UNIVERSITATIS MARIAE CURIE-SKLODOWSKA LUBLIN - POLONIA

\qquad
VOL. L III, 6
SECTIO A

FREDERICK W. GEHRING and KARI HAG*

Bounds for the hyperbolic distance in a quasidisk

Abstract

This is a survey of recent work on bounds for the hyperbolic distance h_{D} in terms of a similarity invariant metric j_{D} and the Möbius invariant Apollonian metric a_{D}. Both of these metrics provide lower bounds for h_{D}. Each provides an upper bound if and only if D is a quasidisk.

1. A distortion theorem. The following surprisingly simple distortion theorem for quasiconformal mappings was established in [9].
Theorem 1.1. If f is a K-quasiconformal self mapping of $\overline{\mathbb{C}}$ which fixes 0 , 1 and ∞, then

$$
|f(z)|+1 \leq 16^{K-1}(|z|+1)^{K}
$$

for $z \in \overline{\mathbb{C}}$. The coefficient 16^{K-1} cannot be replaced by a smaller constant.
The proof follows from well known facts about the modulus of a ring domain, see for example [12], and results due to Agard [1] and Teichmüller [14].

Theorem 1.1 yields, in turn, a simple bound for the change of the crossratio under a quasiconformal mapping.

[^0]Corollary 1.2. If f is a K-quasiconformal self mapping of $\overline{\mathbb{C}}$, then

$$
\left|\left(f\left(z_{1}\right), f\left(z_{2}\right), f\left(z_{3}\right), f\left(z_{4}\right)\right)\right|+1 \leq 16^{K-1}\left(\left|\left(z_{1}, z_{2}, z_{3}, z_{4}\right)\right|+1\right)^{K}
$$

for each quadruple of points $z_{1}, z_{2}, z_{3}, z_{4} \in \overline{\mathbb{C}}$.
2. The distance-ratio and hyperbolic metrics. If h_{D} is the hyperbolic metric with curvature -1 in a simply connected proper subdomain D of \mathbb{C}, then

$$
\begin{equation*}
j_{D}\left(z_{1}, z_{2}\right) \leq 4 h_{D}\left(z_{1}, z_{2}\right) \tag{2.1}
\end{equation*}
$$

for $z_{1}, z_{2} \in D$ where j_{D} is the distance-ratio metric [7],

$$
\begin{equation*}
j_{D}\left(z_{1}, z_{2}\right)=\log \left(\frac{\left|z_{1}-z_{2}\right|}{\operatorname{dist}\left(z_{1}, \partial D\right)}+1\right)\left(\frac{\left|z_{1}-z_{2}\right|}{\operatorname{dist}\left(z_{2}, \partial D\right)}+1\right) \tag{2.2}
\end{equation*}
$$

Since j_{D} is a function of the ratios of the euclidean distance between z_{1} and z_{2} and the euclidean distances from these points to $\partial D, j_{D}$ is invariant with respect to similarities. See [8] and [11]. The function j_{D} also yields an upper bound for h_{D}, namely

$$
\begin{equation*}
h_{D}\left(z_{1}, z_{2}\right) \leq a j_{D}\left(z_{1}, z_{2}\right)+b \tag{2.3}
\end{equation*}
$$

for $z_{1}, z_{2} \in D$ if and only if D is a K-quasidisk, the image of a disk or half plane under a K-quasiconformal self mapping of $\overline{\mathbb{C}}$; see [6]. In this case $a=a(K)$ and $b=b(K)$. Inequality (2.3) implies that

$$
\begin{equation*}
h_{D}\left(z_{1}, z_{2}\right) \leq c j_{D}\left(z_{1}, z_{2}\right), \quad c=a+\max (b, \sqrt{b}) \tag{2.4}
\end{equation*}
$$

by [8]. Moreover, $h_{D}\left(z_{1}, z_{2}\right) \leq j_{D}\left(z_{1}, z_{2}\right)$ if D is a disk or half plane [8].
Corollary 1.2 allows us to obtain some simple estimates for $a\left(K^{\prime}\right)$ and $b(K)$.

