ANNALES
UNIVERSITATIS MARIAE CURIE -SKLODOWSKA
LUBLIN-POLONIA

VOL. LIL1, 3 SECTIO A 1998

JANUSZ GODULA and VICTOR V. STARKOV

On Regularity Theorems for Linearly
Invariant Families of Analytic Functions
in the Unit Polydisk, 11

Dedicated to Professor Eligiusz Zlotkiewicz
on the occasion of his 60th birthday

ABSTRACT. This paper is a continuation of our research ([GS2], [GS3]) con-
cerning the regularity theorems for linearly invariant families of functions
defined on the unit polydisk. In particular we show, that the higher di-
mensional cases differ significantly from one dimensional. Moreover, we pay
special attention to the relationship between various linearly invariant fam-
ilies.

In [P] Ch. Pommerenke introduced and studied the notion of a linearly
invariant family of functions holomorphic in the unit disk A = {zeC:
2| < 1}. Linearly invariant families play an important role in the theory
of conformal mappings. Furthermore, an interest in these families grows
because of their relationship with the Bloch class ([GS1]). In [C] and [S]
regularity theorems were obtained for such families.

In [GS1) we defined linearly invariant families of functions analytic in the
unit polydisk A™ ¢ C™, m > 1.

Key words and phrases. Linearly invariant family, regularity theorem.



16 J. Godula and V.V. Starkov

In this paper we continue the study of the regularity theorem for linearly
invariant families of functions defined on the unit polydisk A™. As we will
see (Theorem 2), the effect of higher dimensions makes problems different
from those for m = 1, and consequently for m > 1 we obtain more complete
results. Moreover, we show connections between subfamilies 2//,(6) of U!
and connections between families U’ for various m.

Let T = {z € C: |z|] = 1} and T™ be the unit torus. We will con-
sider the class H(A™) of all functions f : A™ — C analytic in A™.
For z = (2z1,...,2m) € C™ we define the norm ||z|| = max,<;j<m |z;|. Let
O = (0,---,0) € C™. Recall that to every a € A there corresponds an
automorphism ¢, of A: ¢4(z) = (a + 2)/(1 + az), 2 € A. The same can be
done in the polydisk A™. Fora = (a;,-:*,an,) € A™ the Mobius map ¢, of
A™ onto A™ is defined by the formula ¢,(z) = (¢1(21),*** , dm(2m)), where
oi(z;) = ‘;j“_’ ,j=1,---,m. Now, we are ready to give the following
Definition 1. Let [ = 1,...,m be fixed. The [-linearly invariant family
9, is the class of all functions f, f € H(A™), such that
1) f(0)=0, gL(0)=1, & (z) #0, forzeA™,

2) for a]l f € M;and 0 = (6,,...,0,) € R™ , f(ze'®)e~"% € M, where

ze' = (z1€'% ..., z,e"),

3) for all f € M, and a = (ay,...,a,) € A™

[8u(2) = J(6(0) gy,
F(a)(1 - |aif?)

f(a,2):=

The following deﬁnmon extends the Pommerenke’s notion of the order
of a function, ([P]). Let 2 (z) =1+a(f)an+...+cm(f)zm +o(||2]]) as
z— 0.

Definition 2. Let f satisfy condition 1) of Definition 1. The order of the
function f is defined as

[ 2re0)

ord f = sup -
aeA™ 2

3 2P, (c1(f(as+))y-- - »em(f(a, ).

The order of a linearly invariant family 9, is given by

ord 9M; = sup ord f.
Jem

Definition 3. The universal /-linearly invariant family &' of order a is
defined as
u! = U{EDI, :ordM, < al.
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For m = 1 the above definitions coincide with the classical definitions
from the paper [P] and in this case the linearly invariant family is denoted
by U,.

It is a very important and interesting problem to study the behaviour of
functions "near” the torus T™. For classes of functions analytic in the unit
disk A there are known theorems of regularity and growth of the modulus
of functions, as z tends to T along a radius of A. A result of this type is
known for the class U,, too ([C], [S]). In [GS2] we showed that an analogue
is true for the class U'.

Write r = (T1yeeeyTm), 0 = (01,....,0,,) € R™, reit 2 (T]eiol,---, ALY ),
I” = (17,...,17); moreover, let M(r,p) = max)<-|p(z)|. In [GS2] and
[GS3] we showed (regularity theorem) that for every f € U/ there exists
6 € R™ such that

. 6 = 1—Tk)a _m2) —
rli.nnl 821(1-(3 ) I;Il(l+rk (—in=
(*) ,.ll.nul-M(TF H<1+r ) =6 €[0,1],

where F(2) = f‘f‘ a%%(zl, ceesZI1y 8y Zl41s - - -» Zm) ds. Denote by U! (é) the
family of all functions from U/, for which the last limit is equal é.

