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Integral means of derivatives
of locally univalent Bloch functions

ABSTRACT. In this paper we give examples of locally univalent Bloch func-
tions fx, (k =0,1,2,...), such that for p > 1/2 the integral means Ip(r, f)
behave like (1 — r)1/2=P(—log(1 — ) for r — 1-.

For a function ¢(z) analytic in the unit disk A = {z: |z| < 1} and p > O,
define its p -integral mean by the formula

1 2w ;
Lirg)= g [ 1o e re @,

There are many papers dealing with the integral means in various classes of
functions. In particular asymptotic behaviour of integral means for r — 1—
was investigated. For example, in the class § of functions g(z) =z+.

analytic and univalent in A sharp estimate I,(r,g') = O(g=yw= rJJ,, r) for
p > 2/5 ([F-MG)) was obtained. Since the derivative of functlons in the class
S satisfies sharp inequality |g'(z)| < (1 + |2|)(1 = |z])™%, z € A, the order
of growth of the integral means of functions decreases by 1 as compared
with the order of growth of the derivative of functions in §. A function f
analytic in A belongs to the Bloch class B, if it has a finite Bloch norm

1l = 1£(0)] + sup[(1 = [z1*)If'(2)I].
z€d
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Hence the exact estimates

1f'(2)l = O((1 = [21)7"), |f(2)] = O(~log(1 - |2])), z€ A,

follow. Also for Bloch functions the reduction of growth after integration
on circles can be observed, (see [C-MG], [M]). In fact, for f € B and p > 0
we have I,(r, f) = O((log ﬁ;[)”/z), as r — 1. But for derivatives of Bloch
functions have no similar property. In particular from Theorem 4 of [G] it
follows, that there exists a function f € B for which

L(r,fY>cP(1-1)"P, 0<r<1, p>0;

where ¢ = ¢(f) is a constant.

Now, let us denote by B’ the subclass of locally univalent functions in B.
Investigation of I,(r, f'), f € B’, is motivated by the behaviour of Taylor
coefficients of functions from B’ ([P1], p.690).

In this paper we construct for every £k = 0,1,2,... and every p > 1
examples of functions Fi € B’', such that

c(k,p 1
I(r, Fy) > a _(T),,_)l,z log" T 1>72p(p) >0,

where c(k,p) is a constant independent of r. We will use the following two
lemmas. Suppose By = {f € B:||f(z) — f(0)|ls < M}.

Lemma 1. If f € By and w(2) is analytic in A with |w(2)| < 1 for z € A,
then F = f ow belongs to Byy.

Proof. By the Schwarz Lemma ([Gol], p. 319-320) we have

W) < Ll

S T-.e EE for z € A.

Thus [F'(2)|(1 = |2*) < [f'(w(2)I(1 = [w(2)|?), ie. [|F(2) = F(O)||s <
|| f(z) = f(0)||s and consequently F' € By,. O

Lemma 2. Let I' = {I'(8) = r(0)e'® : § € [-m,7]} be a closed, piece-
wise smooth curve contained in A, symmetric with respect to the real axis.

Moreover, assume that r(6) > 0 increases on [0, 7] from ro to ° > ro. If f
is analytic in A with |f(z)|(1 —|2|*) < 1 in A, then for A > 1

| VOIS

(1= — (1 = o)),

1
V2

16
-1

/ 1£(2)Mlde] >
r

(1)
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and for A =1

1 l=7r
J1@lidel > 55 [ 1f(@iidel - vBrolog =15,
r V2 Jiz|=r, 1-r

If f(z) # 0in A, then for A € (0,1)

A ] 1 2 A 2
1

(I
_%[(l-m (1= ) = (1= A0 - mo)]

Proof. We may suppose that r(#) increases on [0,x]. If § € [-m,0],
consider [ . | f(-2)|*|dz|, where the curve —T has the parametrization
—~I(8). Let us divide the interval [—, 7] into 2n equal intervals 0 < §y <
b < ...< b0, =m,0=06 >0, >...>0,=-r. Put r; =
r(0;), 7 = —n,...,n; 7; is increasing with respect to |j|. Now let us con-
sider the piecewise smooth curve I‘("), which is the union of circular arcs
{z = r;e® : 0 € [0j=1,05]}, j = —n+1,-n+ 2,...,n and segments
of radii {z = re'®-1 : 7 € [rj_1,75]}, J = —n+1 -n+2,...,n. Put
AG; = 0; -0y, Arj = |rj—Tj-l, zj=r;e%, j=—n41, —n+2

Fj={z€Tl:z= r(8)e', 6 ¢ [0;-1,05]},
rﬁ") = {re'® € T\ : 0 € [9;-1,6;]).

