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A conformally invariant dilatation 
of quasisymmetry

Abstract. We discuss a conformally invariant modification of the Beurling- 
Ahlfors condition of quasisymmetry.

0. Introduction. Given a domain ft C Ć and K > 1 let QC(Q; A') stand 
for the class of all A'-quasiconformal (qc. for short) self-mappings of fi and 
let

QC(fi) := (J QC(Q;A') .
K>1

Assume that Q is a Jordan domain bounded by a Jordan curve T. A classical 
result says that each F G QC(fl) has a homeomorphic extension F* of the 
closure fl = fiuT onto itself; cf. [LV]. Then the restriction

Tr[A] := A,*r G Hom+(r) ,
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where Hom+(r) denotes the class of all sense-preserving homeomorphic 
self-mappings of T. For K > 1 consider the class

Q(r;A'):= {Tr[F] : F 6 QC(Q; A')}

and
Q(r) := {Tr[F] : F 6 QC(fi)} .

A natural problem appears to describe the class Q(T). The first such char­
acterization in the case Q is the upper half plane C+ := {z 6 C : Im z > 0} 
and F € QC(<C+) satisfying F*(oo) = oo was given by Beurling and Ahlfors 
in [BA] by means of the so-called quasisymmetric functions. They showed 
that for every F £ QC(C+) such that F*(oo) = oo,

Tr[F] e QS(R),

where QS(R) := Um>i QS(R;Af) and

4QS(R;M) := <f e Hom : /(oo) = oo and

J_ < f(x + t)-f(x) M - /(x) - /(x - /)
< M, x e R,t > 0 }•

Conversely, if f € QS(R), then / admits a qc. extension to C+, i.e., there 
exists F 6 QC(C+) such that Tr[F] = /. The Beurling-Ahlfors concept of 
quasisymmetric functions may be easily carried to the case of an oriented 
Jordan arc or an oriented Jordan curve T C C which is locally rectifiable. 
To be more precise we say that a homeomorphism / £ Hom+(r) is M- 
quasisymmetric (qs. for short) provided the inequality

l/(A)l
M ~ |/(/2)|i

< M

holds for all closed arcs Ą, 12 C T such that their intersection I\ D I2 is not 
empty and consists of at most two points (the arcs Ą and I2 are then said 
to be adjacent) and 0 < |Fi|i = I-F2I1 < 00. Here and in the sequel |F|i 
stands for the arc length measure of an arc I. We write QS(T; M) for the 
class of all AF-qs. homeomorphic self-mappings of T, M > 1, and we set

QS(T) := (J QS(r;M).
M>1

According to these definitions QS(R) = {/ € Hom+(R) : /|r £ QS(R)}. H 
was shown by J. G. Krzyż in [K] that in the case where T is the unit circle 
T := {z E C : |x| = 1} and Q is the unit disk D := {z € C : |x| < 1),

Q(T) = QS(T) .
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The characterization of the class Q(T) by means of the class QS(T), r := R 
or T := T, requires only two real parameters which represent a common 
point ( E ĄflĄ € T and the length |/i |i. On the other hand such description 
is not conformally invariant, i.e.,

{hlOfoh2-.fe QS(r; M) and hi, h2 E Q(T; 1)} £ QS(r; M)

in general. A conformally invariant description of the class Q(T) by means 
of quasihomographies is due to J. Zajqc even in the general case of a domain 
Q bounded by a Jordan curve T; cf. [Z]. To define a A'-quasihomography 
(qh. for brevity) he used the so-called harmonic cross-ratio [zj, z2,23, 24]^ 
of a positively ordered, with respect to fi, quadruple of distinct points 
21,22,23,24 E T. If T = R or T = T, then the harmonic cross-ratio 
[21,22,23, 24)0 is reduced to the square root of the following usual cross- 
ratio

Z2 ~ Z3 Zl ~ Z4 

Z\ ~ Z3 Z2 - 24
[-21, Z2, Z3, Zi]

