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Convergence of compositions 
of self - mappings

Abstract. Let {/n}£°=i be a sequence of self-mappings of a set V, i.e., 
/„(V) C V. Under what conditions will the sequence {En}“=1 given by 
the compositions Fn := fi o fo o • • • o fn converge to a constant function 
in V? Answers to this question have applications in dynamical systems, 
Schur analysis, continued fractions and other similar structures like towers 
of exponentials and infinite radicals. The purpose of this paper is to collect 
some known answers from different areas of mathematics and give them a 
unified presentation.

1. Introduction

The problem.
Let U be the unit disk |z| < 1 in the complex plane C, and let 7 be a 
family of functions analytic in U, mapping U into itself. Let further {fn} 
be a sequence from T7, and let {Fn} be derived from {/n} by compositions

(1.1) Fn := fi o f2 o • • • o fn for n = 1,2,3,....
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The question we ask is the following: When will {Fn} converge in U to a 
constant function? It is evident that some conditions are needed. Otherwise, 
fn{z} = z for all n would constitute a counterexample.

If {Fn} converges to a constant in U, it is clear that this convergence is 
uniform on compact subsets of U, i.e., locally uniform in U. It is however 
of great interest to study the additional question: When is this convergence 
uniform in U? That is, when will Fn(U} shrink to a point as n —» oo? 
If we can get an estimate for the diameter diam Fn((/), then we also have 
an estimate for the speed of convergence.

There is a second kind of uniformity connected with this problem which 
is equally important: When is the convergence of {Fn} uniform with respect 
to {fn} from F for a given 2? Or: When is the convergence of diam Fn(U} 
uniform with respect to {/„} from J7? We shall also address these questions 
in this paper.

Our problem is more general than it may seem at first. If V is a sim­
ply connected domain in C := CU {00}, omitting more than one point, 
then there exists a univalent analytic function <p in V such that <^(V) = U 
(the Riemann mapping theorem). If f(V) Q V, then g := ęjo/oę>-1 maps 
U into U. Since

g1og2o---ogn = (990 /ioę,-1)o(y>o /20V’_1)0-' •0(ę’°/n°ę’-1) = 99oFnoę?_1,

our results extend to more general subsets of C. Moreover, if V is a multiply 
connected domain, and C \ V has one and only one unbounded component 
D, and if every f € F can be extended to a function / analytic in the simply 
connected domain C \ D, then /(C \ D} C C \ D.

Our problem is in many ways a geometric problem, and it may be stated 
very generally indeed. U may be replaced for instance by any subset V 
of a Banach space X, and F can be any family of self-mappings of V- 
The problem can also be made very special by restricting the class F of 
functions.

Another area of interest is the following sequence of compositions

(1.2) :=/n°/n-i for n = 1,2,3,...,
z

which Gill [13] calls the outer composition of { fn} as opposed to the inner 
composition (1.1). For these compositions Gn, it is natural to ask other 
types of questions. It is evident that {G„} converges only under restrictive 
conditions, as compared to {F„}. For instance, if fn(z} = an/(l + z) 0 
for all n, then {Gn} converges to some G only if lim^^ an = G(1 + G)- 
That is, {fn} converges to a limit function given by /(z) = G(l + G)/(l + .z) 
and G(z) = c being the fixed point of f.
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Applications.
Compositions of the type (1.1) come up in several situations. For instance:

1. Continued fractions

(1.3) K(an/hn) Ctl 02 a3 

6] + 62 + 63 +
61 +

6,
Gl

02 ’

with approximants

(1-4) An ._ ®2
Bn hl + 62 + + bn

for n = 1,2,3,...

can be regarded as compositions

(C5) —A = Sn(0), where Sn := Si 0 s2 o o sn and sk(z) = - .
°n bk + Z

Here the elements ak and bk may be for instance complex numbers or entire 
functions, and we allow An/Bn = 00. More generally, ak and bk may be 
vectors or matrices of complex numbers, p-adic numbers, Clifford algebras, 
quasiconformal functions or entire functions, etc., with properly defined 
division operators. In the following we assume that ak and bk are complex 
numbers. Extensions to more general cases are then often possible.

For applications of continued fractions it is often imperative that 
A’(an/hn) converges; i.e., the limit c := linin^^ exists in the ex­
tended complex plane C. It is evident that An/Bn = S„(0) = Sn+1(oo). 
Hence, if Sn(0) —> c, then also 5n(oo) —» c, which rules out the possibil­
ity that {£„} converges to a linear fractional transformation. Therefore it 
makes sense to look for conditions which imply convergence of {Sn} to a 
constant function on some set V. This is in fact the way convergence of 
continued fractions is proved in many cases.

2. Other limiting structures. Schur decomposition of a function /(z) 
gives a sequence of linear fractional transformations or constant functions 
which map the unit disk into its closure. The composition sequence (1.1) 
converges then to /(z). This is the basis for the Pick-Nevanlinna interpo­
lation.

Infinite radicals and towers of exponentials, as found for instance in the 
work of Ramanujan [7, p.108] and Pólya and Szegó [35, p.37, p.214], are 
also structures of the same nature:

(1.6) ]lal + b1Ja2+b2^a3 + b3y/^:-, /„(.?) = \/a„ + bnz,
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(1.7) aj2 ; fn(F) = azn = ebnZ where 6n = ln an,

where we choose appropriate analytic branches of the multivalued functions 
fn. To assign values to these structures it is natural to require that Fn(0) := 
/i ° /2 0 • • • 0 /n(0) converges as n —> oo, and to use its limit as the value. 
Alternatively one could use lim Fn(l). For (1.7) we have Fn(0) = Fn_!(l), 
so that it makes no difference. Here we may again choose and bk to be 
complex numbers to get results which may possibly be extended to more 
general cases.

Infinite sums and infinite products can also be put into this framework, 
but for these structures there is not much to gain. For infinite sums the 
functions fn(z) := an + z do not have any contraction properties, and for 
infinite products the functions fn^z) := anz contract too strongly, either 
towards 0 or towards oo, for our analysis to be applicable.

