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Conical Fourier transform of Hardy space
of harmonic functions on the Lie ball

ABSTRACT. This paper is an extended version of a talk entitled ”Hardy
spaces of harmonic functions related to the complex sphere” and given at the
12-th Conference on Analytic Functions. The authors consider Hardy space
of complex harmonic functions on the Lie ball with an inner product given
by an integral on a part of the boundary of the Lie ball. They determine
the image of the space under conical Fourier transformations.

1. Introduction. We denote R"*! by E and C**! by E. Let z - w =
21Wy + -+ 4 Zpp1Wnp1, 22 = 2- 2, and ||2||? = z-Z. The open and the closed
Lie balls of radius r with center at 0 are defined by

B(r)={z€E:L(z)<r}, 0< < o0,
Blrl={zeE:L(z) <1}, 0<1 < 00,

where L(z) = {||z]|* + (J|z||* — |2%|?)"/2}'/? is the Lie norm. Note that

We denote by O(B(r)) the space of holomorphic functions on B(r) equip-
Ped with the topology of uniform convergence on compact sets and denote by
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O(B[r]) = limind, 5, O(B(r')) the space of germs of holomorphic functions
on B[r]. Put

Oa(B(r)) = {f € O(B()) : A, f(z) = 0},
Oa(BIr]) = limind .5, Oa(B(r')),

where A, = 02/82% + 8%/822 + -+ + 8%/822 ., is the complex Laplacian.

We call an element of @A (B(r)) a complex harmonic function on B(r).
Let n > 2. We define the complex sphere with radius A € C by Sy =

{z€E:2* = A?}.If A = 0, then S is called the complex light cone (or the

complex isotropic cone). Put

Sx(r) = SxnB(r), |A|<r<oo,
Silr)= Sxn Blr}, |A[<r<oo,
Sar = 08,[r], Al <1 <o0.

If |\| < r, then .S;,\_r is a (2n — 1)-dimensional compact manifold on which
the orthogonal group SO(n + 1) acts transitively. If [A\| = 7 > 0, then it
reduces to the n-dimensional compact manifold 5’,\',. = S,\[r] = AS;, where
S1 = {z € E: 2% = 1} is the real unit sphere.

For f,g € Oa(B[r]) we put

(/,9)s,, =/§ f(2)g9(2)dz,

where dz is the normalized invariant measure on Sy,
After some necessary preparation in Section 2 we show in Section 3 that
(f,9)5, , is an inner product on Oa(B[r]) and denote by h%(B(r)) the

completion of O (B[r]) with respect to the inner product (f,9)s, - We

can see that h%(B(r)) is isomorphic to a Hardy space of harmonic functions
on the Lie ball.

In Section 4, we define the conical Fourier transformation }“f‘_r for

f € Oa(B(r)), where g is another complex number with |z| < 7. Then
the conical Fourier transform F2_f is given by

u,r

fﬁ,f(() = / exp(sz-()f(z/s)dz, CeSo,

JS

L2

which does not depend on s > 1 sufficiently close to 1. n
Then in Section 5, by introducing a Radon measure on S, we con-
struct the inverse mapping M, . of the conical Fourier transformation Fa

{1 %
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We also study a Hilbert space 52(5'0; i, A, 1) of entire functions on So which
are square integrable with respect to the Radon measure.

Finally, in Section 6, we show that the image of h%(B(r)) under the
conical Fourier transformation ff‘.r s isomorphic to 82(5‘0;;1, A,7) and we
study a reproducing kernel for £2(So; i, A, 7).

2. Homogeneous harmonic polynomials. We denote by 'Pﬁ(fE) the

Space of k-homogeneous harmonic polynomials on E. The dimension of
PA(E) is given by

2k +n—-1)k+n-2)

N(kyn) = i = = O(k™ ).

Let Py .(t) be the Legendre polynomial of degree k and of dimension
" + 1. The coefficient 7, , of the highest power of Py ,(t) is known as

_ T(k+(n+1)/2)2*
Ten = Nk, n)T((n + 1)/2)k!

and Py ,(t) = Pk (). The harmonic extension Pin(z,w) of Py n(z-w) is
defined by

- ko —=\k z w
_ 2 2 ..l
Pen(z,w) = (\/z_) (Vo?) Pen (\/z—2 \/u_z) :
Then Pkrn(z,w) is a symmetric k-homogeneous harmonic polynomial in
zand in w. If 22 = 0 or w? = 0, then Py (2, w) = i n(2 - w)¥.

Theorem 2.1 ([6, Theorem 5.2]). Define the k-harmonic component fi of
f € Oa(B(r)) by
fe(z) = N(k,n) [ f(pw)Prn(2/p,w)dw, 0<p<rT,
S
Where dw is the normalized invariant measure on S;.