The length of the above curves T', I, Iy, Fg") will be denoted by the same
symbols, respectively. The uniform continuity of |f(z)|* in the disk K =
{z : |2| £ r°} implies for every ¢ > 0 the existence of n = 5(e) > 0, such
that

(2) IF)P = 1f(")M < e

for every 2, 2" € K, |z' — 2"| < 1. Since V/2|dT(6)| > |dr(8)| + r(6)d6 with
6 € [-m, 7], we have for every fixed 6 > 0 and sufficiently large n

(3)  (5+VL; 2 Arj+rA=T{, j=-n+1,...,n

Then diameters of the curves I'; and l‘g"] will be less than 7. Therefore by
(2) and (3) we obtain

6+v2) [ 11)Past = [ 15)Pa

n

= ; z)| dz| - 2)|Mdz=
3 l(uﬂ)/l_' £zl /1“,”“( Piest

j=l=n
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= 3 6+ v [ (P -1 - [ s

()M del + (6 + V) f(2)T; If(zm*rﬁ"’]

> —€[(V2+6)r + T™].

The number € can be chosen so that the last expression will be greater than

-8(v2 = 1) [ | f(2)|*|dz]|. Thus

(4) Va(s +1) /F 1£(2)ldz] > J/ 1)

rn

For the parameter t € [0, 1] let us consider a family of curves

[(n,t) = {tz: 2 T™}, I(n,1)=T™, I(n,0)=0.

Then
n 6; ]
/ 1f(2)Mdz| =t ) (/ |f(tr;e'®)|*r;d0
I(n,t) j=1-n i1
T [ i0; 1\ A
+3 | f(re™i=1)| |dr|
t'f" 1
>tr Y Al " g0 4 [ (e ar]
’ y tro Jir,
j=1-n b1 j=1
(5)

= trg X Z (/ |f(tr;e'®)|*do
j=1- ) 1

2 A‘é[L::’l‘f(re,-o,_,),Alam( ,l)ldrl] )

pio 3 [ [/"Hm a1 W ~>'d"]

j=1-n

£ 3 [ e,

lT, 1

The first of the last three sums should be denoted by I(t) and the compo-
nents of the second and third sums for t = 1 by B; and Aj, respectively.
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Then
t n ﬁj I )
I(t) = / 2 [/ lj(rrje‘9)|’\'l%(Trje'a)‘rrjcw
(6) 70 J=1=n "Y1 )
S 61 A-l% i6; - |dr|
-—[r [f(re )| 30 (re )_r_ dr.

Tj—1

If f =0 then the lemma holds. Suppose f is not identically zero. The
function f may have a finite set of zeros on the disk K. One can assume
that for fixed n there exists a finite family of curves I'(n,t), containing
those zeros. Otherwise instead of f one can consider f(ze') with small
v € R. Next let us consider such t € [0,1] that the curves I'(n,t) do not
contain zeros of f. For z = re'® € I'(n,t) let &(z) = arg f(z). By the
Cauchy-Riemann equations we have

ofl _ 902 0¢ _ alf
Tar _|f|80 TIflaT__W

Thus by (6) we obtain

n 9, .
I'(t) = é Z [[ |f(tr;e'® )| dd(tr;e')

J=1—-n"%-1

TT, _ _ b
[ eenpaseen| = 3 [sa@rdeae),

JTT,‘_]

where y(€), € € [a,b], is a piecewise parametrization of the curve I'(n,t)
which gives the positive orientation on I'(n,t). Let

L = L(€) = z(€) + 1y(€) = |f(+(€))| /2D,

Then
z(€)dy(€) — y(€)dz(&) = | f(7(€))|d®(7(€))

and the Green formula implies
A 2\
I'(t) = —j zdy — ydz = — S(n,t),
ity t

where S(n,t) is the area of the image (generally many sheeted) of the com-
pact set with the boundary I'(n,t) under the function

