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Conical Fourier transform of Hardy space 
of harmonic functions on the Lie ball

Abstract. This paper is an extended version of a talk entitled ’’Hardy 
spaces of harmonic functions related to the complex sphere” and given at the 
12-th Conference on Analytic Functions. The authors consider Hardy space 
of complex harmonic functions on the Lie ball with an inner product given 
by an integral on a part of the boundary of the Lie ball. They determine 
the image of the space under conical Fourier transformations.

!• Introduction. We denote Rn+1 by E and Cn+1 by E. Let z • w —
2iWj -I------hzn+1wn+i, z2 = Z'Z, and | |z| |2 = z-z. The open and the closed
Lie balls of radius r with center at 0 are defined by

P(r) = {z G E : £(z) < r}, 0 < r < oo,

= {z G E : £(z) < r}, 0 < r < oo,

where £(z) = {||z||2 + (||z||4 - |z212)4/2/2 is the Lie norm. Note that 
£(oo) = E.

We denote by O(B(r)) the space of holomorphic functions on B(r) equip­
ped with the topology of uniform convergence on compact sets and denote by
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O(P[r]) = lim indr<>r Ć9(B(r')) the space of germs of holomorphic functions 
on B[r]. Put

OA(P(r)) = {/eO(P(r)):Az/(z) = 0},

C?a(P[’’]) = limindr<>r O^(P(r')),

where Az = d2/dz2 + d2/dz^ + • • • + d2/dz2n+x is the complex Laplacian. 
We call an element of O^(P(r)) a complex harmonic function on 5(r).

Let n > 2. We define the complex sphere with radius A G C by S\ = 
{z G E : z2 — A2}. If A = 0, then So is called the complex light cone (or the 
complex isotropic cone). Put

ŚA(r) = Śa nP(r), |A| < r < oo ,

Sa[t] = Śa n P[r], |A|<r<oo,

ŚA,r = 0ŚAM, |A|<r<oo.

If |A| < r, then S\tT is a (2n — l)-dimensional compact manifold on which 
the orthogonal group SO(n + 1) acts transitively. If |A| = r > 0, then it 
reduces to the n-dimensional compact manifold S\,r — SaM = ASi , where 
Si = {x G E : x2 = 1} is the real unit sphere.

For f,9 G £?A(J9[r]) we put

where dz is the normalized invariant measure on S\,r-
After some necessary preparation in Section 2 we show in Section 3 that 

*s an inner product on C\i(B[r]) and denote by h2x(B(ry) the 
completion of 0A(B[r]) with respect to the inner product (/, ff)śAr- We 
can see that h2x(B(r)) is isomorphic to a Hardy space of harmonic functions
on the Lie ball.

In Section 4, we define the conical Fourier transformation for
f € C?A(P(r)), where p is another complex number with |/x| < r. Then 
the conical Fourier transform is given by

^r/«) = / exp(s2 ■ Qf(z/s)dz, <GŚ0,

which does not depend on s > 1 sufficiently close to 1.
Then in Section 5, by introducing a Radon measure on Sq, we con­

struct the inverse mapping A4M,r of the conical Fourier transformation
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We also study a Hilbert space £2(S0; /r, A,r) of entire functions on So which 
are square integrable with respect to the Radon measure.

Finally, in Section 6, we show that the image of h2(P(r)) under the 
conical Fourier transformation s isomorphic to £2(S0; P, A,r) and we 
study a reproducing kernel for £2(So', p, X,r).

2. Homogeneous harmonic polynomials. We denote by P£(E) the 
space of ^-homogeneous harmonic polynomials on E. The dimension of 
T£(E) is given by

N(k, n)
(2h + n — l)(fc + n — 2)! 

k\(n — 1)!
O(kn~').