Let us denote by £ the set of analytic one-to-one maps ¢(z) = (1(21), ..
®m(zm)) from A™ into A™, such that for every k = 1,... ,m the function
®k(zk) is analytic and univalent in A and |@x(zx)| < 1 in A. By the def-
inition of ! its invariance with respect to maps ¢(z) follows in the case
¢k(zk) are conformal authomorphisms of A. The problem of invariance of
U! with respect to ¢ € L is interesting for us; that is if

il,:J'A_m:(()) EC) I all;
=M= gopee M o€

one can ask about a relationship between U’ and &L, (it is clear that
U, C U.) and about the linear invariance of {I;,. Pommerenke in [P, Theo-
rem 1.2] studied the above problem in the case m = 1.

Theorem 1. 4!, is an I-linearly invariant family of order 3 = max(a,2).
Thus 4, Uup; U, = Ul fora > 2.

Proof. If ¢ € £ and d)k(zk)—qSk("“),aEA,k:1,...,mthen

1+az
(?1,... ,®m) € L, since ¢x(zx) are analytic and univalent in A and
|6x(2k)| < 1. Therefore &I, is I-linearly invariant.
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Now, let f € U., ¢ € L. Write g = Ay[f]. We will estimate ord g.

Let ar = ¢x(0), wi(w) = 5525 (w € A) and xu(ze) = P2y, k =

1,...,m. The functions xx(2x) are analytic and univalent in A, xx(0) = 0,

ka(zk)l <linA. Setw = (wl(Zl), oo swm(zm)) X = (a(21), - - - s Xm(2m)),
h = AJ[f]. Then h € UL, d(2k) = wilxk(2x)] and g = Ay [AL[S]] = Ax[h] =

h(Xl(zl)a PR ) Xm(zm))/X;(O)' Therefore

dh e \1( z)
azl(z) dz;('\‘(wl) \m( m}) ;(0)
&g *h dh x/'(0)
0:7 %)= 57 ¥i(0)”
g 82h

- —_—_—_—— [
azlazk(o) " 02,0z (0)x(0), for k#£1

The following inequality holds ([Pi]) |i“[‘;ﬂ| < 4(1 - |x}(0)]). By the defini-

tion of ord h and the inequality ord h < a we obtain | 933": (0)| < 2a, for
all k =1,.

Since |xf(0)| 5 1, by the Schwarz Lemma we obtain

1
2

9? -

530 < alxi(O)] +2(1 - O < max(a2)
1| 0%
> leazk(o)‘ Sodilt it £

Since the above is true for every function g € ! and ! is [-linearly
invariant, we have ord g < max(a,2); therefore U, C U;i.

If o > 2 then ord g = a. Thus g € U, and L, c U, C U', which implies
go=ul.

0O

Remark 1. If we consider in Theorem 1 a family £ C £ (instead of £) of
maps with ¢;(z;) = €' I’_L:“ a € A, 8 € R then, as follows from the proof of

Theorem 1, x;(z;) = z;. Thus 5|5:} 0)| < a and ord g < a. Consequently,

if we consider !, ¢ Y, (connected with £ instead of £) then ord I, = o
and U}, =Y/ forall a > 1.

Corollary 1. For every a > 1 the family U! is invariant with respect to
the class L.

Remark 2. If @ < 2 then (by Theorem 1) {I, is a proper subset of U;.
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Indeed, in the case m = 1 the function £/(1 — £)? € U, but for any
function f € U,, @ < 2, and any function ¥ regular in A such that ¥(0) = 0,

[(€)] < 1in A, the function L&) _ is different from %, since (see

S'w(0)]w'(0) (1-§)*°
[P], p. 115)
L+ D@ g
IOl < (1 bt s (g |e|/ TR

Similar considerations in the case m > 2 imply Remark 2.
In [S] the second author showed that in the case a > 2, for a positive
function ¢(r), arbitrarily small for r — 1~ and every é € [0,1) there exists

2aMl(r, 1=ry®m g . .
f € Uy(6) such that lim,_,,- 2 i:(}-ﬂ) = 00, that is, the expression

2aM(r, f)( T ) may tend to 6 arbitrary slowly, as 7 — 17. The proof of
this result was based on an analogous result of N.A. Shlrokov ([Sh]) for the
class S, § C U,. An analogous result is also true in the case m > 2 for the
class U!. But in this case the result is stronger. Using Corollary 1 we are
able to reject the restriction a > 2. It is the effect of the higher dimension.