{ |f(2)]2/2e*2), f(z) # 0,

™ 0, f(z)=0.
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Now, let

s

TotI(t) = Tot/

-x

| F(rotei®)|do = j/ 1£(2)|dz].

|z|=rot

Then we get

I'(t) = A /” |f(r0te*9)|*-1%'-f—'(rote“’)rode

,

= 2 [ 1Gote ) Pasirate®) = 22 5(0),

where S(rot) is the area of the image of the disk {z : |z| < rot} under
the function (7). Thus the inequality I'(t) > Z'(t) holds for all ¢t € [0,1],
possibly except for a finite set of t. Therefore by continuity of /(t) and Z(t)
in [0, 1] we obtain I(1) — I(0) > Z(1) — Z(0). But Z(0) = I(0) = 27| £(0)|*,
because for sufficiently small r the quantity | f(re'®)|* |%%(re‘8)| is bounded
by a constant C. Thus by the Cauchy-Riemann equations

3If1 dr

" 1 reiypr AW in 3 ﬂ

TTj—1

/ b tf i0: 292 e, ‘
j | f(re®i-1)| a—r(re 1=t)drdr| < C : (rj —rj_1)dr — 0,
S'l‘, 1

as t — 0. Consequently I(1) > Z(1). Then

(8) )
J/rr- 1£(2) |dz|>r01(1)+]§;n(A i+ By)
> roZ(1) + Z; B, ="/M?r (=) |d=] + zl: B,.
=, - e
Now, observe that
‘8|f| aexp(lze; log f) <12f(2) < i —4||zz||2)2

(cf. [W]). Thus, in order to obtain an estimate of | B;| we deal with

r - ;
B=ro | = [ |f(re®-)) 7| f'(re'®-1)|drdr, 0< p; < p; < 1.
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From our assumptions we obtain
1A 4
|B| < 7o / —/ ——————drdr
Jo T Jrp, (1—T))‘+1

’ f’ 1 [ 1 1 g dt
= 47T — — .
YJo tL1=tp2)>  (1-tpy)>!

Now, let ¢(t) be the function appearing in the last integral. We have

WOTERYPORC .. . L LT

- Pt
A+ 1)(A +2
v 2 3)!( )(Pg—p?)t2+

Since the radius of convergence is greater than 1, we obtain

I‘lcp(t) Apz = p1) + - )‘(/\+1)...()\+k_1)p§_

I
i o Tk R

However,
k+1

—pt _pi-piktl 2 ppt' -
and hence for A > 1 we get

[1 ‘

) p(t)dt < ST

A=DA...A+k—1
(k+1)!

(A= 1A 9
o3 Lk T T P

; .
i (b3t = pftH) + ...

(1—p) ' =1=(A=1p2) = (1= p)' = 1= A —1)p1))
2 al 1
< m—_'l—)((l —p2)' 7 = (1= p1)' 7Y,

so that |B| < 4rg fol (t)dt < ;2‘(%‘5}1—) (1—pa)'~* = (1 =p1)'?). Thus

2
T (A1) {

< Z|B|< Z(I-rj)”—(l—rj U e

j=1-n

ZB

j=1-n

= (1= = (1= )Y
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and by (8) we have

o a2 [ 1 = 50 = (=),

Then from (4) we obtain

]U(z)l [d|_‘m+1)

x [_/ ]~ 5= (1= ) = (1= 7o) ™)

|z|=r0o

Since 6 is any positive number, we get our Lemma for A > 1. If A = 1 then

1
l1-p 1-p
t)dt = log — P2 B < 4rglo
/o(p() 10 0 0P = py

Thus

- l—r
| Z BJ|§8rglog1*rg

ij=1-n

and

1 ~ 1- To
N2 7 [ 1ol 3 log 7=

Now, let A € (0,1) and f(z) # 0 in A. Then the function f\(2) =
f*(2) is analytic in A and |fy(2)|(1 = |2|?)* < 1. For such functions fy(2)
K. J. Wirths ([W]) showed that

AN =12 < 2(A+1).

Therefore

rl 4 rTp2 .
B=ro [ =1 [fi(re'-|drdr

Ja prl

[T drdr
< + e
< 2rp(A 1)/ ij (1 = r)A1

= ?I&’:iﬁfu (S tp2) ™" = (1 = tpr) ™ ]dt.

