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Variations on a theorem of Fejér and Riesz

This lecture is dedicated to Jan Krzyz
on the occasion of his 75" birthday

ABSTRACT. This lecture concerns variants of a pair of inequalities due to
L. Fejér and F. Riesz which are related to hyperbolic geometry, Carleson
measures, the level set problem, the higher variation of a function and the
one-dimensional heat equation.

1. Introduction. I will describe here several results which are related to
the following two attractive theorems due to L. Fejér and F. Riesz [6] and
to F. Riesz [23]. Throughout this lecture D will denote a simply connected
Proper subdomain of the plane R?, B the open unit disk, H the upper half
Plane and L the real axis.

Theorem 1.1 (Fejér-Riesz). If g is analytic in B and continuous in B, then
[ taras<t [ ras
LNB JoB
for 0 < p < 0o.

Theorem 1.1 is closely related to the following inequality.

—
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Theorem 1.2 (Riesz). If u is harmonic in B and continuous in B, then
variation pnpg(u) < % variation sp(u).

The following inequality is an immediate consequence of the above two
theorems.

Corollary 1.3. If f is conformal in B and continuous in B, then

length(f(L N B)) < § length(f(dB)).

Proof. Let ¢ = f' and p = 1 in the Fejér-Riesz Theorem or let v = f in
the Riesz Theorem. O

Remark. By the Riemann mapping theorem, for each 0 < a < oo there
exists a conformal mapping f : B — D where

D={z=z+iy:|z|/a+]y| <1},

such that LN B corresponds to LN D. The Carathéodory extension theorem
then implies that f is continuous in B and hence that

length(f(LNB))  2a 1
length(f(0B))  4va®+1 2

as a — 00. Thus the constant i— is sharp in Corollary 1.3 and hence also in
the Theorems of Fejér-Riesz and Riesz.

In what follows I will give five variants of the inequalities of Fejér-Riesz
and Riesz which are connected with
1. hyperbolic geometry,
Carleson measures,
the level set problem,
the higher variation of a function,
the one-dimensional heat equation.

o e

2. Hyperbolic geometry. The following is a variant of Corollary 1.3
which was first conjectured by Piranian and later established by Gehring
and Hayman in [15].
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Theorem 2.1. If f is conformal in B and continuous in BN H, then

length(f(L N B)) < clength(f(0B N H))

where ¢ is an absolute constant.

Remark. The sharp value of ¢ in Theorem 2.1 is not known. The proof
given in [15] yields the bounds m < ¢ < 74. Jaenisch showed later in [18]
that Theorem 2.1 holds with 4.5 < ¢ < 17.5.

Theorem 2.1 has an interesting interpretation in terms of the hyperbolic

geometry. If g : D — B is conformal, then

2|g'(z
role) = T

is independent of choice of g and the hyperbolic distance hp in D is given
by

hp(z1,22) = ir;f/ pds

Where a is any arc joining z;,2; in D. The unique arc 8 for which this
Infimum is attained is said to be a hyperbolic geodesic.

Corollary 2.2. If 3 is a hyperbolic geodesic in D and if a is an arc which
Joins the endpoints of 8 in D, then

I(B) < cl(a)
where ¢ is the constant in Theorem 2.1.

Proof. Suppose that a meets the hyperbolic line containing 3 only at the
endpoints of 3. Then we can choose a conformal mapping g : D — B so
that g(a) U g(B) bounds a Jordan domain D' C BN H and g(8) C L.

Let h map D' conformally onto B N H so that g(3) = L N B and reflect
in L. Then

f=(heg)!
is conformal in B, continuous in B and

— U S C ’d = 1
1(8) /mmd < /aBnHIfl s = cl(a)

by Theorem 2.1. The general case then follows easily from this special case.
a
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Remark. Corollary 2.2 says that in a simply connected domain, a hy-
perbolic geodesic # minimizes up to a fixed multiplicative constant the eu-
clidean as well as the hyperbolic length of all arcs a joining its endpoints.
This is not the case in a multiply connected domain [1]. See [17] and [22]
for other developments concerning Corollary 2.2.