According to [Z, p. 44 Definition], for K > la homeomorphism 
f E Hom+(r) is said to be a A'-qh. of T onto itself if the inequality

1 //<("v/t2! ’ ^2ł 23, ^4] )2 < [/(^l), f(z2), f(z3\ 7(24)] 

< $ A ( \Zlz^z2,Z3,Z4] )2

holds for all quadruples of distinct points 21, z2, 23, 24 E f (f = R,T) that 
are positively ordered with respect to fi. Here is the familiar Hersch- 
Pfluger distortion function; cf. [HP], [LV, pp. 53, 63]. For A > 1 write 
QH(T; A') for the class of all AT-qh.-s of T onto itself and let

QH(r):= J QH(r;A').
;<>i

From [Z, Thm.-s 2.1 and 2.8] it follows that Q(r) = QH(r). Since the 
harmonic cross—ratio is conformally invariant, we easily see that the class 
QH(T; A') is conformally invariant for each A > 1, i.e.,

{hi ofoh2 : / E QH(r;A') and h2,h2 E Q(T; 1)} C QH(r;A') , K > 1 .

However, (0.1) shows that Zajqc’s description of the class Q(1) requires four 
real parameters which represent z4,z2,z3,z4 E I •

This paper aims at giving a three real parameters description of the 
class Q(r) which is still conformally invariant. Io this end we modify the 
classical Beurling-Ahlfors condition of quasisymmetry. Key tools in our 
case are notions of the second module of a quadrilateral and the hyperbolic
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square that are defined and studied in Sections 1 and 2. Then we introduce 
generalized, quasisymmetric homeomorphisms of T onto itself in Section 2 
and give a new description of the class Q(T). In Section 3 we focus our 
attention on the simplest case where T is the closed real axis R or the unit 
circle T. Section 4 is devoted to applications of our description.

The authors would like to express their sincere thanks to Professor Jan 
Krzyż for his helpful comments on the original version of this note.

1. The second module of a quadrilateral. Write w(2,fl)[/] for the 
harmonic measure at the point z G fl of the arc I C T with respect to a 
domain fi C C bounded by a Jordan curve T = dSl. Given distinct points 
24,22 € T we denote by r(zi,z2) the open arc from z\ to 22 according to 
the positive orientation of T with respect to Q. We recall that a quadrilat­
eral Q := Q(2i, Z2, Z3,24) is a Jordan domain fi C C with distinct points 
Z\ > z2, z3,24 lying on the boundary curve T = dfl and ordered according to 
the positive orientation of T with respect to Q; cf. [LV, pp. 8-9].

Lemma 1.1. There exists a unique point z E Q with the following property

w(2r,n)[r(zi,22)] = w(z,fi)[r(«3,24)] and
w(z,fi)[r(z2,z3)] = w(z,fi)[r(z4,«1)].

Proof. By the Riemann and Taylor-Osgood-Caratheodory theorems there 
exists a homeomorphism ip of the closure Q = Q U T onto D which is con­
formal on Q and sends the points 24,22,23 into 1,i, — 1, respectively. Let 
£ := ę>(z4). For a G D define

— ctha(l/a):= 00, ha(oo) :=-1/a and h0(u) := y—— , uGC\{l/a}.

Obviously, hop> € QC(O; 1) for a G D. A simple calculation shows that 
there exists t G ( — 1,1) satisfying ht(£) = —ht(i). Since ht(l) = 1 and 
Zif( —1) = —1 we have

w(0,D)[(ht oę?(r(2i,22))] =w(0,D)[h< 0 <p(r(23,24))], 
u>(0,D)[/i( o ęj(r(22,23))] = w(0,D)[ht o ęj(r(24,21))].