Theorem 2. For every positive arbitrarily small (as  — 17) function
&(r), r € [0,1), 6o € [0,1) and a > 1 there exists a function ®(z) =

2aM(r®)(155)*™ -6
P(z1,...,2,) € U'(6), m > 2, such that lim,_,- =& e 2 =
00.

Proof. 1° Let 6, € (0,1) and let the function fs be given by the formula

e 1 4 zpeT Ve \.a B
H 1 — zge—i% )

k=1

eul(1).

fo(2) = ;—al [

As noted in [GS3], the function fo (with § = O) belongs to U, and thus the
function

2t 9
F(Z):/ afo(zl’ )21—1,3721+1,'-"zm)d3

G (G

k#1

also belongs to &.. In [Sh] a family consisting of convex functions ¢ in
A was constructed such that ¢(0) = ¢'(0) — 1 = 0, |#(€)] < #(|€|) and
I <lim,_,- ¢(r) = ¢(1) = a < b = lim,_;- (4(1) — ¢(r))/(1 - 7).



20 J. Godula and V.V. Starkov

Write
w(6)= o, peGal v = 2,
H©) = ol ey -y

The function % is univalent in A, ¥(0) = 0, |[¥(§)] < 1in A; H e S C
U,. For any arbitrarily small e(r) — 0, as 7 — 17, one can choose
([Sh]) a function ¢ (defined above) such that for 1 < a < b, b being ar-
bitrarily close to 1 and for every p € (%,1] the following condition holds:

lim,_,,- %&”w = 0o, where §' = lim,_;- M(r,H)(1 — r)? =
2 _1/2
yooy im,_q- (72 o) ) = =4 La> One can assume that lim,_,,- UT(,}L =
0. Thus
L TAN2 . dped
o oud 2 M(r,H)(1-7)"-¢
r—1- E(T)
s 4M(rH(H_r) —6'+M(r,H)(1—r)2(1—“—:r)—._,)
r—1- E(T)
4M(r, H)(1+ ¢ =Yl (r=1)3+r)
= u h - M(r, H)(1- phald i\ it
r—1- 6(7‘) T (r )( ) ( )(1 + T)2
(1)
4M(r, H)(l+r) -¢
h r—1- T)
+¥ -r —r 2p—1a°
_ o Bl Y - (- s
r—1- e(r)
__pa . X()-C
T 2p-1r—1-  g(r)
where x(r) = %{;:, 52 - —) By Corollary 1 the function

®(z) = F(¥(z1),... ,1/)(21_1),2,,1/1(21“) .. ,¥(zm)) belongs to U/ (6), for
some 6§ € [0, 1). Now from the construction of F and from the equality ()
(see [GS3)) it follows that

r—1- r)
14 9(r) “"”‘ Digryo 1—-r\"
@) -L’“(l_—(,) () =)
( s

[ 1—-1 a(m=—1) (
= lim -
ro1- kl —Y(r))
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Choose a function ¢ and a number p € (4,1] such that é5""" < ¢ < 1,

and (% 22;1)"("‘ D = §5. Then & € U’ (6y). Observe that with the above
notation e 2l
) welmsh) L Cco(m-
0.
,}linc x2-C? ”

By (1) and the fact that lim,_,- ﬁ = 0 we get

M(r, ®)2a(355)™ — bo

i o e(r)
. Ia(m—l}(r) - Cn(m-—l) - xn(m-l](r)(%ﬁ o
r—1- e(r)
po x.atm—l)(r) — (a(m=1)
r—1- e(r)
] xa(m—l) - Ca(m—l) ' \(2(7‘) - C2
- ,}l_r.nc x2—-C? o (r) o

This gives the result in the case & € (0,1).

2° Let 6o = 0. In [Sh] it was shown that one can choose a convex function
® in A such that

#(0) =0, ¢'(0)=1, |H&) < H([£]),

(4) r
#(l)=a< o0, b(r)= ﬁ%—%”—»oo

as 7 — 17, and for p = 1 (that is w(§) = £) holds

lim M(r, H)(1-r)? B
i (e(r))2/atm=1) ~

Here we have taken (s(r))z(—"‘z-_ﬂ as an arbitrarily small term. From (3)
it follows that lim,_,- M(r, H)(1 — r)? = 0. For the function ¢ the above
defined function ¢ belongs to U, by Corollary 1. From (2) and (4) it follows
that & € &!(0) and (see (3))

iy M(r,®)({F5)™ et x*m=1(r)
r—1- e(r) T or—l- £(r)

> X(r)  qatmen _
- rl-{.r?—[(e(r))z/"‘(’"“)]

)
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since s
&l el M(r, H)(1-7)

2
; x*(r)
ri= (e(r))H(atm=1)) = ° =

r—1- (e(r))2/(a(m=1))"

The next theorem allows us to connect families 24/ (8) of functions analytic
in A™ with families 2! (4) of functions analytic in A™, n < m.