As in the case A > 1 we estimate the last integral by

P2(12— A)((l —p)' 7 = (L= p2)' (1= X)(r = 2)),
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S —ﬁ:?\:(llt:\\))((l —p)' A = (L= p2)' A+ (1= M)(p1 - p2))-
Thus
Z | < SR =)™ = (1= 12 - (1= (0 = o)),

Then by (4) and (8) we obtain

_g. . B+ ) _, -
Lo > e [ it - S -

o (1 o ,,,0)1—,\ I, (1 i /\)(7‘0 . TO)) .

Since § is an arbitrary positive number, we get our Lemma for A € (0,1). O

Remark. Lemma 2 holds also for monotonic r(8) in [6,,8°)] and [6°, 6y +27].
It can be generalized for a piecewise monotonic and continuous function
7(#). In the case A > 1 the coefficient 16/(X — 1) from Lemma must be
replaced by 8k/(A — 1). Similarly we can consider the case A € (0, 1].

Let us now consider f(z) = log(1 — 2) € B; and w(z) = exp (—w%—f—‘)
Since [w| < 1in A, one can define functions

(9) Fo=fow, Fx=Fcyow, k.€ N,
analytic in A.

Theorem. The functions Fy defined by (9) belong to B, N B'. Moreover,
the inequality

c(k,p)
(= r2)P- 1/2 log 1 — 72

L(r, Fy) 2 for 0 < pr(p) < 1,

holds for every k = 0,1,2,... and every p > 1/2 with the constants c(k, p)

defined as follows.
If p> 1 then
ce~™ [2\P71/2
«(0,p) = 3 gem1 (5) ’
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where 0 < ¢ = ¢(p) = inf¢[o,1)[(1 — 7)'~ pf |1 — re't|~Pdt], and

c(0,p)
ki(20+3)/2 /r1ge)E PO

c(k,p) = (p) = 1/V2.

Ifp € (1/2,1] then .
B c(ple™ "
0P = S 1)

with ¢(p) = inf, ¢ 1) foh Ile:W > 0 and

c(0,
(k)= o /50

For p=1/2 we have

¢(0,1/2) ke1 1
(10y/m)(k+ 1)1 & T2’

where ¢(0,1/2) is given by the same formula as in the case p € (1/2,1].

11/2('1’Fl';) >

Proof. From the definition of F} it follows that Fi € B'. By Lemma 1 we
get Fy € B, for every k, since log(1l — z) € B;.

For positive integers N consider the sequence ry = — 1. Put
p g a N= 73/"_ Nooo
én = arccosrpy. Then

- 14 rye'n 1 -7} _ 1,
l—rNe“SN 1—27‘Ncos6N+rN
1 1+ ryetdn 27 sin 6y 2rny/1 =7y 2r N oN
m = — = % = —— = 0
1—rne’n 1 -2rycosby + 14 1—r% V1-1%
Now let é,, € [0, 7] be a solution of the equation
1+ ryetém 2r n sin b,
Im = 2m,

1—rnedm 1 —2rNcosém + T

where m € [0, N] is an integer. Setting y = cosé,, we obtain a quadratic
equation y2(4r4m? +r4,) —4m?ry(1 + i)y + m2(1 +1%)% = r% = 0. Hence

2m? 14 2N? 1 \/ m?
¥ = cosé,,

T1+4amI NI+ N2 1+4m2\ T N(NZ+1)
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Let us introduce the expression

1+1'Ne'5 l—rN
1—ryebm 11— 2rncosbm + Py
2 am? + 1

CoN?2 41+ /2N T+ 12 —4mZ -1

Z,n = Re

First consider the case p > 1 and use the induction with respect to k =
0,1,2%. &%
a) For k = 0 we have

L aT ; | )i ;
Brw B) = 5= [ VFenePat = = [ By(ewetpra
-7

m

P

2
T dt.

..
; z_: (1 — ryett)?

Note that for t € [6,,6m—1] we have |1 — rye't| < |1 — rye'®~-1| and

| lrne ) Plw(raet) P

R(t) = |w(rnet)| > Ry, = e775m,
Moreover,

11— w(rne) = 1= R()e“P| < |1 - Rme®®| + (R(2) - Ry)
<|1- Rme’l+ (1= Rn) < 2|1 - Rne'|.