3. Dynamical systems. Iterations can be seen as compositions (1.1) or
(1.2), where F only contains one function f. However, in some cases it 
is more relevant to consider functions f with arbitrary noise. That is, F 
consists of a function f and small pertubations of f. Another important 
situation occurs when T is a finite class of functions, and /n is picked from 
F according to certain probability distributions. Karlsson and Wallin [22] 
refer to {F, U} or {F, V} as a generalized dynamical system, discrete if F 
is finite. In this setting we are for instance interested in properties of orbits 
{S„}, where gn-\ = fn(gn) for all n, and thus g0 = Fn(gn), and orbits {<)„}, 
where gn+i = fn(gn') for all n so that <7„+i = Gn(gi).

In the terminology of Karlsson and Wallin [22], the orbits {gn} and {#„} 
are pn-stable, or rather, the dynamical system {F, V) is pn-stable, iff 
diamFn(V) < pn for all {fk} Q F, where {pn} is a given positive null- 
sequence. As we shall see, this means that {Fn} converges uniformly in 
V to a constant function, uniformly with respect to {/„} from F. This 
extends the idea of Fatou sets, and thus also of Julia sets to sequences {fn} 
of functions.

In this setting compositions (1.2) are also of interest. It is natural to 
define pn-stability as diamGn(V) < pn —* 0 for all such compositions of 
functions from F. Clearly this is equivalent to the pn-stability defined 
above. We do not expect that {Gn} converges, though. Fractal images are 
just the limiting set of compositions {Gn}, i.e., the assymptotic orbit {<7n} 

of an asymptotically stable generalized dynamical system.

Some historical remarks.
The simple case of iterations of one single function / has been extensively 
studied for a long time. The following classical result due to Denjoy and 
Wolff may serve as a very adequate example:
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Theorem 1.1. (The Denjoy - Wolff Theorem [9], [47].) Let f be analytic 
in U with f(U) C (/. Then f is either a linear fractional transformation 
mapping U onto U, or f has a fixed point a in the closure U ofU, and {Fn} 
converges locally uniformly to a in U, where Fn is the n-th iterate of f.

Of course, by using the Riemann mapping theorem as described above, 
this can be generalized to more general simply connected domains.

The Denjoy-Wolff Theorem has been generalized in many directions. Our 
generalization of Theorem 1.1 is natural as seen from the modern analytic 
theory of continued fractions. The idea of proving convergence of continued 
fractions A’(an/hn) by means of value sets V C C; i.e. s„(V) := anl(bn + 
V) C V for all n, evolved in 1942. In that year, Leighton with his student 
Thron [26] and Wall with his student Paydon [33] came up with the same 
method: Inspired by the work of Scott and Wall [37], [38] they started with a 
value set V C C, which actually was a half-plane, and considered continued 
fractions A’(an/1) such that s„(V) := an/(l + V) C V for all n. In this way 
they could make use of the important feature of nestedness connected with 
compositions (1.1)

(1.8) Fn(V) = F„-i(/„(V)) C Fn_!(V) C • ■ • C V.

Incidentally this proves that if diamFn(V) —»• 0, then {Fn} converges uni­
formly in V to a constant function c and |Tn(2) — c| < diamT'n(V). The 
question about convergence of (1.1) more generally, was asked by Thron 
[44] in 1961. His interest was mainly with continued fractions [41], infinite 
exponentials [42], infinite radicals [36] and linear fractional transformations 
in general [45]. In later years it was taken up on a more general basis by 
Gill [12], Baker and Rippon [2], Karlsson and Wallin [22] and the author 
[27-29].

Techniques to prove convergence.
Let {/„} be a sequence of functions mapping a subset V of C into itself. 
Then there are several established techniques to prove that {Tn} given by
(1.1) converges in V to a constant function. We shall here describe three 
different ones.

1. The limit point technique. The idea here is to derive bounds for 
diamTn(V) and to prove that these bounds converge to zero as n —> oo. 
Or, alternatively, to derive bounds for a subsequence of diam Fn(V) and to 
prove that

(1-9) diamTnjk(V) < Mk -> 0 as k -> oo.
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The nestedness (1.8) then shows that Fn(V) shrinks to a point. This is 
called the limit point case, and it implies that {F^} converges uniformly in 
V to a constant. This technique requires that V and {/„} are relatively 
’’nice”. On the other hand, it is very useful when it works, since it also 
gives an estimate for the speed of convergence.

2. The combination technique. To prove that {F„} converges in V 
it suffices to consider the case where we do not have the limit point case. 
The nestedness (1.8) shows that the limit set A := limn^oo Fn(V) exists, 
but now it contains more than one point. This is a very special property 
of {Fn} to possess. For some families of functions Fn it is so special that it 
leads to convergence of {Fn} in V.

3. Normal families. The idea is to look for functions V’n : U X V —> C 
such that

(i) The compositions given by

'f'lfw,^) := V»i(w,z), ^„(w,z) := ^„_1(w,V’„(w,z))

are analytic in U for every fixed z E V.
(ii) There is a w0 € U such that ij>n(wo,z) = fn(z) for all z E V and all 

n. This makes $n(wo,z) = Fn(z).
(iii) $n(w, 2) converges to a constant function of z for every w E D, where

D C U is an infinite set with at least one point of accumulation in U■
The convergence can then be extended to all w E U. In particular Fn(z) = 
^„(iuo,^) converges to a constant function.

Structure of this paper.
This paper is a survey paper. The results are taken from different areas 
of mathematics, in particular from the theory of continued fractions where 
the emphasis has been on {F„(0)} rather than {^„(2)}. We have taken the 
liberty of adjusting the notation of such results to match the one in this 
paper, and in some cases to extend the results to our setting if the original 
proofs allow this extension or if it comes about very naturally.

The choice of results included is a personal one. To be able to bring 
out the ideas, we have focused on simple results, void of technicalities. More 
results can be found in the references, and in their references again.

We shall consider different families T of self-mappings. In Section 
2, F contains linear fractional transformations mapping a set V C C into 
itself. Working with these nice functions gives us an idea of what to expect 
in more general cases. It is also a very interesting case for its own sake.
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In Section 3, T contains analytic self-mappings of U more generally. Finally, 
in Section 4 we mention possibilities for more general cases.

We shall mostly concentrate on the compositions (1.1), but there are 
strong connections between the two types of compositions (1.1) and (1.2). 
For instance, if diamF’n(I7) -+ 0 uniformly with respect to {fn} from T7, 
then also diamG„(17) —» 0. That is, every convergent subsequence of {G„} 
converges uniformly in U to a constant function in this case. In the spe­
cial case where T consists of linear fractional transformations, there are 
particularly strong connections between the two. (See Section 2.)