3. Carleson measures

Definition 3.1 A non-negative measure p in B is a Carleson measure if
there exists a constant b such that

pw(UN B) < brad(V)
for each disk U with center on 9B.

The following theorem due to Carleson [5] illustrates why this particular
class of measures is important.

Theorem 3.2. A non-negative measure p in B is a Carleson measure if
and only if there is a constant c such that for each function g analytic in B

and continuous in B,
[larause [ lgras
B oB

for 0 < p < oo.

Example 3.3. For each Borel set £ C B let u(E) = length(E N L). Then
w(U N B) < 2rad(U)
for each disk U with center on B and hence p is a Carleson measure.

Remark. If g is the measure in Example 3.3, then by Theorem 3.2 there
is constant c such that

[ lgrds= [ lgPdu<c / gl ds
LNB JB 5B

for g analytic in B and continuous in B and 0 < p < co. Thus Theorem 3.2
is a far reaching extension of the Fejér-Riesz theorem.

The following lemma yields another useful characterization for Carleson
measures. See Lemma 3.3 in Chapter 6 of [9].
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Lemma 3.4. A non-negative measure p in B is a Carleson measure if and
only if there is a constant b such that

/Ih'ldusb
B

for all conformal h: B — B.

4. Level set problem. Corollary 1.3 implies that
length(f(L N B)) < 1 length(f(4B))

whenever f : B — D is conformal in B and continuous in B. It is reasonable
to ask if one can reverse the roles of B and D in this inequality. That is,
does there exist a constant a such that

length(f(L N D)) < a length(f(0D))

whenever f: D — B is conformal in D and continuous in D. This question
was answered in the affirmative by Hayman and Wu who established the
following result [16].

Theorem 4.1. If f : D — B is conformal, then
length(f(L N D)) < b,
Where b is an absolute constant.

Remarks. Piranian and Weitsman were the first to conjecture that The-
orem 4.1 holds and the proof in [16] yields the result with b = 10%7. A
different argument with additional consequences was later given by Gar-
nett, Gehring and Jones in [10]; see Theorem 4.3 below. The value of the
Constant b has been studied by several people.

1. Flinn: 7.4 < b. In addition b < x? if H C D [8].

2. Fernandez, Heinonen and Martio: b < 4x? [7).

3. Oyma: 72 < b < 47 in [20] and [21].

4. Rohde: b < 47 [24].

The following consequence of Theorem 4.1 in [10] allows one to replace

the unit disk B in the Fejér-Riesz Theorem by a Jordan domain D with a
rectifiable boundary.
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Lemma 4.2. If f: D — B is conformal, then u(E) = length( EN f(LN D))
is a Carleson measure.

Proof. Suppose that h : B — B is conformal. Then g = ho f: D — B is
conformal and

/ |h'| dp = [ |h'| ds = length(g(L N D)) < b
B Js(LnD)

by Theorem 4.1. Hence p is a Carleson measure by Lemma 3.4. O

If we now combine Theorem 3.2 and Lemma 4.2 we obtain the following
versions of the Fejér-Riesz Theorem and Corollary 1.3 [10].

Theorem 4.3. If 3D is a rectifiable Jordan curve and if g is analytic in D
and continuous in D, then

/ Igl”dsSc/ lg|P ds
LnD oD

for 0 < p < oo where c is an absolute constant.

Proof. Suppose that f : D — B is conformal and let
u(E) = length(E N f(L n D)).

Then u is a Carleson measure by Lemma 4.2. Next choose h analytic in B

so that
9(2)" = h(f(2))? f'(2).
Then Theorem 3.2 implies that

/ lg|P ds =/ |h|P ds = / |h|P du < c/ |h|Pds =c / lg|? ds.
LAD F(LND) JB 8B Jap

O

Corollary 4.4. If f is conformal in D and continuous in D, then
length(f(L N D)) < clength(f(0D))

where c is an absolute constant.