The interval [6,,, é,,—1] is mapped by w(rne't) onto one branch of the spiral
w = R(t)e'*® = p(#)e'®, 8 € [-2rm,—27(m — 1)] and p(8) increases from
R,. to R,,_,. The element of length |dw| = |d(p(8)e*®)| of the spiral is not
less than the element of length |d( Rme'®)| of the circle {|w| = R,}. In this
way we get

3 (2r )P~ RP / |de|
rNIp(Tn, Fo) 2 — L L= ryettm-1|2p=12P g |1 - w|P

Since for p > 1 (cf.e.g. [MOS], p. 157)

wor= et [ b e () 2,

this means that the function u(r) is positive and continuous on [0, 1] with

u(1) = VAT () T (3).
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Therefore u(r) > ¢ > 0 for € [0, 1] and consequently

erP2 R?,
TNIP(TN, FO) 2 2 mZ—:N |1 ' TNewm_lIg(p_l)(l . Rm)p_l .

For any integer m € [0, N]

Tm_1  4m-1)%*+1 2N?+1+4,/(2N?2+1)2 - (4m? + 1)
Tm dm? +1 N2 414 ,/(2N24+1)2 —4(m—1)2 -1

__(1 8m — 4\ 1+\/1_3241:rn’2+115! >(l 8m—4)1>1

4m? + 1 (m-1241 4m? + 1 10°
71+ \/1 T (2N7T31)?

Thus

1 i T;m 1
10 _ = =
(10) |1 — ryeidm-1|2 1 - r?\, = ri. 10
and

cmP? 1 = RP zP-1

rnIp(TN, Fo) > 21071 (1 - 3,71 £= (1= Rp)P~ 1

Because z,, € [0,1], we have R, > ™™, 1 — e~ ™™ < 1z,,. Thus

g eafie N L ceT™P TN
0) 2 210P-1gpP- 1(1—7‘ -1 2r10P-1 (1= r2)p-172°

NI (TN,

The integral means I,(r, o) are increasing with respect to r € [0, 1) for every
function ¢ analytic in A (cf.e.g. [H], Theorem 3.1). Therefore I,(r, Fo) >
I(rn, Fo) for r € [rn,7N41]. Thus for 7 € [rn, TN41]

: 3 Lz
ce~TP 1 /1 - TTV-}-I .
I >
- p(r, Fo) > 271071 (1 — 72)p-1/2 LT = i
a2 L !

S — - | N e
= 2r10P-1\5) (1 r2)p1/2

for N > 1. Since N is arbitrary, the inequality (11) holds for = € [1/v/2,1).
b) Now, suppose that the theorem holds for any fixed positive integer & > 0,

i.e.

Ck 1
(12) I(r,F}) > A= ryi72 log* — for 1> 1> pp€(0,1).
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We show that it holds for k + 1. For m = 1,... , N write

Lm = {w(rne') 1t € (6, b6m-1]},

L_pm = {w(rne) it € [~bm,—bm_1]},
where L, is a spiral-like curve which winds once around the point z = 0.
For t € [6;n,8m—1] the quantity |w(rye'!)| increases with respect to t. L_p,

is a curve symmetric to L,, with respect to the real axis. Therefore for

every m = 1,...,N the curve L, U L_,, may be represented as a union
of two piecewise smooth closed curves I';, U T | where I',,, consists of the

upper part of L., and the lower partof L_,,, and I}, = L,, UL_,, \ T,
Both curves I',,, and I'!, fulfil the assumptions of Lemma 2 with g > R,
and 7° < R,,._;. Thus by (10) and (1) we obtain

N m—1
ralo(rns Fig) 2 2 Z / Ly (e Pt

1 1-N /5m_,
2T meN Sm

1 {‘l (27 Ry )P~ !

Filw(rne® )Pl (ret) P~ du(re)

== I Pld,
T 2w & [1- ryetm=1|2(p-1) /Lm T | Fi(w)|?|dw]
(ZK)P -2 / Hjag -
= 10°- 1 1_ f' P- "? l(-r‘m 'I'TI. I-MU[-:“ |Fk(d)1 |dﬂ(4.)|

(2r) P-2\/2
10P-1(1 — r%,)P-!