Let Pk,n(£) be the Legendre polynomial of degree k and of dimension 
n + 1. The coefficient ~fk,n of the highest power of Pk,n(£) is known as

r(fc + (n + l)/2)2fc 
7fc,n ~ JV(fc,n)r((n + l)/2)fc!

and _F\. n(/) = ptin(Z). The harmonic extension P*,in(z, w) of Pk,n(+ • w) is 
defined by

Ą,„(.,») = (V?)‘ (V5*)‘ft„ (^ • •
Then Pfcn(z,w) is a symmetric k-homogeneous harmonic polynomial in 

2 and in w. If z2 = 0 or w2 = 0, then PAi„(z, w) = 7fc)n(z • w)fc.

Theorem 2.1 ([6, Theorem 5.2]). Define the k-harmonic component fk of 
f € C?A(B(r)) by

fk(z) = N(k, n) / /(pw)Pfc,„(z/p, w) dw, 0 < p < r ,
Si

where dw is the normalized invariant measure on Si.
Then fk E P^(E) and SfcLo A(z) converges to f(z) in the topology of

DA(B(r)). Moreover, we have

OO

f = 72fk(z) € DA(P(r)) <=> lim sup HAH^sj < V7’, 
k=o k^°°

f = 5Ż A(2) e °A(B[r]) <=> lim sup HAIIcfk) < X/r> 
k^°°

wher? IIAIIc(Si) = sup{|A(»)l : x E Si}.
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For f,g E Ga(P[p]) we define the sesquilinear form (• ’ • )śA,r by

= L fWdWdz, |A| < r,
J S\,T

where dz is the normalized invariant measure on S\ir.
For fk € , 9i G Pa(®) » R- Wada [13] proved the relation

where

Js, fk(x)gi(x)dx

lA|2p*,n (j (jxji + 7^)) ,

7fc,n 2/c 
2* ' 1

A 0 0, 

A = 0.

Note that Lk,o,r = linu-o Pfc.A.r-

Lemma 2.2 ([3, Lemma 7.2]). Lk,\,r is a monotone increasing function in 
|A|; that is, for 0 < |A| < |/z| < r and k 0, we have

2 7k,np = ^k,0,r < Lk,X,r < Pfc,/i,r < Ek,r,r — p

By Lemma 2.2 , Theorem 2.1 , and (1) we have

OO - OO -

(/’ff)śx.r =52 /- fk(z)gk(z)dz = 52 fk(x)gk(x)dx < oo . 
fc_0JŚ*.r k=0''Sl

Thus (•, • )śA is an inner product on O&(P[r]).
The sesquilinear form (/, g)śA r = 52^=o/sA fk(z>)9k(.z)dz was defined

for f,g E C\\(B[r]). However, by Theorem 2.1, for f E CZi(-B[r]) and 
g e

I f(sz)g(z/s)dz = 52 I fk(z)9k(z)dz 
J *^A,r k=0 J Ś\,f

is well-defined for 5 > 1 sufficiently close to 1 and does not depend on s. 
Sometime we set s. f(z)g(z)dz = f(sz)g(z/s)dz and call it the
symbolic integral over S\iT- Thus we can extend (f,g)gx r to a separately
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continuous sesquilinear form on 0a(BH) X d^(P(r)) by the symbolic inte­
gral. Similarly we can extend (f,g)gx to a separately continuous sesquilin­
ear form on O^(P(r)) x C,a(P[7']) . Therefore, we still have

for f e Oi(fl[r]) and g E or for f E Os(B(rY) and g E Os(B[r]).