Theorem 2.5. If f is a K-quasiconformal self mapping of \mathbb{C}, then for each proper subdomain D of \mathbb{C},

$$
j_{f(D)}\left(f\left(z_{1}\right), f\left(z_{2}\right)\right) \leq K j_{D}\left(z_{1}, z_{2}\right)+2(K-1) \log 16
$$

for $z_{1}, z_{2} \in D$.

Corollary 2.6. If D is a domain in \mathbb{C} and if there exists a K-quasiconformal self mapping of \mathbb{C} which maps D conformally onto a disk or half plane, then

$$
\begin{equation*}
h_{D}\left(z_{1}, z_{1}\right) \leq K j_{D}\left(z_{1}, z_{2}\right)+2(K-1) \log 16 \tag{2.7}
\end{equation*}
$$

for $z_{1}, z_{2} \in D$.
Corollary 2.6 together with (2.3) and (2.4) then yield the following bounds for hyperbolic distance in a quasidisk.

Theorem 2.8. If $D \subset \mathbb{C}$ is a K-quasidisk, then

$$
\begin{equation*}
h_{D}\left(z_{1}, z_{1}\right) \leq K^{2} j_{D}\left(z_{1}, z_{2}\right)+2\left(K^{2}-1\right) \log 16 \tag{2.9}
\end{equation*}
$$

for $z_{1}, z_{2} \in D$. In particular,

$$
h_{D}\left(z_{1}, z_{1}\right) \leq c j_{D}\left(z_{1}, z_{2}\right)
$$

for $z_{1}, z_{2} \in D$ where $c=c(K) \rightarrow 1$ as $K \rightarrow 1$.

Sketch of Proof. By hypothesis, there exists a K-quasiconformal self mapping f of $\overline{\mathbb{C}}$ which maps D onto a disk or half plane. If D is bounded, then we may assume that f fixes ∞ and $f(D)$ is the unit disk B. The existence theorem for the Beltrami equation implies there exists a K-quasiconformal self mapping $g: B \rightarrow B$ which fixes 0 such that $g \circ f$ is conformal in D. Reflection in ∂B extends g to a K-quasiconformal self mapping of \mathbb{C}. Then $h=g \circ f$ is K^{2}-quasiconformal and we can apply Corollary 2.6 to obtain (2.9).

Remark 2.10 The coefficient K of $j_{D}\left(z_{1}, z_{2}\right)$ in (2.7) cannot be replaced by a constant less than $(K+1) / 2$. The coefficient K^{2} of $j_{D}\left(z_{1}, z_{2}\right)$ in (2.9) cannot be replaced by a constant less than $\left(K^{2}+1\right) / 2$.

These lower bounds follow from explicit calculations for the case where $D=\left\{z=r e^{i \theta}: 0<r<\infty,|\theta|<\pi \alpha / 2\right\}, 0<\alpha \leq 1$. See [9].
3. A sharp criterion for a quasidisk. Ahlfors' well known three-point criterion for a quasidisk can easily be rewritten in terms of crossratios. See [6] and [8].

Criterion 3.1. A Jordan domain D is a quasidisk if and only if there is a constant $c \geq 1$ such that
$\left|\left(z_{1}, z_{4}, z_{2}, z_{3}\right)\right|+\left|\left(z_{3}, z_{4}, z_{2}, z_{1}\right)\right|=\frac{\left|z_{1}-z_{2}\right|\left|z_{3}-z_{4}\right|+\left|z_{2}-z_{3}\right|\left|z_{4}-z_{1}\right|}{\left|z_{1}-z_{3}\right|\left|z_{2}-z_{4}\right|} \leq c$
for each ordered quadruple of points $z_{1}, z_{2}, z_{3}, z_{4}$ in ∂D.
How large can the constant c be for a K-quasidisk? For this we recall the distortion function

$$
\lambda\left(K^{r}\right)=\left(\frac{\phi_{K}(1 / \sqrt{2})}{\phi_{1 / K}(1 / \sqrt{2})}\right)^{2} \quad \text { where } \quad \phi_{K}(r)=\mu^{-1}(\mu(r) / K)
$$

See [12], [3]. Here $K>0,0<r<1$ and $\mu(r)$ is the modulus of the ring domain bounded by $\{z:|z|=1\}$ and the segment $[0, r]$.