N
X Z (szm)p—l
m=1

P+t
p—1
since by Lemma 1 the functions Fi belong to By, i.e. [Fi(z)|(1 — |z|*) < 2

for z € A.
Because === > {5 for integers m € [0, N], we have

21 Rin (R, F})

(1= Rm-1)' P = (1- Rm)l-P)l :

T 10:cm_1 = T(Tm — Tm-1) < IMTm_1 < 9(e™ ™1 - 1)
= Ron1m(Zm — Tm-1) < 9(1 = Ryn—1)
1-Rm1(l —7m(zm — Tm-1))
1-Rna
1 — Ryp_ye""(Em=%m=-1) 1- R

<10 &= ——=- < 10.
l'_Rm_l 1_Izm—l

< i0
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Therefore (see (12)) for R, € (pk,1)

p+4
(1= Rper)'? — (1= Ra)'™)

27erRm 1 2p+4 1l n
> Mg yein 8 Togr ~ 5o (1= Emo1)' 2= (1= Bn)' ™)

p+4 t p-1 1
(1 Rryi-o| 2B 12 (( ol o
Vv1-RZ 1- R2, P—1\\1-Rm,

IPLT gp+i
————="10/ i
VI-RL, °1-R, p-1
mck R log" ]T'R;:
(1= Ry

(13) 21 Ry Iy(Rpm, FL) —

>(1- R2)-P 1071

>

for R, sufficiently close to 1, i.e. for R,, > 1 — &, > px, €x € (0,1).

1 1
Rp>1—¢p <= :cm<;r-log . =2ni(0<r)k<1)
— &k

4m? + 1 2
= < 2
2N2+ 14 /(2N2+1)2 —4m? - 1
<> 4m? + 1< (2N? 4+ 1)an? — 4n}.

The last condition holds for m < Nng, with N > 1/(27,). Now, suppose
that N is sufficiently large (N > 2/n?). Then the inequality (13) holds for
1 < m < Nny and for N > 2/n?

wP~1¢,

N 1
Myl aP 1 RP & 1
rnI(rn, Frpy) 2 V25P1(1 - 14, L — R2)p-172 log T_ R

As stated above, 1 — R% < 2rz,, for every m. Moreover, R,, > 1 — ¢, for
m € [1, Nni]. Consequently

N
Ck(l w Ek) 1 1
ranis(r > lo
Nip(TN, iH-lJ'_ 2/ 107" 1(1—r2 Y1 Z_: S g orz,
Since z,, increases with respect to m, each term in the last sum decreases
with respect to m (we can assume that 7, is sufficiently small and then
4rz,, < 1). Therefore

_ P Nme
rnIp(rn, Fiyy) > i .ci)

~d
= om0 (1 - i)t ), Em log" z "
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The change of variables in the integral

Sy (2N? + 1)u
(14) L\
Lo Amitl 5 4(Nme)? + 1

@NT+ 1) @NTT I (2N f 1) 1=14.8]

yields 2m = /(2N? + )?u— 1 < (2N? + 1)y/a, and dm = CN 174y >

2
N1 gy,
1/u

Consequently
N
- log" l dm
1 VEm 2T L m

B\/1+\/1—u2N2+11 r 1+vV1-u

—_ o) d

=Ja VNIt 4/u P 22N+ Dut
—— B

> ———\/2N 1 / log" —_12 d_u

= 4 A 2r(2N2 + 1)u u

CVRNTHL L 1 .

oght lhtust —__ 5o
a(k+1) 5 20 2NT+ u|,_p

" V2N? +1 I‘l - 2N2+1——logk+l 2N% 41

4(k +1) 107 2r(4N?n + 1),
VINT+1 ks 4N +1
= 4(k+1) 5 .

since a* — b* > (a — b)* for 0 < b < a and any positive integers k. Because
N is sufficiently large (Nn? > 2), we obtain

Nog—q il VNTE1,
2 dm > ~————log"*! /N2 + 1
R~ Ml S R i
log™+! -
T oa(k 4+ )26+ /1 - 7
In this way for sufficiently large N we have
& Ck(l =, Ek)p 1 1 k+1 1
rb(rns Fin) 2 g or-Tk + D2F (1 - 3 p 172 8 T 1%

Now, if r € [rN,rN+1], an > 2, then
rIy(r, F'I::-{»-l) 2 TNIP(TN7F12+1)
(15) (1l —eg)Pe’ log"t! iy
= 8y/m10P~1(k + 1)2k+1 (1 - r2)p=1/2"
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where