Notation.
We shall use the notation as already introduced. In particular f and fn shall 
mean functions from the family T7, and Fn shall denote their compositions
(1.1). Let V, V° and dV denote the closure, the interior and the boundary 
of a set V in C, resp., whereas B(c, r) denotes the open disk with center at 
c £ C and radius r > 0. The euclidean distance between two sets A,B C C 
is denoted by dist(A, B). The derivative of an analytic function f is denoted 
by f. Rez, Im z and |z| denote the real part, the imaginary part and the 
modulus of a complex number z, resp.. 2

2. Linear fractional transformations

Let V be a subset of the extended complex plane C, and let T7 be 
a family of linear fractional transformations mapping F into V. This is 
an important special case. It is also a very nice special case. Linear frac­
tional transformations (we require that they are non-singular by defini­
tion) are practical functions to work with, since they are analytic, univa­
lent mappings of C onto C whose compositions and inverse functions are 
also linear fractional transformations; i.e., they form a group. In fact, if 
Fn := /i 0/2 0,--0/n are compositions of linear fractional transformations 
of type (1.1), then F"1 = f"1 o /”2i o • • • o /f1 are compositions of Unear
fractional transformations of type (1.2), where fk 1 maps C \ V into C \ V.

Another advantage of this class of functions is that if {in} is a sequence 
of linear fractional transformations converging in a domain B, then its limit 
function is either a linear fractional transformation or a constant function 
in D (possibly minus a point) [34, Thm 1]. It is also clear that J- is a closed 
set in the natural metric in the field of linear fractional transformations.

Finally, linear fractional transformations have very nice mapping prop­
erties: They map generalized circles onto generalized circles. Actually, al­
most all the early results in this area are based on V being a circular domain,
i.e., either a halfplane, a circular disk or the complement of a circular disk. 
This is of course a severe restriction when J- contains only linear fractional
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transformations. On the other hand, it leads to very useful convergence 
results for continued fractions, and we learn a lot about what to expect in 
more general cases. So let us first look a little closer at this situation.

V is a circular domain and /(oo) = 0 for f € F.
When /(oo) = 0, we are restricted to the continued fraction generating 
linear fractional transformations /(z) = o/(h + z) (we can always normalize 
to have the coefficient 1 for the z in the denominator), and the results in 
this section are taken from the theory of continued fractions. Typical in this 
respect is the parabola theorem which was the first convergence theorem for 
continued fractions to be proved by this technique. In our setting it may be 
formulated as follows.

Theorem 2.1. (The Parabola Theorem) Let Va be the ha.lf-pla.ne 
Re(ze~’“) > -j-cosa for a fixed angle agR, |a| < 7r/2, and let Ta be the 
family of linear fractional transformations f(z) = a/(]. + z), a £ C \ {0}, 
mapping VQ into VQ. Let {fn} be a sequence from PQ, and let {Fn} be 
given by (1.1). Then the following hold.

A- f € Ta if and only if a £ Pa \ {0}, where

(2.1) Pa := {z E C: |z| - Re(ze-2*") < j cos2 a}; [38], [33], [26].

B. {^2n}~=i and {F2 n+i}^! converge locally uniformly in V to constant 
functions.

C. converges locally uniformly in V to a constant function if 
and only if

oo n

(2.2) E n l“*l(-1)n+‘+1 = oo.
n=l fc=l

The convergence of {Fn} is uniform in V if a = 0, [33].
, 2|ai|/cosa

D. diam F„(V) < dn := ———----— 2 Q x , [43, Formula (3.3)].
llfc=2l1 + 4ffc-l)|a* 11

(It is still an open question whether the convergence in part C is uniform 
in V in general if a 0.) The set Pa is a closed domain in C containing 
0, whose boundary is a parabola through — | with focus at the origin and 
axis along the ray argz = 2a. Pa is called the element set corresponding to 
Va, and it characterizes the functions / £ F„. The emphasis has been until 
recently on proving that K(an/T) converges, i.e., Fn(0) —► c, or on proving 
that the even and odd parts of A'(an/1) converge, i.e., F2„(0) —> c and
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^'2n+i(0) —► c*. It does not take much to extend such results to convergence 
°f {^n(-z)}, or {/^„(z)} and {£^+1(2)}, for z € V, though. We shall do so 
here, and thus prove the parts B and C of Theorem 2.1 by using two simple, 
but useful results from [31]. The first one is:

Theorem 2.2. ([31, Thms 4.5, 5.1].) Let V 0 be an open, bounded 
subset ofC, and let £ > 0 be given. Let T — A4e(V) be the family of linear 
fractional transformations f mapping V into V such that

(2.3) /(V) C V \ B(zf,e) for some Zf£V.

Let {fn} Q T and Fn be given by (1.1). Then /^(z) -+ 0 for z G V, and 
one of the following three situations occur:

A. {Fn(z)} converges uniformly in V to a constant function.
H. {Fn(z)} converges locally uniformly in C\dV to a constant function. 
C. {Fn(z)} diverges at every z £ <C\ dV.

The letter M is chosen for these families of functions, since all linear frac­
tional transformations form the well-known Mobius group. It is clear that 
■MC(V) = 0 if C\ V = 0. Theorem 2.2 gives a picture of what goes on when 
7- C A4e(V) / 0:

I. If Fn(0) —> c and 0 € V, then {F„(z)} converges locally uniformly to 
c in V.

2. Every convergent subsequence of {Fn} converges to a constant func­
tion in V.

3. If V is unbounded and C\ V / 0, then a linear fractional transforma­
tion p can always be applied to make V* := ę>(V) bounded. If f maps 
V into V, then /* := p o f o ę>-1 maps V* into V*. Hence, if we are 
dealing with linear fractional transformations, disregarding possible 
normalizations, then we may always assume that V is bounded.

4. If {F~1(oo)} has a limit point a dV, then there is a subsequence 
F~*(oo) —> a, and so F^t(z) —> 0 uniformly in V if V is bounded, 
(a 0 V° if V is bounded.) Hence diamFnjl(V) —> 0. The nestedness
(1.8) then proves that we have the limit point case, i.e., case A in 
Theorem 2.2 occurs.