By the conformal invariance of the harmonic measure the equalities (1.1) 
hold with 2 := (ht o ę>)-1(0) G fi. Since (1.2) does not hold if 0 is replaced 
by any a G D \ {0}, it follows that 2 is a unique point satisfying (1.1). 0
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Definition 1.2. The unique point z £ Q satisfying (1.1) is said to be the 
hyperbolic center of a quadrilateral Q := Q(^i, z2,23, Z4). We denote it by
c(Q).

Lemma 1.1 justifies the following

Definition 1.3. The ratio

tan 7Tu>(c(Q),n)[r(zi,z2)] 
tan 7tcj(c(Q), Q)[r(z2,23)]

is said to be the second module of a quadrilateral Q := Q(zi,22,23,2q).

Example 1.4. Given Xi,a:2,a:3 € R, zi < a:2 < 2:3, consider the quadri­
lateral Q := C+(ii,x2,X3,oo). Then the hyperbolic center c(Q) = x2 + iy, 
where y > 0 is determined by the equation

1 i2 - ij 1 1 13 - i2
— arctan--------- --------arctan----------  .
tt y 2 ic y

This equation has a simple geometric interpretation: the vectors [c(Q), xj] 
and [c(Q),:e3] are orthogonal. Hence y2 = (x3 - x2)(x2 - zi) and therefore

(1.3) c(Q) = x2 + 11/(13 - x2)(x2 - ii) .

Consequently, the second module of Q is equal to

(1-4) m(Q) = i2 — ^l 
x3 - x2

The second module m(Q) is related to the module M(Q) of Q as follows.

Theorem 1.5. The second module m(Q) is conformally invariant and the 
equality

(L5>

holds for every quadrilateral Q := z2, Z3, Z4), where

p(r) := 27rM(D\[0,r]), 0 < r < 1,
it

and M(D\ [0, r]) is the module of the Grotzsch extremal domain defined by 
means of the extremal length.

Proof. Since the harmonic measure is conformally invariant, so are by 
Lemma 1.1 the hyperbolic center c(Q) and the second module m(Q).
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As shown in the proof of Lemma 1.1, there exist a point t] 6 T(l,-1) and 
a homeomorphism <p of Q onto D which is conformal on Q and sends the 
points z\, 22, Z31 z4 into the points 1,77, —1,-77, respectively. Define

/i(—77) := oo and /i(u) :=
,TJ — U 
I i ’ 77+ li u e c\ {-77}.

Then h 0 95 maps conformally fi onto C+ and sends the points Z\, z^, 23, Z\ 
into the points Xi := h(l), £2 := 0 = ^(77), X3 := /i(-l) and X4 := 00 = 
/z(—77), respectively. Since the second module m(Q) is conformally invariant 
and, by [G, p. 13],

w(i, C+)[(:ci, 0)] = — arctan(—£1) , Lu(i, <C_|-)[(0, X3)] = — arctan x$ ,
7T 7T

we see that

(1-6) m(C+(a:i, 12,13,14)) =----- •
«3

On the other hand

(1.7) M(C+(ii,a:2,a:3,i4)) =

Combining (1.6) with (1.7) and applying the conformal invariance of the 
module of a quadrilateral we obtain (1.5). □

Theorem 1.5 enables us to express the quasiconformality of a mapping 
by means of the second module of a quadrilateral and the Hersch-Pfluger 
distortion function + /<, K > 0, defined by the equalities

(1.8) $/<(r) := /x_1(M(r)/K) , 0 < r < 1 , 4>,<(0) := 0 , $K(1) := 1 ,

where /i-1 denotes the inverse of the homeomorphism //; cf. [HP], [LV]. 
Applying the identities ([AVV, Thm. 3.3])

(1.9) Mr)2 + - r2 )2 = 1 , 0<r<l,

and

(1-10) m(Q(zi,22, z3,24)) m(fi(z2, 23,24,21)) = 1

for all quadrilaterals Q(zi, z2,23,24), we immediately obtain
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Corollary 1.6. For every K > 1 a sense-preserving homeomorphism </> :
C C is K-qc. on a domain U C C iff the inequality

(1-11)
\/l + yi + m(Q)

< $/<

holds for every quadrilateral Q = fi(zi, zi, z3, z4) satisfying Q C U, where 
<P*Q := y?(Q)(ę3(zi),ęj(z2),ę’(23),V’(^))-

Remark 1.7. As a matter of fact, the inequality (1.11) is equivalent to the 
double one

$1//< ( ^1 + m(Q)) - yi + ~ + m(<5)

for all quadrilaterals Q = ft(*i, z2, z3,24) satisfying Q C U, which is due to
(1.9) and (1.10).