¢ =c(m)= min

(l~r}v+l‘p_”2{ log(1 — %) \k“ =
S A )

\log(1 - T?v+1)/ Ik —0

In the above considerations we can take €, and 7y sufficiently close to 0.
Therefore we can assume that ¢'(nx)(1 — €x)? > 8/10. Then

1 1
I 0 > Ck 4 1 k+1
p(T, Fk+1) = 2\/—7F10”(k + 1)2k+1 (1 . T2)P—1/2 og 1- 1‘2

for r sufficiently close to 1, i.e. for r > pryq > 1/2.
Now consider the case 1/2 < p < 1. As above, we also use the induction
with respect to k = 0,1,.... For N > 1

N P
l m=—=1 .
Ip(’I‘N,F(;) Z ; Z / IF{;(TNC")|p dt.
m=1 m

The following inequalities

. : . xI
lw(rne)| € Rm-1, |1 —rne|72 < |1—rye'|72 = 1 ﬂ;.z
-TN

hold for t € [6,,8,m—1]. In a similar way as for p > 1 we obtain
N

1 - r3)1-? 1 |de|
! > ( N / .

For0<p<1

B 2 di ) r3m/2 dt N T 3
wi= [ e 2], T e

Therefore ¢ = ¢(p) = inf,¢[o,1) u(r) > 0. Consequently

= N
' ce” " 2 \1- -1
rnIp(Tn, Fy) > ——2“_2_p(l — i) Z zk
m=1
= N
e rml-v/ i
a 27r2"7’ k s 1 z}n—P

Using change of variables (14) in the integral with u € [qu,—lp, ﬁ%%r] =
[A,B] for 1/2 < p <1 we get

/N dm _ (2N? + 1) /B =32y 5 CN2 D i
1

T et S 4 A T 202p-1)
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_(@N? 41y 2P71/2 4 o(1)  V2NZ 4 1(1 + o(1))

2(2p—1) (2N2+1)p-1/2 —  23/2-p(2p— 1)
_ _140(1) 2 \=1/2
= él_‘l’(2—p—T)(1 -TN) , where o(1) N?;o 0.

In the case p = 1/2, we obtain for sufficiently great N

N LT
dm V2NZ +1 4N 4+1 N?2+1 —
> lo 2

log =

C2V2(1 - rg )/

Moreover, for N > Ngo we have

ce " 1

E) >
TNIP(TN, 0) = 2(27r)2_p(2p _ 1) (1 o T?V)p_l/zs 1 2 p > 1/2,
ce ™ 1
rnIy(rn, Fp) 2 32r) log T p=1/2.

Now let N be sufficiently great and r € [rn,7n41]. Then for p € (1/2,1]
we have a result similar to (15)

S ce " 1 )
= 3(27r)2—p(2p — 1) (1 - 7-2)p—1/2 !

(16)  Iy(r, Fg) > Ip(rN, Fo)

-

A ce 1
(17) I ja(r, Fp) 2 3(2r P2 log

1-172°

Therefore the inequalities (16) and (17) hold for 1 > r > po(p).
Now suppose that for some integer k > 0 the theorem is true, i.e.

k
2l ck(p) l 1_
(18) I(r, F}) > A= r2)p-in (logl_T2 , 1>p> 3

k+1
(19) Iyja(r, Fi) 2 e(1/2) (log 1 _1T2)

hold for 1 > 7 > px(p). We show the theorem to be true for k + 1.
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As above

|dw(rne')|

Ip(rny Fiyr) 2 o= 2 Z / IFL[u(rne")ll”W

N

gl Ay
> SIS Rzl [ R

(2m)-p £~ LUl

Since Fj € B’, one can use Lemma 2 for the integrals over I';, and I',,. By
(1) with 7o > R, ™° < R,,_; and 1/2 < p < 1 we get

1—r2)l-» _
rnIp(TN, Friyy) > ( = \';’zp ‘/-Z LT 1[_/; el | F(w)[P|dw]

m=1

_8(1+p)
“p(1-p)

With p = 1 we have the following inequality

—— (1 =Ran) =2 _Rm—l]l_p)]'