Theorem 3. Let f(zy,...,2m) € U\(6o) and m > . Let us fix a variable
Zm = @, € A for the function f. Then the function

f(z15-.. y2Zm=1,8m) — f(0,...,0,am)

¢(Zl,-..,4, ])
o %(0,...,0,am)

belongs to the family U (6) of functions analytic in A™~'. Moreover, if
0o > 0 then ord & = a and é > 0, and if a,, = 0 then § > 8y. Furthermore,
the set {®(z1,...,2zm—1): f € U.} coincides with the family U, of analytic
functions in A™™!,

Proof. Denote 2, = (z1,...,z,-1). Since (0) = 0, g: (0)=1, g: (24) #
0in A™~! ®&(z,) belongs to the family 2/ (8) of functions analytic in A™~1,
if ord® < a. By Theorem 1.1 of [GS1] we have

a8’y

——(2)1 =]z 2 h
ord f = max sup 6:,382,‘( )1~ la . AR
1<k<m zepm l_.;'!.{z) 2
and then
a's 8%
527 (3) 1 = |z)? 57 (D1 - |72 _
su - % < ! -7l < o
P c)d? 9 1S s Sup, o1, 2 1] =y
2 €A™ | By (Z*) zZEA™ 321(")
8%e 82y
sup 32,0z (""“" T = |zk|2 < sup | Szlazl,(zJ ] -~ |Z:|2| k # l
s eam=1 8:(-.} 2 T zeam %(Z) 2 B

Thus ord < a and &(z,) belongs to the family /. (§) of functions analytic
in A™~! with some 6 € [0,1]. On the other hand , if ®(z,) belongs to the
family 2! of functions analytic in A™~! then it belongs to the family U/,
of functions analytic in A™. In this way we get the last statement of our
Theorem.
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If 8o > 0 then by the regularity theorem (see [GS2]) there exists a direc-
tion of the maximal growth 8 = (6,,...,60,,) of f such that

tim [ H(1 ) (=) = o,

where the expression in the brackets decreases with respect to every variable
Tk € [0,1). Consequently

a 19
az,( )

H af 10] 10,,. 1 1 2 >
rlir{l_[ B_z,(rle s Pm—1€ ,0) I;[ 1 o -ri)| > bo.
Thus (if a,, = 0)
. i a‘b l-ﬂ; 'om l - T/C % » >
r‘i{;‘_ | Td—z;(?‘lt‘ s Tm—1€ I;I (1 n Tk) 1 -7 )] bo

and ¢ ¢ L(f,(6) (in A™=1), 6 > b. If a,, # 0, consider the function

% _f(zl, yZm— l,ﬁ%ﬁ;)_f(oa-”’oaam)
4t %(0,...,0,am) i

By Lemma 2 of [GS2] f € U} (8°), 68° > 0. Then

f(zl’--- Sm—-1-0m _f(O)-“,Oyam) .
az.(O .,0,am)

q)(Z*) = j(Z],.-- ,zm—170)=

and by the above reasoning ®(z,) belongs to the family Hf_(ﬁ) of functions
analytic in A™~!, with § > ¢° > 0. O

Remark 3. In Theorem 3 one can fix any other variable zy, k # [. In the
case k < [ the function ®(z,) belongs to U'=! (in A™-1), since in z, the
variable z; stays on | — 1 position.

Corollary 2. Let f € U! (%) (in A™). For f let variables z,,...,z_,
1 < n < m—1 be free and let the rest variables be fixed. Moreover
let 2/ be one of the free variables, | = k;. Then the normalized function
®(z,) = ®(z,,...,2k,) belongs to the family U2 (8) of analytic function in
A™, where for 6o > 0, ord® = a and § > 0, and if the fixed variables are
zeros then 6 > 6. Moreover {® : f € U, (in A™)} is identical with UJ
(in A™),
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For n = 1 (ky = 1), 2, = 2, by Corollary 2 we obtain that with fixed
all variables except for 2; the family of corresponding normalized functions
®(2;) coincides with U, of functions analytic in A. It seems to us that if we
fix a variable z,, k # [ then the problems are not interesting. For example
it follows from Theorem 1.1 of [GS1] that

> 9L(s,02,... ,am)
()=t S T e Mhans
(£) QL(O,G;. +1

EETA ---varﬂ)

for f € U', | # 1 and fixed 23,...,2,. The example of the function
fo € u(i for a; = ... = a,, = 0 shows that ord® = a + 1. Thus after the
above operation the order of a function can be greater than before.
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