3. Hardy spaces of harmonic functions on the Lie ball. Let |A| < r.
We denote by h|(P(r)) the completion of C9a(P[f]) with respect to the 
inner product (•, • )śA -By the definition,

h2A(P(r)) = / = £||/<r < oo

k-0 k=0

Further, as in the proof of Lemma 3.2 in [2], we can see that h2 (P(r)) is 
isomorphic to the Hardy space:

h|(P(r)) < f E Os(B(rf) : sup t |/(tz)|2dz < oo > . 
0<t<l JSx.r

Proposition 3.1 ([4, Theorem 1.5]). The Hardy space h2x(B(r)) is a Hil­
bert space being a direct sum of the finite dimensional subspaces P^(E) :

OO

hl(B(r))=© 1(E).
fc=0

By using Lemma 2.2, we can prove the following 

Theorem 3.2 ([4, Theorem 1.5]). For 0 < |A| < |p| < r, we have

OA(B[r]) c h2(B(r)) c h2 (B(r)) C h2A(B(r)) C hg(B(r)) C OA(B(r)).

Now we consider the reproducing kernel. Since |P/Cin(z, w)| < T(z)fcT(w)fc 
and limfc_+oo(T*;,A,r)1/fc = r2 for |A| < r, the Poisson kernel

OO

A\r(z,w) =
fc=0

N(k,nj
Lk,\,r

Pk,



46 K. Fujita and M. Morimoto

is a function on {(z,w) E E X E : £(z)£(w) < r2} and complex harmonic 
in z. It satisfies A\ir(z, w) = K\ir(w,z). In particular, Krtr(z,w] is the 
classical Poisson kernel and the restriction of KoiT(z, w) on So X IE is called 
the Cauchy kernel on So in [8]:

A'r,r(z,w) = A'i,i(z/r,w/r), 
r ( —\ 1 “ z2w2

(1 + z2w2 — 2z ■ w)(n+1)/2 
A'0,r(z,w) = A0,1 (2/r, w/r), 
rz / —M 1 + 2zW
A°.l(fo™)lśoxE=(1-2zw)n--

Using the Poisson kernel, we have the following integral representation 
for f £ (Theorem 3 in [7], see also [10] and [11]):

f(z) = s.l f(w)Kx,r(z,w)dw, z E B(r). 
Jsx,r

For f £ h2 (B(r)) we have

Theorem 3.3 ([4, Theorem 1.5]). The Poisson kernel K\<r{z,w') is a re­
producing kernel of h2x(B(ry) which means that for f E h2(B(r)) we have 
the following integral representation:

f(z) = (f(w),Kx,r(w,z))§Xr= [ f(w)Kx<r(z,w)dw, z £ B(r).

We denote by L2O(Sx,r) the closed subspace of the space of square 
integrable functions on Sx,r generated by 7ffc(SA,r) = ^(E)!^ , k = 
0,1,2,... ,. Then as a corollary of Theorem 3 in [7] and Theorem 3. 3 we 
have

Corollary 3.4. The restriction mapping ax gives the following linear topo­
logical isomorphisms:

«A:h2A(B(r))^O^(B(r)),

oa:(9a(E)-^(9(Sa),

where O(Sx) is the space of holomorphic functions on SA equipped with the 
topology of uniform convergence on compact sets.

For related topics see [3].
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4. Conical Fourier transformation. Let O^(P[r]) (resp., C9^(P(r)) be 
the dual space of (9a(J?[r]) (resp., C?A(P(r))). For T G (^(Bfr]), we define 
the Poisson transformation PM)r by : T h-> P^T^w) = (T2,M>r (z, w)). 
Then we have the following

Theorem 4.1. Let 0 < r < oo. The Poisson transformation establishes the 
following antilinear topological isomorphisms:

PM,r:C?k(P(r))^(9A(PM).

Further, for T G O^(P(r)) and f G O^.(B(r)), or for T G d^(P[r]) and 
/ G C\x(B[r]), we have

(2) (r,/) = (/,P„,rT)ś,„.

This can be proved similarly as Theorem 15 in [10].
Since A2 exp(z-£) = 0 for ( G So, we can define the conical Fourier-Borel

transformation for T G Oa(PH) by

(3) :T~ jF*T(<) = (T2,exp(z<)), < G So .