5. Assume that V is a circular disk and that the limit point case does not 
occur. This is called the limit circle case, since then 7 := lim9Fn(V) 
is a circle with positive radius. Then {/’“'(oo)} has all its limit 
points in dV, and every limit function of {Fn} is constant for all 
z 6 C\{the limit points of {/’“'(oo)}}. By the reflection principle it 
thus follows that every limit function F of {Fn} has a value F(z) = 
c € 7.
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In view of this, it is interesting to determine whether our family J" of func­
tions does belong to some A4C(V):

Theorem 2.3. ([31, Thms 1.3 and 4.3].) Let V be an open subset of C, 
and let T7 be the family of linear fractional transformations f(z) = a/(l + z) 
mapping V into V. If F contains more than one function, then there exists 
an £ > 0 such that (2.3) holds for every f € F.

Our set V is not bounded, but that is easily remedied:

Proof of Theorem 2.1 B, C:
B. Scott and Wall [37] proved that {J2„(0)} and {p2n+i(0)} converge to 
finite values if a = 0. That it holds for general a can for instance be seen 
in [32, Thin III.20, p.130]. V is unbounded, but as in Remark 3 above, 
V* := ę>(V) is bounded for appropriately chosen <p. Since d/n(V) is a 
circle passing through 0 € V° for all n, there exists an £ > 0 such that 
/* := o fn o <p~l E A4e(V*) for all n. The result follows therefore from 
Theorem 2.2.

C. Thron [40] proved that (Fn(0)} converges if and only if (2.2) holds. 
Hence the result follows as above. □

The parabola theorem showed to be very useful indeed in the theory of 
continued fractions. If in particular all |an| < M for some M > 0, then
(2.2) holds trivially, and Theorem 2.ID shows that

(2-4) diam Fn(V) < dn :=
2MI cos a

cos2 a \ 
4M/c )

where {d„} is independent of {an} and converges to 0. Hence we are in 
the limit point case, and diamF„(Va) —> 0 uniformly with respect to {fn} 
from Fa,M := {f 6 Fa : |/(0)| < M}. That is, the continued fractions 
A'(an/1) with all an G Pa, |a„| < M, converge, uniformly with respect to 
{an}. Or, in the terminology of Karlsson and Wallin, {FQ)M, VQ) is a dn- 
stable generalized dynamical system. Of course, the same holds true if all 
|an| < Mn for some positive sequence {M„} such that 11^1,(1 + 1/44^) = oo; 
i.e., 53 1/Affc = oo, and (2.4) is changed in the obvious manner.

The picture gets simpler if we choose V to be a circular disk, but keep 
the form of the linear fractional transformations in F. In particular we get 
uniform convergence in V:



Convergence of compositions of self - mappings 131

Theorem 2.4. (The cartesian oval theorem) Let V be a circular disk with 
— 1^1/ and center T, Ref > — |. Let E be the family of functions

= a/(l + z) mapping V into V. Let {/„} C 7" and Fn be given by 
(1.1). Then the following hold with a := arg(T + |);

A. The functions in E are characterized by

O^as £(r, R) := {z : |z-«| + jjA^zl < _^_(|1 + r|2 _

(19, formula (3.2)], where R is the radius ofV and 

u-.= r(i + r)(i-R/|i + r|2).
B. E(T, R) Q PQ given by (2.1), [24].
C. {F„} converges uniformly in V to a constant function, [31, Thm 2.3],
D. diam Fn(V) < ( 1 + C for n > 0, [24, Thm 2.1],

coso \1 + ncJ J’
where M := (|T| + R)(|l + T| - R) and c := (cos2 o)/(4Af).

E. {F„} converges locally uniformly in Va U [Ć \ B(-l - T, R)], where 
Va is the halfplane in Theorem 2.1.

I he set E(T, R) is a closed region bounded by a cartesian oval. It remains 
to prove part E. But this follows from the following simple observation:

Lemma 2.5. ([31, Thm 3.1].) Let V Q C be such that V° 0 and 
:= C \ (-1 - V) ± 0. Then f(z) := a/(l + z) maps V into V if and only

if f maps W into W.

This means that in general we may extend the convergence of {.Fn(z)} for 
2 € V° to locally uniform convergence of {/’„(z)} for z G V° U W by use 
°f Theorem 2.2, possibly after moving V to a bounded V* := y)(V)). In 
Particular, if V is bounded, then oo G W, and thus, if {Fn(z)} converges lo­
yally uniformly in V° to a constant value, then Fn(0) = Fn+i(oo) converges 
to the same value, regardless of whether 0 G V or not.

There exist many results where V is a circular domain of some sort 
and the functions in E have the form /(z) = a/(l + z), or more generally, 
/(z) = a/(h+z). For historical reasons I want to mention three very classical 
results in continued fraction theory. Adjusted to our set-up, they can be 
formulated as follows:
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Theorem 2.6. (Worpitzky 1865 [48]) Let V := 77(0, j), and let F be the 
family of linear fractional transformations f(z) = a/(l + z) mapping V into 
V. Let {fn} G F and Fn be given by (1.1). Then f € F if and only if 
a € 77(0, |)\{0}, and {Fn} converges uniformly in V to a constant function. 
The convergence is uniform with respect to {/„} from F.

This work by the high-school teacher Worpitzky is the earliest work we know 
about, proving convergence of continued fractions with complex elements. 
Today this is just a consequence of the parabola theorem (or the cartesian 
oval theorem) since B(0, |) C Po given by (2.1).

Theorem 2.7. (Śleszyński 1889 [39]) Let F be the family of linear frac­
tional transformations f(z) = a/(b+ z) mapping U into U. Let {fn} C F 
and Fn be given by (1.1). Then {Fn(0)} converges for every {fn} C F.

This theorem by the Polish mathematician Śleszyński has been known in 
the West as Pringsheim’s theorem. It was rather recently discovered by 
W.J.Thron and A.Magnus that Śleszyński had already published his result 
when Pringsheim found his. The reason for this confusion is probably that 
Śleszyński wrote his paper in Russian, a language which was not so widely 
spoken in the West. By Theorem 2.2 it follows that {Fn} converges lo­
cally uniformly in U to a constant function under Śleszyński’s conditions. 
(Śleszyński’s family F C ?Vfi(F) since 0 0 /(F) for all / e F.) The ques­
tion of whether {Fn} converges uniformly in U is still unsettled.