2. Generalized quasisymmetry. We are now in a position to give a 
conformally invariant description of the class Q(T) for a boundary curve T 
of a Jordan domain Q C Ć in terms of the second module of a quadrilateral.

Definition 2.1. A quadrilateral Q := Q(zi, z2> z3, z4) is said to be a hyper­
bolic square if m(Q) = 1; in other words, if

w(c(Q), n)[r(2!, z2)l = w(c(Q), fi)[r(z2, z3)] = <v(c(Q), n)[r(z3, *<)]

= w(c(Q),fi)[r(z4,zi)] = | •

The class of all hyperbolic squares Q(zi, 22, z3,24) is denoted by HS(fi). 
For a given z € F we write HSZ(Q) for the class of all Q(zi, Z2, z3, z4) 6 
HS(fi) such that z4 = z. If f G Hom+(r) and Q := n(z1,z2,z3,z4) 
is a quadrilateral, then we use the notation f * Q for the quadrilateral 
0(/(«l),/(22),/(^3),/(^))-

Theorem 2.2. For every homeomorphism f G Hom"l’(I), f G Q(F) iff the 
inequality

(2.1) < m(/*Q) < M , Q G HS(fi)
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holds for some M > 1. More precisely, if f £ Q(T; A') for some K > 1, then 
f satisfies (2.1) with M := see (2.3). Conversely, if f satisfies (2.1)
with some M > 1, then

(2.2) f E Q (r; min{ A73/2,2M - 1}) .

Proof. Assume that f € Q(T). Then there exist K > 1 and a homeomor- 
phic self-mapping F of Q such that A|q 6 QC(Q; A') and Ajp = f. Since 
is a Jordan domain, we conclude from Corollary 1.6, Remark 1.7 and [LV, 
Lemma 5.1 in Chap. I] that for every Q E HS(fi),

$i//< | —.— = ) < — < | — =
V \/l + m(£)/ x/1 + m(/* Q) \+ m(Q)

Since m(Q) = 1, we obtain

- 0 + in(/.Q) ~ ■

Hence by (1.9) we see that 1/A(A') < m(/ + Q)< A(A'), where

(2.3) A(/f) := *,< (-L) ł1/K (-)=) , A’ > 0 ,

is the distortion function introduced by Lehto, Virtanen and Vaisala in 
[LVV]; see also [LV], [Le]. Setting M := A(A') we obtain (2.1).

Assume now that (2.1) holds for some M > 1. By the Riemann and 
Taylor-Osgood-Caratheodory theorems there exist homeomorphisms Hi • 
C+ —> Q = 7/i(C+) and ff2 : ♦ C+ = ff2(fi) conformal on C+ and 0,
respectively, satisfying

(2.4) H2 ° f ° Hi(oo) = oo .

Set fif(t) := H> o f o ffi(t), t E R. By (2.4) the mapping gm is an increasing 
homeomorphism of R onto itself. Fix x E R and y > 0. Example 1.4 shows 
that the quadrilateral Q := C+(a; — y,x,x + ?/,oo) is a hyperbolic square 
and c(Q) = x + iy. Since the second module is conformally invariant, 
ffi(Q) € HS(fi), and by (2.1) we have

(2.5) < m(/ * HX(Q^ = m(H2 * (/ * fĄ(Q))) = m(p * Q) < M .
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By (2.4), 5(00) = 00. Combining (2.5) with (1.4) we have 
_i_ < g(j + y)-g(x) < M 
M ~ g(x)-g(x-y) -

Since the above inequality holds for all x G R and y > 0, we see that 
g|R G QS(R). Then the Beurling-Ahlfors extensions of g to C+ are qc. 
mappings; cf. [BA], Moreover, Lehtinen’s estimate [L, Thm. 1] shows that
(2.6) g G Q (R;min{M3/2,2M- 1}) .