Put

Exp(S0;(r)) = {/ G O(Ś0) : Vr->r, 3c>0 s.t. |/«)| < C exp(r'T*«))} , 

Exp(Ś0; H) = {/ G (9(So): Vr.,r, 3c>0 s.t. |/«)| < Cexp(r'Z,*«))} ,

where
T*«) = sup {|z<| : T(z) < 1} = {(|K||2 + K|2) /2}1/2 

is the dual Lie norm. Then we have the following

Theorem 4.2. The conical Fourier-Borel transformation P^ gives the fol 
lowing linear topological isomorphisms:

(i) P? :Ć?X(B[r])-^Exp(Ś0;(r)), 0 < r < oo ,

(ii) P? : O'z(B(r)) Exp(50;[r]), 0 < r < oo .

(cf. Theorem 18 in [9]).
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Now we define the conical Fourier transformation on OA(2?(r)) by 

° (^.r)"1 •

Then for f G by (2) and (3), we have

^r/(C) = (exp(*£),/(*))$ r , £ G So.

Lemma 4.3. For f = fk,f € and fk £ P£(E), we have

(4)
Lk,p,r

-ffn N(k,n)k\Tk,nk=0

fk(Q,= £

where we put fk(Q = fk(Q for fk G 7Yfc(Ś0) = Pa(E)Iś0-

Proof. We have

(5)

where

W «
exp(z£) = —----- jk Pk,n(z,(),

t=0 KCk,n

j*W = r(k + Jl+v(i)

y (-l)T(fc+*fi) 2i

is the entire Bessel function (see [6]). Thus by Theorem 2.1 and (1), we get
(4). □

Theorems 4.1 and 4.2 imply the following

Theorem 4.4. Let 0 < r < oo. The conical Fourier transformation 
gives following antilinear topological isomorphisms:

:OA(B(r))-^Exp(Ś0;(r)),

: 0A(fl[r]) Exp(Ś0; [r]).

By Corollary 3.4 we may assume fk G P^(E). Therefore by (4) and 
Theorem 2.1 we obtain the following proposition (see also [8, Thm. 12]):
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Proposition 4.5. Let f = A e Exp(S0; (r)) and fk E 7ffc(So). Then 
we have

OO

f =^fk E Exp(50;(r)) <=> lim sup ||A;!/fc||J/(£01} r/2 >
k-0 k~’°°

OO

f = ^fk € Exp(S0;[r]) <=> lim sup ll^!All^o i} < r/2, 
k=o k~"°°

where ||A||c(ś0 l} = sup{|/fc(z) : z E Ś0,i).

5. Radon measures on So- Let pM,r(f) be a function on [0,oo) satisfying

(6)
ZOO
/ t^p^^dt = 

JO

(7V(A:,n)fc!)27fe|n2*
Tfc./i.r

, k = 0,1,... ,

and define the Radon measure d5o(M,r) on So by

I /(0^o(M,r)(0 = r I F(tC)dc' PpAQdt. 
Jśo Jo J §0,1

Such a functionpMi7. does exist by a theorem of A. Duran [1]. In case 
of |p| = r, K. Ii [5] and R. Wada [12] constructed such a function pr(<) of 
exponential type —r by means of the modified Bessel functions.

By Corollary 4.5 and lim/c_oo(LfciAir)1/Zfc = r2, for F E Exp(5o;[r]) and 
G £ Exp(So; (n)) (resp., F £ Exp(Sb; (r)) and G E Exp(So; [r])) the integral

/ F«)G(<)d5o(M,r)(0 
J So

is well-defined and it defines a separately continuous sesquilinear form on 
Exp(50;[r]) x Exp(Ś0;(r)) (resp., Exp(Ś0;(r)) x Exp(50; [r])). If w £ 50 
and z e B(r), then the function w exp(z ■ w) belongs to Exp(5o;[r]). 
t herefore, for F £ Exp(Sb; (r)) we can define A4M,rF(^) by