The function $\lambda(K)$ gives the sharp upper bound for the distortion of the unit circle,

$$
\sup _{\theta_{1}, \theta_{2}}\left(\frac{\left|f\left(e^{i \theta_{1}}\right)-f(0)\right|}{\left|f\left(e^{i \theta_{2}}\right)-f(0)\right|}\right),
$$

under a K-quasiconformal self map f of $\overline{\mathbb{C}}$; see [13].
Theorem 2 of [2] then yields the following result.
Criterion 3.2. If $z_{1}, z_{2}, z_{3}, z_{4}$ is an ordered quadruple of points on a K quasicircle C, then

$$
\begin{equation*}
\frac{\left|z_{1}-z_{2}\right|\left|z_{3}-z_{4}\right|+\left|z_{2}-z_{3}\right|\left|z_{4}-z_{1}\right|}{\left|z_{1}-z_{3}\right|\left|z_{2}-z_{4}\right|} \leq c(K) \tag{3.3}
\end{equation*}
$$

where

$$
c(K)=\frac{\lambda(K)^{1 / 2}+\lambda(K)^{-1 / 2}}{2}
$$

Inequality (3.3) is sharp for all K.
Additional calculation then yields the following variant of Criterion 3.2 [10].

Criterion 3.4. If $z_{1}, z_{2}, z_{3}, z_{4}$ is an ordered quadruple of points on a K quasicircle C and if

$$
\max \left(\left|z_{1}-z_{0}\right|,\left|z_{3}-z_{0}\right|\right) \leq a \leq b \leq \min \left(\left|z_{2}-z_{0}\right|,\left|z_{4}-z_{0}\right|\right)
$$

for some point $z_{0} \in \mathbb{C}$, then

$$
\begin{equation*}
b / a \leq \lambda(K)^{1 / 2} \tag{3.5}
\end{equation*}
$$

Inequality (3.5) is sharp for all K.
4. The Apollonian and hyperbolic metrics. If D is a proper subdomain of the extended complex plane $\overline{\mathbb{C}}$, then the Apollonian metric a_{D} is defined as

$$
\begin{align*}
a_{D}\left(z_{1}, z_{2}\right) & =\sup _{w_{1}, w_{2} \in \partial D} \log \left|\left(z_{1}, z_{2}, w_{1}, w_{2}\right)\right| \\
& =\sup _{w_{1}, w_{2} \in \partial D} \log \left(\frac{\left|z_{1}-w_{1}\right|\left|z_{2}-w_{2}\right|}{\left|z_{1}-w_{2}\right|\left|z_{2}-w_{1}\right|}\right) \tag{4.1}
\end{align*}
$$

for $z_{1}, z_{2} \in D$. See [4] and [5]. Strictly speaking a_{D} is only a pseudometric if ∂D lies in a circle C and D contains points which are symmetric in C. It follows that a_{D} is invariant with respect to Möbius transformations.

The metric a_{D} furnishes information about other metrics defined in D. For example, if D is a disk, then $a_{D}\left(z_{1}, z_{2}\right)=h_{D}\left(z_{1}, z_{2}\right)$ for $z_{1}, z_{2} \in D$ [Be]. If $D \subset \overline{\mathbb{C}}$ is a simply connected domain of hyperbolic type, then a_{D} yields the sharp lower bound

$$
\begin{equation*}
a_{D}\left(z_{1}, z_{2}\right) \leq 2 h_{D}\left(z_{1}, z_{2}\right) \tag{4.2}
\end{equation*}
$$

for h_{D} [5]. Cf. (2.1). Finally it follows from (2.2) and (4.1) that

$$
\begin{equation*}
a_{D}\left(z_{1}, z_{2}\right) \leq j_{D}\left(z_{1}, z_{2}\right) \tag{4.3}
\end{equation*}
$$

even when D is not simply connected [Be].
As in the case of the distance-ratio metric j_{D}, the Apollonian metric a_{D} yields an upper bound for h_{D} only when D is a quasidisk. This fact is a consequence of the following analogues for a_{D} of inequalities (2.7) and (2.9). The geometric information concerning ∂D in Criterion 3.4 is needed in the proof of these results. For example, as noted above, there exist $z_{1}, z_{2} \in D$ with $a_{D}\left(z_{1}, z_{2}\right)=0<h_{D}\left(z_{1}, z_{2}\right)$ whenever ∂D is a proper subset of a circle.