In the third result, V is the intersection of two halfplanes:

Theorem 2.8. (Van Vleck 1901 [46]) Let

V := {z e C \ {0} : | argz| < - e}

for some given e > 0, and let F be the family of linear fractional transfor­
mations f(z) = 1/(6 + 2) with b = l//(0) 6 V \ {00}. Let {fn} C F and 
Fn be given by (1.1). Then the following hold.
A. f(V) Q V for all f e F.
B. {F2n(0)} and {F2 n+i(0)} converge to finite values.
C. {F„(0)} converges if and only if£ |hn| = 00.

In this case Theorem 2.2 does not apply since 0 € dV. However, Lange 
has recently proved the following results for the sequences in Van Vleck’s 
theorem:
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Theorem 2.8 continued. ([25, Thm 2.1])
D. If 52 |6n| = oo, then {-fn} converges uniformly in the halfplane H := {z : 

Re 2 > 0}, and

(2-5) diam Fn(H) < JJ P'1
1 fc=2

where Pk := 1 + |6fcFf_1x(oo)l cos(f - e).
E. nr=2 and 53 |hfc| converge and diverge together.

Hence the convergence in part C is extended to uniform convergence of 
{■fn) in the half-plane ll which contains V. Since f(H) C ~H for all f e p, 
regardless of the value of £ > 0, it is tempting to analyze what happens if 
we extend P to contain all functions f(z) = 1/(6 + 2) with b e H \ {00}. 
This was also done by Lange. By using a result [14, p.1193] by Gragg and 
Warner he proved the following generalization of Van Vleck’s result. 

Theorem 2.9. ([25, Thm 2.4]) Let V be the half-plane

H := {z : Re 2 > 0}

and let P be the family of linear fractional transformations f(z) = 1/(6 + 2) 
mapping V into V. Let {/„} C P and let Fn be given by (1.1). Then the 
following hold:
A. The family P is characterized by 6 £ V \ {00}.
B. ff 53 = o°, where fa := Re(6fc) • Re(6fc_i) and bk := l//fc(0), then

{Fn} converges uniformly in V and

<, _ 2 kt 1 - 2-T^t
(2.6) diam F„(V) < - ]J +

E is a circular domain and 7(2) = (az + c)/(b + dz) in P.
Without loss of generality we assume that the circular domain V is the open 
unit disk U. It is also customary to require that ad — be = 1, which can 
be done without loss of generality. We shall, however, not do so here. Of 
course, Theorem 2.2 is still valid, so if P Q A4£(V) for some £ > 0, then 
We know quite a lot about the composite sequence {Fn}. Actually, it also 
helps if J"1 e A4£(V) for some £ > 0 where V := Ć \ V. (See the section 
•n ’’Connections between Fn and G„. Orbits” below.) The following results 
are examples of what is known:
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Theorem 2.10. (The Hillam-Thron Theorem [15], improved in [16]) Let 
0 < k < 1 be a fixed constant, and let F be the family of linear fractional 
transformations f mapping U into U with |/(oo)| < k. Let {/„} be a 
sequence from F, and let {Fn} be given by (1.1). Then {En} converges 
locally uniformly in U to a constant function.

This can be slightly improved:

Theorem 2.11. Let F be the family of linear fractional transformations 
mapping U into U, and let {/„} be a sequence from F and {En} be given 
by (1.1). If lim sup |/„(oo)| < 1, then {F„} converges locally uniformly in 
U to a constant function.

Actually, as we shall see, Theorem 2.11 is a corollary of the following rather 
general result:

Theorem 2.12. ([21], [28, Thm 1.2]) Let F be the family of linear frac­
tional transformations mapping U into U, and let {fn} be a sequence from 
F and {Fn} be given by (1.1). If there exists a sequence {zn} C C such 
that
(2.7) lim inf | |z„| — 11 > 0 and lim inf | |/n(;a:n)| — 11 > 0,

and either lim sup diam fn(,U) < 2 or lim inf diam/"1 ((7) > 2, then {Fn} 
converges locally uniformly in U to a constant function.

Proof of Theorem 2.11. Since fn(,U) is a circular disk CU\ it is
clear that lim sup diam fnfJJ) < 2. Moreover, (2.7) holds with the choice 
zn oo for all n. □

Theorem 2.12 requires that fn(U) is a proper subset of U from some n on, 
or that f~J(C \ 17) is a proper subset of C \ U, which are equivalent state­
ments. The uniformity of these conditions are not equivalent, though. Such 
properties seem to be natural to ask for. But they are not sufficient! The 
need for conditions of some type similar to (2.7) follows from the following 
example:

Example 2.13. Let /„(z) := an(l — z)/(l + an(l — 2)) for all n, where 
an := n(n + 2). Then fn^U) = {z £ C : \z - rn| < rn} where r„ := 
|(1 - 1/(1+ 2an)). In other words, all fn(U) C T> := {z e C : |z- j| < j}- 
Still, En(z) does not converge for any z £U, since fn = iposno ę>-1 where 
ę,(z) = z/(l + 2) and sn(z) = a„/(l + 2), and Sn(z) := si o s2 o • • • o s„(z) 
diverges by Theorem 2.1 C.

On the other hand, condition (2.7) is not necessary:
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Example 2.14. Let /n(2) := n(l - z)/(l+n(l - 2)) for all n, and let and
V be as in the previous example. Then fn(U) Q V, and fn = </? 0 sn o yj-1 
where sn(2) = n/(l + z) maps the half-plane Vo = ę>_1({/) into itself. Hence, 
5n := sj 0 si o • • • 0 sn converges uniformly in Vo to a constant function by 
Theorem 2.1 C. Still, {fn(zn)} has a limit point at 1 for every sequence 
{zn} which is not converging to 1.

Theorem 2.12 is a very general convergence result. Actually, the parabola 
theorem is a consequence of Theorem 2.10 which is a corollary of Theorem 
2.12, and the convergence in the theorems 2.4, 2.6 and 2.7 can be seen 
as corollaries of the parabola theorem. Theorems 2.8 and 2.9 with their 
uniform convergence are different, though. This limit point case, where 
{En(tZ)} shrinks to a point, is of particular importance. It is not known 
whether the conditions in Theorem 2.12 imply uniform convergence. The 
following result gives some sufficient conditions for this to occur. Example 
2.14 shows that they are not necessary.