(7) A4M,rF(z) = [ exp(z<)F«)d50(M,r)(C), zEB(r).
J s0

We denote by A4M,r the transformation F »-> M^rF. By Theorem 2.1,
(5) and (1) we have the following
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Lemma 5.1. For F = A 6 Exp(Ś0; (r)) and Fk £ Bfc(So), we have

A4M,rF(w) = 52 
fc=0 Tfc.M.r

Theorem 5.2. The mapping gives following antilinear topological
isomorphisms and is inverse to the conical Fourier transformation :

M^r : Exp(S0; (r)) ,

M^r : Exp(Ś0;H) EA C?A(B[r]).

Proof. By Lemmas 4.3 and 5.1 we have A4M,r o Fj)r/(z) = /(z) for 
f E O&(B(rf) and F£r o A4M,r = F(z) for F E Exp(S0; (r)). Thus A4M)F is 
bijective, whereas A4M>r and are inverse to each other. □

For E So we put

FMlr«,£) = / exp(z£)exp(z£)dz. 
J s0

Proposition 5.3. For F £ Exp(So; (r)) we have 

(8) F(£) = [ F^E^^dSo^}.

Proof. Let F = Fk € Exp(Śo; (r)) and Fk E Hfc(So). Then

T(£) = -F£r° A4M,rF(0 = (exp(zf), / exp(z<)F«) dŚ0(M,r)«))
\ JSo J s^T

= f exp(sz • f) I exp(z/s • <)F«) dŚ0(M,r)«)<k 
JŚ^tr J So

= Z- I. ^P^y^^QdzF^QdSo^^Q
JSo JS»,r

= Z F(OFM,r«,O^0(M.r)«),

9 So

where s > 1 is sufficiently close to 1. □
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Now we employ the theorem of A. Duran ([1]) again, and there is a C°° 
function pMiA,r(t) which satisfies

(9)
/•OO

/ t2kpn<X,r^dt 
Jo

Define the Radon measure d5o(M,A,r) on So by

y F«)dŚo(M>r)«) = /°° (7- WX'J P,,X,rWdt.

When |p| = IA|, (9) reduces to (6), pMlA,r(<) to pM,r(/) and dŚ0(M,A,r) to 
^0(M,r). Put

f2(50;/z,A,r) = |f€ O(50) : J_ |F«)|2dS0(M,A,r)«) < oo} .

When |p| = |A|, we denote £2(50; P, A,r) by £2(S’O; p, r).

Theorem 5.4. The Hilbert space £2(So;p, A,r) is a Hilbert space being a 
direct sum of the finite dimensional subspaces 7fh(So) :

OO

£2(So;p,A,r) = ®?ffc(5o).
fc=0

Proof. Let F = ££„ **(<) £2(50;p,A,r) and Fk e Hk(S0). By the
definition of the Radon measure </So(g,A,r)» we have

y iF(()i2d50(„,j,r)K)=y™ (y mcxj 4«>«

-OO °°
(10) = / 52<2fc(^^*)śo.1PM,A.r(0^

,=0
(A(A:,n)/;!)27fcin2fcT,)A r up ip=S—ra—im°--

f bis completes the proof. □

By (10) and Lemma 2.2 we have the following
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Corollary 5.5. If |pi| < |p2| < f , then

£2(Ś0;Fi, A,r) C £2(So;p2, A,r).

If |Ai| < |A2| < r, then

S2(Ś0;M,Ai,r) 0 S2(S0;p, A2,r).

Jf |pi| = |AX|, |p2| = |A2| and |/xx | < |/x2|, then

£2(Ś0;/2i,r) C S2(Ś0;At2,r).

6. The image of h2(B(r)). Now we consider the image of the Hardy 
space h|(B(r)) under the conical Fourier transformation P^r.