If G G QC(C+) is a qc. extension of g to C+, then clearly 
F := fff1 oGotff1 g QC(fi)

is a qc. extension of f to fi. Thus f G Q(T). Moreover, by (2.6) we obtain 
(2.2). □

For a homeomorphism f G Hom+(r) we define
Zi(/;Q) := max|m(/*Q), j , Q G HS(fi) ;

6(/; z) := sup{£(/; Q): Q G HSz(fi)} , z G T ;
<$(/) := sup{<$(/;<2) : Q 6 HS(fi)} = sup{<$(/;z) : z G T} .

We call 0(/) the generalized quasisymmetric dilatation of a homeomorphism 
f G Hom+(r). Write

GQS(F; M) := {/ G Hom+(r) : 6(/) < M} , M > 1 ;

GQS(r) := {f € Hom+(r) : 0(/) < 00} = J GQS(r; M).
M>1

In other words, f G GQS(T; M) iff f satisfies (2.1) with M, M > 1.

Definition 2.3. Given M > 1 we call f E GQS(r; M) a generalized M- 
quasisymmetric homeomorphism of T. A mapping f is said to be a gener­
alized quasisymmetric homeomorphism of V if f E GQS(T).

Remark 2.4. By Theorem 2.2 we have 
Q(r) = GQS(r) ;

Q(T; A’) C GQS(r; A(A')) , K > 1 ;
GQS(r;M) C Q (r;min{M3/2,2M - 1}) , M>i.

As shown in the proof of Theorem 2.2, the last inclusion can be improved 
as follows

M = inf 6(f-,z) => f E Q fr;min{M3/2,2M - 1}) , f E GQS(T) . 
zgr ' '
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Corollary 2.5. The generalized quasisymmetric dilatation <5 is conformally 
invariant, i.e. for every f E Hom+(r),

(2.7) MoMM/), h1,h2£Q(r;i).

Moreover,

(2.8) GQS(r;l) = Q(r;l).

Proof. For every Q £ HS(fi) we have

m((h1 o f o h2) * Q) = m(h1 * (/ * (/i2 * Q))) = m(/ * (/i2 * Q)) .

Since Q £ HS(fi) iff h2 * Q € HS(Q), o f o h2; Q) = 0(/; h2 * Q) and 
hence (2.7) follows.

Let idp denote the identity self-mapping of T. Evidently, <5(idp) = 1. 
Thus by (2.7), £(/) = 1 for all f £ Q(r; 1). Hence Q(r; 1) C GQS(r; 1).

Conversely, assume that f £ GQS(F;1). Then (2.2) in Theorem 2.2 
shows that f £ Q(T; 1), and hence GQS(T; 1) C Q(T; 1). The above inclu­
sions yield (2.8). □

Remark 2.6. Let 21,2:2,23 £ T be a triple of points ordered accord­
ing to the positive orientation of T with respect to Q and let ip be the 
mapping from Lemma 1.1. Set z± := ę>-1(-i) and z := ę>_1(0). Since 
Q := 0(1, i, —1, —Ż) £ HS(D) and c(Q) = 0, we see that Q(2i, 22,23, 24) = 
<£_1 * Q £ HS(Q) and c(Q(2i, 22, Z3, Z4)) = z and that 24, z are unique 
such points. Thus the points 24,22,23 determine uniquely the hyperbolic 
square fi(2i, 22,23, z4) and its hyperbolic center. Similarly, given Zi £ T 
and 2 £ Q we can uniquely determine Q := Q(2j, 22,23, 24) £ 1IS(Q) such 
that c(Q) = 2. Therefore the generalized quasisymmetric dilatation S gives 
a three real parameters description of the class Q(T) which is, by Corollary 
2.5, conformally invariant.