\/—2_ X ' ____1 ~ Bnm .
TNI](TN, F'l:-}-l) z 2?[ Z ‘/l:‘)l:Rm le(w)“dU)I i 8Rm log 1— Rm—l

m=1

From (18) and (19) it follows that for 1/2 < p <1

! ol SR S
2/Hszum Pl - S 2 >0,
1

3 | VPl Blog10> 0,

where R,, > pk(p) and R, is sufficiently close to 1,i.e. R, > 1 — ¢, €k =
ex(p) € (0,1). This is equivalent to 1 < m < N, n = nk(p) € (0,1)
where N is sufficiently great and (Nn? > 2). We have shown that

]l - Rm

———g 1
1_Rm--l S

as m € [0, N]. Thus for N > 2/n2 and m € [1, N7i] we have the following
inequality

Nme
V2Y (Rpo12m)? ' 7L (Rm, FY).

m=]

1 —r2\1-P
( N)

(20) TN 2 @R
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This implies for 1/2 < p<1land 1 - an <27z

! . —u N
5 ex(@)(1 = r3)'" N (Bmo12m)?™! (
rN!P(rN9 k+l) 2 (2”)1_,,\/5 mZ (1= R? )p—l}Z Rgn
cal@(1-r3) P X ozt 1\

(21) 2

m
~ 1
(2m)1-P\/2(27)P-1/2 mz;x gP1/? Kog 27rzm)

_a@ -t & 1, 1 \*
N A D (108 575 )

Z

The last sum in (21) has the same form as in b) in the first part of the
proof. Therefore for N > 2/n}

0 ‘-'k(F) k+1 1
> : 3
TNIP(‘I‘N, Fk+1) - 8\/?(& 4= 1)(1 _ T.?V)p_l/z log e T?V

Now, if 7 € [rn,TN+1], N2 > 2, then, similarly as above (see (15)) we
obtain

ck(p) k41 _ 1L
(22) I(TFk+1)‘10\/_k+l )(1 - r2)p- 17 108 1-r?

for N sufficiently great. This means that (22) holds with r sufficiently close
tol,ie. 0 < prsa(p) <7< 1. 1In this way the proof is complete for
1/2<p< 1.

For p = 1/2 we obtain from (20)

Nny

Ck(1/2) 1 k1 L
rN11/2(7‘N,Fk+1 2\/3r \/1 Z vmlog 1_ RZ

m=1

N7
s w7 [N L jggknt L
- 2\/7|' V ‘:1 \,‘xm 27l'$m

We have obtained the sum of the same form as in (21). Thus for N > 2/1;,2c

ck(1/2) k2 L
rnly2(rn, Frpr) 2 8/r(k +2) log T

This implies (in a similar way as before) the following inequality

ck(1/2) k+2 L
11/2(1‘ Fk+1) = mlog 1— 2
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for r sufficiently close to 1 which shows the theorem in the case p = 1/2.
The proof of the theorem is complete. O

The idea of constructing the function Fj appears in [S], where the author
considered the linearly invariant families U, of locally univalent functions
h(z) = z + ... of the order a (cf. [P2]).

For h € U, sharp inequality

1+ [z])>!
h' < ( A
' (z)l —_ (1 = |Z|)°’+1, z E

was shown in [P2]. Hence
(23) heU, = K =(f)*, feB,

and for functions f € B', defined by (23) I +1(r, f') = Ii(r,h'). For h € U,
the inequality

Li(r,h') <e(1- 7‘)_1/2_\/0‘2—3/4_5,

where ¢ =const and ¢ > 0 sufficiently small, was given in [P3] (p. 182,
Problem 5). Since a + 1/2 > /a2 —3/4+1/2 = a+ 1/2+ O(1/a), we
have @ — oo and after integration of |f’|**! the order of the growth of
Io41(r, f') is reduced, as compared with the growth

hl = ! a+1
heszlﬁ’zﬁ:r' (2)| fﬁgrlf(z)l

by more than 1/2.
Thus we obtain the following

Problem. Does there exist a function f € B’ for which I,(r, f') has an
order of growth greater than that given in Theorem? For p > 0

inf{8 > 0: I(r,f') = O0((1 - r)™?) VfeB'}=pp).

The author is greatly indebted to Professors J. M. Anderson and D. Girela
for discussions on the results and for information on some related papers.
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