Let f £ h2(B(r)). Since h2(B(r)) C (9a(B(f)) and

W _ Pk,nM-p(a) = E Ar = E(11) —' k\ kb-fk nk=0 k=0 ,K’n

for z E E and £ E So, we have

^r/(0 = (exp(z<), /(z))śM ,r
OO 1

= E^(A,(^)./W)S 

(13)

s„,r

= EJt^o fc!7fc,nA(fc,n) 

^k,n,T

fk(Q

For z £ E and £ £ So, put

(13)
Uf- f \ _ Tfc|M,r(z<) _ y- Tfc|M|rPfc|n(z,() 

Pk^\ £M,r^,n •

If C E So is fixed, then e^( •, 0 is a complex harmonic function on E. Hence 
eA(' i C) G A2 (B(r)). Therefore by (12), for / £ h|(B(r)), we have 

*£r/«) = (exp(zO,/(z))śp r = (e^(z,O,/(z))ŚA r .(14)



Conical Fourier transform of Hardy space ... 53

Theorem 6.1. The conical Fourier transformation gives the antilinear 
unitary isomorphism:

(15) P^:h2(P(r))-=E£2(S0;/z,A,r).

Proof. Let / = £~0 fk E lĄ(B(r)),fk E P^t) and put Ftf) = 
Then by Lemma 4.3, (9) and (1), we have

I |F(O|2d50(M,A,r)(O = Z |^r/«)|2dŚ0(M,A,r)«) 
JSo J So

= (N(fc,n)fc!)27fc,n2*FM,r f Lk^r V
“ (Tfc,M,r)2 IIAII •So,:

_n 7fc,n
/c=0

oo

iiaiik, = E Caimi’sSo.i

= E£M.r|IAIll = EHMlk.
fc=0

Ik,-A IfMPi
J -Sa.f

k=0

= E “o £*'°’1

z < oo.

□

Combining Theorem 6.1 with Theorems 3.2 and 4.4 , we obtain 

Proposition 6.2. Let |A| < r and \p\ < r. Then we have

Exp(50;[r]) C f2(50; p, A, r) C Exp(Ś0;(r)).

Since £2(S0;p, A,r) C Exp(50;(r)), the inverse mapping of (15) is given 
by (7) and every F E £2(So; p, A, r) is represented by the integral formula 
(8). But we also have formulas corresponding to (7) and (8) in terms of the 
function e^(z,^) and the measure d5o(M,A,r) :

Proposition 6.3. Let F E Exp(S0;(r)). Then we have

Mfi,rF(z) = [ e^(z,<)F(C)d50(A,M,r)(O- 
J So

Proof. By (7), (6), (9), (11) and (13), the statement easily follows. □
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Theorem 6.4. The function

0) =

is a reproducing kernel for £2(So', g, A,r); that is, for F G £2(So; g, A,r) we 
have the following integral representation:

F(0 = I P«)PM,A,r(£,£)d50(A,M,r)(£).
Jsn

We have

(ii) £„,A,r(U) = £
lV(k,n)(k!7fc>n)2Lfc,A,r 

The Poisson kernel K\>r(z, w) can be given as follows:

ń,n(C,£).

(Hi) Kx,r(z,w)= I e^(z,£)e£(w,£)ć/Ś0(A,M,r)(O- 
J So

Proof. If we write down the formula F(£) = o A4M,rP(£) using the 
function e^(z,Q and (14), we get the reproducing formula (ii):

EM,A,r(ce) = (^(2,£),<(^e))śA.r

= S (A..UO.A,„(^fl)s> r

= £
lV(k,n)(k!7fcin)2Lfc,A,r

A,„(£,£)•

(iii)
y. eA(z,OeA(W,^)d^0(A,M.r)«)

•g^-gy.
^N(k,n)22k Lkfiti 6 , _x ^Ak,n - _

= X ? r ---  „(L \,\pk,n^,w) = 2^ -y----- '-Pkin(z,W = Kx,r(z,w\
“ 7fc,nLfc,A,r N(k,n) k=0 Lk,\,r

□
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