Theorem 4.4. If f is a K-quasiconformal self map of $\overline{\mathbb{C}}$ and if D is a proper subdomain of $\overline{\mathbb{C}}$, then

$$
a_{f(D)}\left(f\left(z_{1}\right), f\left(z_{2}\right)\right) \leq K a_{D}\left(z_{1}, z_{2}\right)+2(K-1) \log 32
$$

for $z_{1}, z_{2} \in D$.

Corollary 4.5. If D is a domain in $\overline{\mathbb{C}}$ and if there exists a K-quasiconformal self map f of $\overline{\mathbb{C}}$ which maps D conformally onto a disk, then

$$
\begin{equation*}
h_{D}\left(z_{1}, z_{2}\right) \leq K a_{D}\left(z_{1}, z_{2}\right)+2(K-1) \log 32 . \tag{4.6}
\end{equation*}
$$

Theorem 4.7. If $D \subset \overline{\mathbb{C}}$ is a K-quasidisk, then

$$
\begin{equation*}
h_{D}\left(z_{1}, z_{2}\right) \leq K^{2} a_{D}\left(z_{1}, z_{2}\right)+2\left(K^{2}-1\right) \log 32 \tag{4.8}
\end{equation*}
$$

for $z_{1}, z_{2} \in D$. In particular, $h_{D}\left(z_{1}, z_{2}\right) \leq c a_{D}\left(z_{1}, z_{2}\right)$ where $c=c\left(K^{\prime}\right) \rightarrow 1$ as $K \rightarrow 1$.

References

[1] Agard, S. B., Distortion theorems for quasiconformal mappings, Ann. Acad. Sci. Fenn. AI 413 (1968), 1-11.
[2] Agard, S. B and F. W. Gehring, Angles and quasiconformal mappings, Proc. London Math. Soc. 14A (1965), 1-21.
[3] Anderson, G. D., M. K. Vamanamurthy and M. K. Vuorinen, Distortion functions for plane quasiconformal mappings, Israel J. Math 62 (1988), 1-16.
[4] Barbilian, D., Einordnung von Lobatschewskys Massbestimmung in gewisse allgemeine Metrik der Jordanschen Bereiche, Casopis Matematiky a Fysiky 64 (193435), 182-183.
[5] Beardon, A. F., The Apollonian metric of a domain in \mathbb{R}^{n}. Quasiconformal mappings and analysis, Springer-Verlag, 1998.
[6] Gehring, F. W., Characteristic properties of quasidisks, Les Presses de l'Université de Montréal, 1982.
[7] , Characterizations of quasidisks, Banach Center Publications 48 Warsaw (1999 (to appear)).
[8] and K. Hag, Hyperbolic geometry and disks, J. Comp. Appl. Math. 104 (1999 (to appear)).
[9] and K. Hag, A bound for hyperbolic distance in a quasidisk, Comput. Methods and Function Theory, World Scientific Publishing Co., 1997.
[10]___ and K. Hag, The Apollonian metric and quasiconformal mappings, (to appear).
[11] and B. P. Palka, Quasiconformally homogeneous domains, J. d'Analyse Math 30 (1976), 172-199.
[12] Lehto, O. and K. I. Virtanen, Quasiconformal mappings in the plane, SpringerVerlag, 1973.
[13] Lehto, O., K. I. Virtanen and J. Väisälä, Contributions to the distortion theory of quasiconformal mappings, Ann. Acad. Sci. Fenn. AI 273 (1959), 1-14..
[14] Teichmüller, O., Extremale quasikonforme Abbildungen und quadratische Differentiale, Abh. Preuss. Akad. Wiss. 22 (1940), 1-197.

University of Michigan
received April 11, 1999
Ann Arbor, MI 48109, USA
Norwegian University of Science and Technology
N-7491 Trondheim, Norway

[^0]: 1991 Mathematics Subject Classification. Primary 30F40.

 - Research supported in part by grants from the U. S. National Science Foundation (FWG) and the Norwegian University of Science and Technology (KH).