Theorem 2.15. ([28, Thm 1.4]) Let F be the family of linear fractional 
transformations mapping the unit disk U into itself, and let {/„} he a 
sequence from F and Fn be given by (1.1). If either
(i) 12 dn = 00, where dn := dist(/n(Z7), dU), or
(ii) £)dn = oo, where dn := dist(5/“1(17), ff), or

(iii) lim rn^nj + FT Kj = 0, where 
n-°° Knl - 1 y

IGI2 -1 < r 101 +1
J(IO-ci+il - rt+i)2 - XI-1’

rj is the radius of fj(U) and Cj is its center, and (j := fj 1(oo), 

then Fn(w) converges uniformly in U to a constant function.

V is a more general subset of C.
Let V be some subset of Ć, and let F be a family of linear fractional 
transformations mapping V into V. Under what conditions will {Fn(2)} 
converge to a constant function in V! As before, we pick {/n} from F and 
construct Fn by (1.1).

Evidently F must be empty or very thin if V° = 0. (See for instance 
[30, Prop 5.5].) Hence we assume here that V° / 0. Since /(V) C V only 
if /(V°) C V°, we do not loose_much by requiring V to be open. Finally, 
since /(V) C V only if /(V) C V, we may assume that the boundary of V 
is ’’nice”; i.e., (V)° = V.
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To get an idea of what to expect, we look a little closer at what we 
obtained when V was a circular domain.
1. The half-plane VQ in Theorem 2.1 is not picked at random. If V is just 

any half-plane in C, then the corresponding family T may be empty. 
Since oo G dV when V is a half-plane, we need 0 G V and -1 0 V° to 
get T7 7^ 0. Actually, to obtain the contraction we want, we need 0 G V° 
and —1 V. That is, V must be a half-plane Re(ze_‘“) > — pcosa 
for some |a| < 7r/2 and 0 < p < 1. If |q| = 7r/2, then V is either the 
upper or the lower half-plane, and a/(l + V} C V only if a is real and 
non-positive. Actually, a/(l + V) = V when a < 0. Hence |a| < 7r/2 
is necessary. It follows then that f G T if and only if /(z) = a/(l + z) 
where

(2.8) |a| - Re(ze-’2") < 2p(l - p) cos2 a, [43].

That is, F C fFa.
2. The circular disks V in Theorem 2.4 are the only circular disks which lead 

to families T7 containing more than one function. Since V is bounded, the 
condition —1 0 V is needed to have T / 0. Straightforward computation 
shows that T7 = 0 if the center T of V has real part < - j, and that T7 
only contains the function u/(l + z) if Re(T) = — j.

3. The condition (2.2) in Theorem 2.1 is vital since every continued fraction 
7<(an/l) for which (2.2) fails, diverges by the Stern-Stolz theorem [12, 
p.94]. It is clear that (2.2) can only fail if an —► oo. Moreover, an —♦ oo 
is only possible if the domain V we started with is unbounded.

4. The condition (2.5) in Theorem 2.12 is milder. It implies that {fn} is not
allowed to have a subsequence {/n*}, where is pushed towards a
boundary point c G dU for almost all z G C as k —+ oo. Or, that {/„} 
does not have a subsequence {/nt} where /'^(z) is pushed towards a 
boundary point c G dU for almost all z G C as fc —> oo. In particular, 
the poles should stay away from dU.

In view of this, it seems natural to believe that if V is a bounded set and T7 
consists of functions /(z) = a/(l + z) mapping V into a proper subset of V, 
then {F„(z)} converges to a constant function in V since the poles -1 of f 
are bounded away from V when V is bounded. The author suggested this 
in a talk in Luminy, France in 1989, and it was put in writing in a paper 
by Ruscheweyh and the author in 1993 [31]. In view of Theorem 2.3, our 
conjecture can be formulated as follows:

Conjecture. ([31]) Let V 7^ 0 be an open, bounded subset of C, and let T 
be the family of linear fractional transformations = a/(l + z) mapping
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V into V. If T contains more than one function, then {Fn} converges locally 
uniformly in V to a constant.

Possibly, what we have is even uniform convergence in VI Anyway, this 
conjecture is still open. What we proved in [31] was a result which excludes 
all the difficult cases. In the present setting it can be formulated as follows:

Theorem 2.16. ([31, Thm 1.1]) Let V 0 be an open, bounded subset of 
C, and let the family F of linear fractional transformations f(z) = a/(l + z) 
mapping V into V contain at least two functions. Let {/„} be a sequence 
from T. If {fn} has at least one limit point f with the property that

(2.9) f(d*V)Cld*V = <t, where d*V := dV (-1 - dV), 

then (Fn(z)} converges uniformly in V to a constant function.

The reason why (2.9) excludes all the difficult cases becomes evident by the 
following observation which was part of the arguments in [31]:

Lemma 2.17. Let V ± 0 be an open, bounded subset of C, and let T be 
the family of linear fractional transformations f(z) = a/(l + z) mapping V 
into V. Let {fn} Q and Fn be given by (1.1). If T contains more than 
one function, then {F'^oo)} has all its limit points in -1 - V.

According to (2.9) (F'^oo)} has a limit point ( & V. So, if Fn/(oo) -> <, 
then Fnk(z} is analytic in some domain V’ containing V from some k on, 
and the result is evident by the nestedness (1.8) and the fact that F^(z) —> 0 
uniformly in V. For completeness we give a proof of Lemma 2.17:

Proof. By Theorems 2.2 and 2.3 we know that F'(z) -» 0 for z e V. Since 
Fn(V) C V we thus can write

F j Pn + ~ Zn>* if Zn := 1(°°) °°’
n(Z) " I Fn + Qnz if Zn = oo,

where {Fn} has all its limit points in V and 0 Qn —► 0. I his gives

(2.10)
Zn + Qn/{z ~ Fn) if Zn OO, 
(z - Pn)/Qn if Zn = OO.

Since f(z) = -1 -/-1(-1 - z) for all f e_F, it follows that f ^-l-V) C 
~1 - V, and thus Fn_1(-1 - V) C -1 - V. Hence Zn / oo from some n on
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by (2.10), and thus Fn l(zn) — Zn —> 0 when {zn} C -1 - V is chosen such 
that lim inf \zn — Pn| >0. □

Condition (2.9) is restrictive. It is not satisfied in Theorem 2.1, since there 
/(VQ) is a circular disk touching dVa = d*Va whenever a £ dPa \ {oo}. 
In an attempt to get rid of condition (2.9), Cordova proved the following 
result in his thesis:

Theorem 2.18. ([8, Thm 5.1]) Let V be a Jordan domain with V = 
C \ (-1 - V), 0 £ V, £ dV, oo € dV and a smooth boundary with 
continuous curvature. Moreover, the following two conditions hold for ev­
ery C G dV:

(i) [-<2/(i + <9v)]nav = {<}.
(ii) k(-(2/(1 + <?V),£) > K,(dV, (), where k(T,z) denotes the signed cur­

vature of a curve T at the point z £ F, and the sign is chosen so that 
K,(dV,() > 0 if dV curves inwards towards V at ( and is non-positive 
otherwise.