3. The case of the real axis or the unit circle. In this section we 
assume that T := T and Q := D, or T := R and Q := C+.

Lemma 3.1. For every quadrilateral Q := fi(2i, 22,23,24),

n rr.tr>} - [*2,z3,*4,*i] _ 1 ,(^•1) m(Q) r i r 1

1^1 ? -^2 ? ? ^4 J > ^2? ? ^4 J

In particular, Q £ HS(Q) iff [21,22,23,24] = 1/2.



A Conformally Invariant Dilatation of Quasisymmetry 177

Proof. Since the second module is conformally invariant, we may restrict 
ourselves to the case where T := R and Q := C+(xi, x2, 3:3,00). Then by
(1-4),

m(Q) =
[3:2,3:3,00,3:1] 

[3:1,3:2 5 2:3, 00]
#2 1 

X3 ~ x2

which combined with the identity

[21,22,23,24] + [22,23,Z4,2l] = 1

shows (3.1). The latter part of the lemma follows easily from (3.1). □

Corollary 3.2. Given a triple of points 2i,22,23 € T ordered according to 
the positive orientation of T with respect to Q, there exist unique points 
24 € T and 2 6 Q such that Q := fi(2i, 22,23,24) 6 HS(fi) and c(Q) = 2. 
Moreover, the following equalities hold:

Cr _ (*3 ~ -*2)*1 ~ (*2 ~ Zl)*3
4 (23 - 22) - (22 - 21)

and

«?) =
(z3 - 2:2)21 + i(22 - 2t)z3 

(23 - 22) + i(z2 - 21)
.tap3.3

Proof. The equality (3.2) follows directly from the equality [21,22,23,24] =

1/2. By the equality (1.3) we have

(3.4) c(C+(-t,0,t,00)) = it , t > 0 .

There exists a unique conformal self-mapping h of C satisfying

h(—t) = 21 , h(0) = 22 , h(t) = 23 .

Since h(C+) = Q and since hyperbolic center is conformally invariant, we 
have c(Q) = h(tt) by (3.4). Then (3.3) follows from the equality

[2i,22,23,h(it)] = . □

By (3.1) we obtain

Corollary 3.3. If f G Hom+(r) and if M > 1, then f € CQS(I ; Ad) iff 
the inequality

1 M

holds for all 0(24,22,23,24) € HS(O).

Combining Corollary 3.3 with the first inclusion in Remark 2.4 we obtain
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Corollary 3.4. If K > 1 and if F G QC(Q; A'), then the mapping f := 
Tr[A] satisfies the inequality

A(g)
A(A') + 1

for all Q(^i,22)^3,Z4) G HS(Q).

4. Applications. In this section we give some results that are obtained 
by using the generalized quasisymmetry. Applying (1.8) and the identity 
[Z, (2.4)] 2

M(C+(ii,a:2,a:3,X4)) = -p (x/[xi,x2,x3,x4])

for all positively ordered quadruples of points Xi, i2, x3, i4 G R, we can 
easily show that for every K > 1,

(4.1) G G QC(C+; tf) => Tr[G] G QH(R; A') ;

cf. [Z, Thm. 2.1]. We use (4.1) to prove Theorem 4.1 which is a general­
ization of the result by Krzyż [K, Thm. 1]. For K > 1 and 0 < p < 1 
set

A(A» := (1 + A(tf ))*1/K
2p
+ P

-2

- 1

and

B(A',p):=
1+a(k) ( rrrv2 ,

It is easy to check that for all K > 1 and 0 < p < 1, 

B(A',p)_1 < A(A') < A(/f,p)

and B(K,p)~x = A(AT) = A(A',p) iff p = 1.