Remark. The disk B of the Fejér-Riesz Theorem has disappeared in The-

orem 4.3 and its Corollary. What about the line L? The answer, given by

Bishop and Jones in [2], depends on the notion of a regular curve due to
Ahlfors.

Definition 4.5. An arc C is regular if there is a constant a such that
length(CNU) < arad(U)
for each disk U.
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Theorem 4.6. Theorem 4.3 holds with C in place of L if and only if C is
regular.

Remark. The disk B and the line L are now both gone from the original
Fejér-Riesz Theorem! What about the analytic function g or the conformal
Mmapping f?

Program of Bonk-Koskela-Rohde [3].

1. The goal is to characterize the densities ¢ > 0in B for which there exist
analogues of the results for the case where o = | f'| and f is conformal
in B.

2. Two properties:
a. Harnack type inequality,
b. Growth rate inequality.

3. Many results of function theory follow if o satisfies the above properties
in B.

4. Example: If 8 is a hyperbolic geodesic in B, then

/adsgc/ods
B o

for all @ joining the endpoints of 3 in B where c is an absolute constant.
This is the inequality in Corollary 2.2 when o = |f’|.

Problem. What are the analogues of Theorem 4.3 and Corollary 4.4 for
such a density o?

5. Higher variation of a function. If f is defined over an interval I,
then for 1 < p < 0o we can define the p** power variation of f over I by

1/p
p variation ;(f) = sup Z | f(=5) = f(zi=2)I

y=1

Where the supremum is taken over all subdivisions 7 = {zo<z1<...< Yy
of I. The p** power variation of f interpolates between the usual variation
and the oscillation of f as p varies between 1 and co. See, for example, [4],
(12], [19], [26] and [27).

We have the corresponding extension of the Riesz Theorem [11].
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Theorem 5.1. If u is harmonic in B and continuous in B, then
p variation pnp(u) < % p variation spg(u)

for1 < p < oo.

6. One-dimensional heat equation. The Riesz Theorem takes the
following form when D = H.

Theorem 6.1. If u is harmonic in H and continuous in H, then for |a| < 0o
and 0 < b < oo

/,, fuy(a, y)l dy < } / (2, 5)| 8.

— 00

Proof. If h maps B conformally onto {z =z +iy:b<y < oo} and LN B
onto {z=a+iy:b< y < oo}, then v = uoh is harmonic in B, continuous
in B and

[o <]
J’/ |uy(a,y)| dy = variation pqp(v)
b

1 . 1 I'°°
< — variation 5g(v) = = |luz(z,b)| dz. 0
2 2 J-wo

For |z| < 0o and t > 0 let u = u(z,t) denote the absolute temperature
in an infinite insulated rod with unit thermal conductivity and unit cross-
section spread along the z-axis. Then

Uy = uzzand u >0
for (z,t) € H. Temperature functions behave in many ways like positive
harmonic functions. See Widder [25] and [13], [14].
The following is an analogue of Theorem 6.1 for temperature functions
(14].
Theorem 6.2. If u is a temperature function in H, then for |a| < oo and
0<b<oo

J/—oo u(z,b)dz,

(6.4) /boo [ue(a, ] dt < 3 /w_J |us(z, b)| dz.

(6.3) /°° luz(a,t)|dt <
Jo

[l Nl'—‘
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—

Bemarks. The following physical interpretations of Theorem 6.2 yield an
Interesting way of viewing the Riesz Theorem.

1. Suppose that the heat in the rod at time ¢t = b is equal to A < oo, that
is, -
| u(z,b)dz = A.
— 00
Then inequality (6.3) says that the total heat flow across each fixed
section of the rod in the time interval b < t < oo never exceeds A/2.

2. Suppose next that the variation of temperature along the rod at time
t = bis equal to V < oo. Then inequality (6.4) says that at each
section of the rod the temperature variation in time for b < t < o0
never exceeds V/2.
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