Then the following hold.
A. f(z) — a/(l + z) maps V into V if and only if a = —p2 where 

p G V n (-V) \ {oo}.
B. Let {pn} he a bounded sequence from V D (-V), and let :=

-p2/(I + 2) and Fn be given by (1.1). Then {7^} converges uniformly 
in V to a constant function.

The important thing here is that d*V defined by (2.9) is identical with 
dV, as in Theorem 2.1, and that /(z) := -(2/(l + 2) maps V into V 
whenever £ G dV. Hence we get convergence, regardless of whether (2.9) 
holds or not. But the conditions which allow us to remove (2.9) are rather 
restrictive. They have been weakened considerably in a number of theorems 
in [30], but also these theorems are rather technical.

Lange [23] has given an example of a region V satisfying Theorem 2.18: 
In his trancendental strip region result, he has V bounded by the curve 

(2.11) 2 = zd(f) := “ tan-11 + it for - 00 < t < 00

for some real constant d, — j- < d < He has also considered Jordan 
domains V := V(o) with 0 G V(o:) and boundary

(2.12) 2 = 2(f) :=

_l + e~(l+ ;(,_!)) 

-1 +

2C
e‘“(-I+ :(/+!))

for t > 1, 
for 0 < t < 1, 
for — 1 < t < 0, 
for t < —1,
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where 0 < a < 7r/3 is a fixed constant. Or, similarly, V is equal to the 
complex conjugate of V(a). For these he proved [23] that Theorem 2.18 A 
holds. He also proved that Theorem 2.18 B holds if {pn} C V D (-V) \ 
{oo} is picked such that /(V) C K where K is a compact subset of the 
open domain V. Moreover, he proved that if {pn} C V (~l (—V) satisfies 
inf dist(/n(5V), dV} > 0, then {Fn(0)} converges if and only if an := -p2n 
satisfies (2.2). That is, by Theorem 2.2 we have locally uniform convergence 
in V in these cases. In [30, Thms 11.3, 11.4] it was proved that if V is the 
region with boundary (2.11) and {pn} C V n (-V) is bounded, then {Fn} 
converges uniformly in V, regardless of whether fn(dV} Cl dV = 0 or not. 
Moreover, if dV is given by (2.12), then {Fn} converges locally uniformly 
in V.

Connections between Fn and Gn. Orbits.
As already pointed out in the introduction, we know that if diam Fn(V) —> 0 
uniformly with respect to {/„} from F, then also diam G„(V) -> 0 uniformly 
with respect to {/„} from F. However, this does not normally Jead to 
convergence, since {G'n(V)} are not necessarily nested sets, as {Fn(V)} are 
by (1.8).

But since we are dealing with linear fractional transformations, we have 
other types of connections between compositions of the form (1-1) and the 
form (1.2). If /(V) C V, then /_1(V) C V where V := C \ V. So, 
if Ad(V) denotes the family of linear fractional transformations mapping 
V into itself, then / € A4(V) if and only if f 1 € A4(V). Moreover, if 
{fn} Q A4(V) and Fn := A o /2 o • • • o fn, then {/-1} Q M(V} and

In [20] we defined restrained sequences {7\} of linear fractional transfor­
mations; that is, there exists a pair {un}, W of sequences from C such 
that

(2.13) lim d(Tn(un},Tn{vn}} = 0 and lim inf d(un, vn) > 0,n—»oo n—>oo

where d(-, •) is the chordal metric on the Riemann sphere C. Clearly, by 
Theorem 2.2 we are mostly dealing with restrained sequences in this section. 
We proved in [20, Thm 2.6] that {7n} is restrained if and only if {Tn *} is 
restrained.

In continued fraction theory the orbits gn-i — fn(9n} are called tail 
sequences for a continued fraction A'(an/6„); fn(z} — o,nl{bn + z). These 
sequences play an essential role in the theory. Clearly, gn = fn ^gn-i} and 
g0 = Fn(gn}. If {<7n} is such an orbit for fn(z} = (^nF cnz)/(bn +dnz} with
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all gn 0, then

(2.14) ńn + z-gN ńP‘

where Pk := ^6,g + dk9k] for N = 1,2,3,...; [17, Thm 2.3]. 
eto*, - akdk

Moreover, if in addition also {<7*} is such a tail sequence for K(an/bn) with 
all <7* 7^ 0, then
(2.15)

fi>W - »; = iZjŁ ft for ff = 1,2,3,...; [17, Thm 2.3],
Fn(z) -go z- gN aJj bj + djg*

This allows us to derive new orbits gn := F“1(5o) from old ones by solving 
(2.14) or (2.15) for z = Moreover, we get the other type of orbits, 
5n+i := Fn(gi) from {<7n} by setting z := gi in (2.14) or (2.15), and solve 
for FN(z).

Linear frational transformations in higher dimensions.
A number of the results mentioned has been extended to linear fractional 
transformations in higher dimensions in a series of papers by B. Aebischer. 
Here we just refer to [1], where the emphasis is on stability properties useful 
in dynamical systems.

3. Analytic selfmappings of U

In this section we present some of the beautiful works by Baker and Rippon. 
Let first F consist of analytic and univalent selfmappings of U. For this 
particular class they gave a particularly nice result. It uses the notation A 
for the complement of the unbounded component of C \ A for a bounded 
set A C C. By exploiting the subadditivity of the modulus of ring domains 
for such functions, they obtained:

Theorem 3.1. ([2, Thm 3.1]) Let {fn} be a sequence of analytic, univalent 
self-mappings ofU, such that the modulus Mn of the ring domain U\fn(F) 
satisfies Mn — 00. Then {Fn} given by (1.1) converges uniformly in U 
to a constant function.