Theorem 4.1. Suppose that K > 1 and that a mapping F G QC(D, A) 
satisfies A(0) = 0. If Ą, J2 C T are adjacent arcs of positive length satisfying 
P := I/2I1/IAI1 < 1, then

(4-2) A{K,Prx <B(K,p)<
l-F*(A)li

|F*(/2)|i
< >i(A',p).
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Proof. Assume first that |/i|i > |/2|x and that adjacent arcs /b/2CT are 
ordered according to the positive orientation of T, i.e. {eił : Zj < t < t?} = Ą 
and {e*‘ : t2 < t < t3} = I2 for some ti,Z2,i3 G R satisfying 0 < tx < 2tt, 
<1 < <2 < <3 < *i + 27T. Following Krzyż [K] we can assign to F a A'qc. 
self-mapping G of C+ satisfying the identity F (eiz} = eiG(z) ,z £ C+ . The 
mapping G is uniquely determined if we assume 0 < G*(0) < 27T. Then

— °° and Corollary 3.4 says that the inequality

(4.3) 1
A(A') + 1 <[G*(2i),G-(22),G*(z3),G*(z4)]<

A(A') + 1

holds for all 2i,z2,z3 e R, zx < z2 < z3, where z4 is given by (3.2). Assume 
now that the points 21,22,23 € R are chosen such that 2; = ti for I = 1 2 3. 
Then {el< : 21 < f < z2} = Ą and {ea : z2 < t < z3} = I2. Hence

(4-4) |A|i = 22-21 and |/2|j 23 - 22 .

From (3.2) and (4.4) it follows that

24 22 + 2 > 23 — 22 + |/2|x

and consequently

(4-5)

Note that

[21,z2,24,00] Z2 ~ z4 

Z\ - Z4

m,

(4.6)
|F*(/i)|i + |F*(/2)|l [G*(2i),G*(22),G*(23),G’(z4)]

_ G‘(z2)-G’(z4) =[G-(2l),G«(22))G-»(Z4))G.(oo)b
G*(2i)-G*(24)

We conclude from (4.1), (4.5) and (4.6) that

(4.7) < cfel-g-W <
G*(2i) - G*(24)

Combining (4.3) with (4.6) and (4.7) we obtain (4.2). In the case where 
IĄ |i > |/2|i and 7) and /2 are not ordered according to the positive orien­
tation of T, we apply the above reasoning again, with F replaced by the 
function B 9 z i-> F(z) € B, to obtain (4.2). If |/i|i = l-Gli, then p = 1, 
24 = 00 and (4.2) follows directly from (4.3). □
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By Theorem 4.1 we immediately obtain

Corollary 4.2. Suppose that K > 1 and that a mapping F G QC(D, A') 
satisfies A(0) = 0. If M > 1 and if f G QS(T; M), then

(4.8) F* o f G QS(T;A(A',1/M)) .

Given M > 1 and f G QS(T; M) we can apply Lehtinen’s estimate 
(2.6) to show that / = Tr[F] for some F G QC (O; min{M3/2,2M — 1}) 
satisfying F(0) = 0; see the discussion in [P, p. 68]. Then Corollary 4.2 
yields

Corollary 4.3. If M^,M2 > 1, if fi G QS(T;Af!) and if f2 G QS(T;A42), 
then

(4.9) /2o/,g QS (T;A(min{M23/2,2M2 - 1}, l/Mj) .

Analyzing the proof of Theorem 4.1 we additionally obtain

Corollary 4.4. If K, M > 1, f G QS(R; M) and if g G QH(R; A') satisfies 
g(oo) — oo, then (4.8) holds with F* and T replaced by g and R, respectively.

Applying again Lehtinen’s estimate (2.6) we deduce from Corollary 4.4 
the following counterpart of Corollary 4.3.

Corollary 4.5. If Mi,M2 > 1, /i G QS(R;Afi) and if f2 € QS(R; 1W2), 
then (4.9) holds with T replaced by R.
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