n2P-3/2 r(2p — 1/2)

and

,im = r(2P-i/2)r(P+1/2) = 1/2 p+1/2).
n—»oo a'

Hence by Lemma 1

r(3P)

F,(c)
lim \ c—►!” G’i(c) = B(2p — l/2,p+1/2).

This means that if we take any e > 0 then there exists 6 > 0 such that 
for c > 1 — 6

(8) Fi(c) > (B(2p-l/2,p+l/2)-e)Gt(c).

It follows from (6)-(8) that

(9)
AM > ~> V1* (fl(2p - 1/2,p+1/2)-£)G,(c)

2P+1/2 . i2Pr2P(l + r)P
(1 + r2)P+i/2

(fl(2p - l/2,p+1/2) — e)
(1 — r)3P-1

Let now

AM = (1 - r2)3p C" 
Jo

de
(1 + r2 — 2r cos0)3p 

2-(i-r2)3p r de
(l + r2)3P Jo (1-ccos0)3p’

where again c = 1^77. Using the same technique as above we will estimate 
/2(p) • We have

r de - z1
Jo (1 —ccosfl)3P J_x

dt
y/l — <2(1 — c/)3P

Note that z: dt dt
71^(1 - c/)3p ~ Jo Vl-t<-/: = 2,



Integral Means of Harmonic Mappings 31

and

ifdt dt
y/1 - f2(l - cf)3P ~ Jo \/l -/(l - cf)3P

where
bn =

= 2 + £inc"=:F2(c), 
n=l

3p(3p + 1) • • • (3p + n - 1)
n = 1,2,...

(l/2)(l/2+l)..-(l/2 + n)’
Now we compare the behaviour of F2 and the function

1 00

~ (1 _ c)3p-l/2 =
n=0

In this case we get

p _____
n^o n3p—3/2 “ r(3p- 1/2)

and

n-00 b'n r(3p)
Therefore

lim 5^1 = B(l/2,3p- 1/2).
<~l- G2(c)

This implies that for e > 0 there exists > 0 such that

F2(c) < (B(l/2,3p-l/2) + e)G2(c) for c>l-Ą.

It follows from the above estimates that
(10)

W < (2 + G2(c) (5(1/2,3p - 1/2) + £))(1 + r2)3?
4 . (1 _ r2)3p + 2 • (1 + r)3p

(5(1/2,3p — 1/2) + e)(l + r2)3? ' (l + r2)1/2 (1-r)3p-i

Now, combining inequalities (5), (9) and (10), we obtain

f Re(1 + rc‘*): 
Jo \ 1 — re'6 J

4-(l —r2)3p 2(1+ r)Pd6 >---- 77—v 7
(l + r2)3? ' (l + r2)1/2 (l-r)3P

2P-il2pr2p 
(1 + r2)P

(fl(p+ i,2p- 1) -£) -(l + r)!" (n(l,3P-i) +£)X
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Let U(p, r,e) denote the expression in the square brackets in the last in­
equality. Then

fZ(p,r,£) = + + 2!p) •

Consider now the function
12p „ 1\ a(p)= -^B(p+l/2,2p-l/2)-22pB(l/2,3p-l/2) for pe(^-,-j.

In view of the formula

fl(a,1 — a) =
sin a7r

0 < a < 1,

we have a(l/3) = 7t(121/321/2 — 22/3) =: 2qo > 0. The continuity of a(p) 
implies a(p) > a0 > 0 for p € (1/3,1/3 + 7), 7 > 0. Taking e > 0 small 
enough we get

lim U(p, r,e) > 0 .
r-+l~

Note that lim — 4(1 — r2)3p/(l + r2)3p = 0 for p G (1/3,1/2). 
j>i -

Consequently, there exists a positive constant A > 0 such that

1: (Hs? de >
(1 — r)3p_1 r-+l-

00.

which completes the proof.

4. Example. Let f be defined by

/w = Wrb+r^) + 5arg(r4) ■

It follows from Theorem 2.9 in [HS] that f G ^(A,!)). We claim that 
f G h1 and that f $ hp if p > 1. It is enough to show that Re / G h1.

For 0 < r < 1 we have

s

= 2r [
Jo

+ 2r J TJir/2 1
r<2r /

Jo

iS

1 — re'6 
arccos r

de cos 3 — r\d3
+ r2 — 2r cos 3

L(cos 3 - r)d0 + (r-cos 3)d3
1 + r2 — 2r cos 3 

(r — cos e)de 
Ii 1 + r2 — 2r cos 3 
arccosr (cosfl-r)rffl

1 + r2 — 2r cos 0

1 + r2 — 2r cos 3

+ 2r(2 + 7r).

-H'i
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The substitution t = cos 3 gives

/•arccosr (cos 0-r)<f0 _ 1 rl (t - r)dt
Jo 1 + r2 - 2r cos 0 1 + r2 /. (1 - c/)\/l - t2

< 1 - r y1 dt
~ 1 + r2 Jo (1 - ct)y/T^t ’

where c = 2r/(l + r2). Proceeding as in the proof of Theorem 2 we see that 
there exists a positive constant C such that

dt

This means that

Ct)y/l=i - (1 - C)V2 •

(cos0 - r)d0
<C,

Since

1 + r2 — 2r cos 0 y/i + r2

r2ir re‘e f2’ re'6
Re--------« dO — Re

1 — re'6 Jo 1 1 + re'6
the desired statement follows.

Assume now that p € (1,2). For z = re'6 we have

de,

/'

<

<

r cos 0(1 — r2)
Re /(z) = Re

Hence

1 - z1 1 — 2r2 cos 20 + r4

| Re/(re’9)|pd0 = 2rp(l - r2)p Z* 1 C°S 
Jo Jo (1 —

> 2rp(l - r2)p [
Jo

> 2rp(l - r2)p [
Jo

In a similar way we obtain

/•2ir _p/ |Re/(-“)l^>C.fT-7;FT -

2r2 cos 20 + r4)P 
cosp 0d0

(1 - 2r2 cos 20 + r4)P
’/4 cosp(20)d0

(1 — 2r2 cos 20 + r4)P
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