This corresponds in many ways to Theorem 2.15 with condition (i). Actu­
ally, in view of Theorem 2.15 it is tempting to ask if maybe {F„} still con­
verges uniformly in U if Mn is replaced by dn := dist(/n([/), dU)? Maybe, 
if so, the univalence is not really needed?
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Theorem 3.1 is just one of several nice results by Baker and Rippon. In 
the next one, the univalence is no longer needed:

Theorem 3.2. ([2, Thm 2.2]) Let T be a family of functions f, analytic 
in U and mapping U into U with the following properties:

(i) No sequence of the form pk := flik o f2k o • • • o /„(*),*, ail fi<k G T 
converges in U to a constant limit c G dU.

(ii) No sequence {pk} as above, converges to the identity function in U. 
Then {T„} converges locally uniformly in U to a constant function.

The conditions here are not so easy to check. Condition (ii) clearly holds if

(3.1) f(U) C U \ B(zf,e) for some zj G U for all f G T

for some constant £ > 0, but this does not imply (i). The danger of having 
such accumulation points on the boundary, as avoided by (i), is that we do 
not have control on the boundary. So, in a way, (i) can be compared to 
condition (2.9) in Theorem 2.16, where d*V was the problem part of V. 
Condition (i) is also related to (2.7) which requires that no subsequence of 
{fn} converges to a constant limit G dU.

The advantage of Theorem 3.2 is that we may assumeare allowed df(U}C\ 
dU 0 for all f G T. If we renounce this advantage and require that 
dist(dF(U},dU} > £ for some constant £ > 0, then both (3.1) and condition 
(i) hold, and we actually get:

Theorem 3.3. ([2, Cor 2.3], [27, Thm 1.2]) Let J7 be a family of functions 
f analytic in U and mapping U into a compact set K C U. Then {Tn} 
converges uniformly in U to a constant function. The convergence is also 
uniform with respect to {/„} from T.

The uniformity in Theorem 3.3 was established in [27], independently of 
the work by Baker and Rippon. Explicit bounds for diam Fn((7) were also 
given in [27]. If {/„} is a sequence of analytic self-mappings from f/ which 
has a subsequence {/njt} °f functions mapping U into K, then {Fn} still 
converges uniformly in U to a constant function by the nestedness (1.8). 
However, we loose the uniformity with respect to {/n} from F, of course.

Baker and Rippon have also proved a theorem on contraction maps f, 
i-e-, < 1. With this kind of condition it is too restrictive to let
V ;= U. Baker and Rippon require that V be a convex domain. In return 
they obtain uniform convergence when they exclude all the difficult cases:
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Theorem 3.4. ([2, Thm 4.1]) Let V be a bounded convex domain and 
let F be the family of analytic self-mappings of V with a continuously 
differentiable extension toV such that |/'(z)| < 1 for all z E V and condition 
(ii) of Theorem 3.2 holds with U replaced by V. Then {Tn} converges 
uniformly in V to a constant function.

As a consequence of this they obtained Thron’s convergence result for towers 
of exponentials (1.7):

Theorem 3.5. ([2, Thm 5.1], [42]) Let V := f?(0,e) and let F be the 
family of functions f(z) = exp(bz) with b E B(0,1/e). Let {/„} C F and 
Fn be given by (1.1). Then fn(V) C V and {Tn} converges uniformly in V 
to a constant function.

This means in particular that the tower of exponentials (1.7) converges when 
all |hn| < 1/e. Baker and Rippon extended this result in [2], In a later paper 
[4, Thm 7] this was further improved.

A simple corollary of Theorem 3.4 is:

Theorem 3.6. ([3, Thm 1]) Let V be a bounded convex domain and let 
F be a family of analytic self-mappings of V with a continuous extension 
to V such that |/'(z)| < 1 in V, and there exists a zq E V such that 
sup/e7r|/'(z0)| < 1- Let {fn} C F and Fn be given by (1.1). Then {T„} 
converges uniformly in V to a constant function.

The condition that |/'(zo)| < 1 - £ for all / E T7 and some £ > 0 is essential. 
But even if we only have |/'(z)| < 1, then ^5 extension of Schwarz’ lemma 
shows that f has a continuous extension to V with |/'(z)| < 1 for all z € V, 
[5, Thm 1]. The uniform bound for |/'(zo)| shows that F is contained in 
a closed subfamily of F := {/ : V —► V analytic with |/'(z)| < 1 in V}. 
In this language, Beardon [5, Thm 5] also proved Theorem 3.6 in a later 
paper. He also proved:

Theorem 3.7. ([6, Thm 7]) Let V C C be an open, bounded set whose 
boundary consists of a finite number of simple polygons, and let F be a 
closed subfamily of F {f : V V analytic with |/'(z)| < 1 in V}. Let 
{fn} Q F and Fn be given by (1.1). Then {Fn} converges uniformly in V 
to a constant function.

Beardon also derived a series of estimates for the rate of convergence of 
{Tn} depending on the shape of V.
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4. Possibilities of extensions

As mentioned in the introduction, our problem can be posed quite gener­
ally. If we furnish U with the hyperbolic metric p, then by Schwarz’ lemma, 
analyticity of f : U U means that f is either a linear fractional transfor­
mation mapping U onto U, or f is a contraction

(4J) p(/(x), /(j/)) < p(x, 2/) for x / y, x,y£U.

So, we have been actually dealing with contraction maps in the metric 
space (t/,p). Unfortunately, Theorems 3.4 and 3.6 do not readily generalize 
to hyperbolic contractions. The problem is (as always) what happens close 
to the boundary of U or V. If we make sure that we ’’stay away from the 
difficult cases” in some sense, the theory can be extended to metric spaces 
(X, d) without too much trouble. The following is due to Beardon. It is a 
natural extension of the Denjoy-Wolff theorem:

Theorem 4.1. ([5, Thm 4]) Let (X,d) be a compact metric space, and let 
F be a bounded subfamily of F := {f : X -* X : d(f(<x'),f(y')') < d(x,y) 
for all x,y £ X}. Let {fn} C T and Fn be given by (1.1). Then either

A. {Fn} converges uniformly in X to a constant function, or
B. d(/(x), /(t/)) = d(x, y) for some f £ T and distinct x,y £ X.

Theorem 4.1 may be compared in many ways to Theorem 3.3. In 
particular, Theorem 3.3 is a consequence of Theorem 4.1 when we let 
(X,d) = (U, p), where p is the hyperbolic metric in U.

For results in pseudometric spaces we refer to [11].
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