Then fr € PX(E) and Y-, fx(z) converges to f(z) in the topology of
Oa(B(r)). Moreover, we have

f=Y" fu(z) € O5(B(r)) <= lim sup I fillds,y < 1/
k=0 —*oo

f= ifk(z) € Oa(B[r]) < lim sup I felle s,y < 1/

k=0

where || fi||c(s,) = sup{|fk(z)| : z € S1}.
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For f,g € Oa(B[r]) we define the sesquilinear form ( -, )5, , by
(h9)s,, = [, 1@z, A<,
A,r

where dz is the normalized invariant measure on S'A'r.
For fi € PL(E), g € PL(E), R. Wada [13] proved the relation

Lk Js, fel@)i@)iz

(1) [ f(2)gi(2)dz = Ly S)fk(x)md'z = { 0, (k £ 1),

sA.r

where : ' »
[ NPen (3 (e + 5F)) » 20,

Lear = ‘l
I 1—;;1 pik A ="0%

Note that Ly . = limy_go Lk,

Lemma 2.2 ([3, Lemma 7.2]). L, is a monotone increasing function in
|Al; that is, for 0 < |A| < || < r and k # 0, we have

- k k
2T k™™ = Ligo,r <Lk <tLigpr < Dipe = P

By Lemma 2.2 , Theorem 2.1 , and (1) we have

UOINED I R OO [ fu@)gn@)iz < oo
k=07 SAr k=07 51
Thus (-, *)3, , is an inner product on Oa(B[r]).
The sesquilinear form (f,g)s‘\ o= z:"zo féx ) fk(z)gk(_z)dz S Aoy

for f,g € Oa(B]r]). However, by Theorem 2.1, for f € Oa(B[r]) and
9 € Oa(B(r))

[, ez = Y [ i

is well-defined for s > 1 sufficiently close to 1 and does not depend on s.
Sometime we set s. [&  f(2)g(z)dz = f‘u _f(sz)g(z/s)dz and call it the

symbolic integral over 5',\',. Thus we can extend (f,g)su to a separately
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continuous sesquilinear form on O (B[r]) x Oa(B(r)) by the symbolic inte-
gral. Similarly we can extend (f,g)_;.X _ to a separately continuous sesquilin-

ear form on Oa(B(r)) x Oa(B[r]). Therefore, we still have
(f,9)s,, =(9:0)s,,
for f € Oa(B[r])and g € Oa(B(r))orfor f € Oa(B(r)) and g € Oa(B][r]).

3. Hardy spaces of harmonic functions on the Lie ball. Let |A| < 7.

We denote by h2(B(r)) the completion of Oa(B[r]) with respect to the
inner product (-, *)5, , - By the definition,

W (B(r)) = ]lf =Y i S € PAGE), SIIAIG, <o } |
5 k=0 k=0 1

Further, as in the proof of Lemma 3.2 in [2], we can see that h%(B(r)) is
1somorphic to the Hardy space:

hi(B(r»:{feoA B(r)) : sup/ |f(t2)] dz<oo}».

o<t<1J S,\ .

Proposition 3.1 ([4, Theorem 1.5]). The Hardy space h3 2(B(r)) is a Hil-
bert space being a direct sum of the finite dimensional subspaces PX(E) :

Ri(B(r) = P A(E).
k=0
By using Lemma 2.2, we can prove the following
Theorem 3.2 ([4, Theorem 1.5]). For 0 < |A| < |p| < 7, we have
(Blr)) C h2(B(r)) C hL(B(r)) C h(B(r)) C h(B(r)) C Oa(B(r)).

Now we consider the reproducing kernel. Since | Py (2, w)| < L(z)*L(w)*
and limk_..oo(Lk',\,,.)l/" = r? for |A| < r, the Poisson kernel

Ky (z,w) = Z L(k ") Py n(2,7)

k=0 k1
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is a function on {(z,w) € E x E : L(z)L(w) < r*} and complex harmonic
in z. It satisfies K, .(2,w) = K, .(w,2). In particular, Ix,r(z w) is the
classical Poisson kernel and the restriction of Ky (2, w) on So x E is called
the Cauchy kernel on S§j in [8]:

K (2,w) = Ky1(z/r,w/T),

23 1- z2w?
Ky1(z,W) = )
(1+ 22w? — 2z - w)(n+1)/2
1\"0',-(2, ) K'O.l(z/rv w/r) ’
14 2zw
K 0 ol cmalhr g
0,1(2, w)IS xE = (1-2zw)"

Using the Poisson kernel, we have the following integral representation
for f € Oa(B(r)) (Theorem 3 in [7], see also [10] and [11]):

f(z) = s.‘l/'_ f(w)K s r(z,w)dw, z€ B(r).
Sa.r
For f € h2(B(r)) we have

Theorem 3.3 ([4, Theorem 1.5]). The Poisson kernel K ,(z,w) is a re-

producing kernel of h3(B(r)) which means that for f € h3(B(r)) we have
the following integral representation:

£(2) = (f(w), Knr(w,2))s, . = ]5 f(w)Kn(z, w)dw, z€ B(r).

We denote by L2(9(S,\ +) the closed subspace of the space of square
integrable functions on Sy, generated by H¥(Sy,) = 'PA(E)ISA (3 =

0,1,2,...,. Then as a corollary of Theorem 3 in [7] and Theorem 3. 3 we
have

Corollary 3.4. The restriction mapping a ), gives the following linear topo-
logical isomorphisms:

Q) h (B(T)) R OA(B(T)))
: Oa(E) = O(8),

where O(.S-’A) is the space of holomorphic functions on Sy equipped with the
topology of uniform convergence on compact sets.

For related topics see [3].
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4. Conical Fourier transformation. Let O’y (B[r]) (resp., O (B(r)) be
the dual space of O (B(r]) (resp., Oa(B(r))). For T € O'\(Br]), we define

the Poisson transformation P, , by Py, : T — P, T(w) = (Ts,u.r (2, w)).
Then we have the following

Theorem 4.1. Let 0 < r < oo. The Poisson transformation establishes the
following antilinear topological isomorphisms:

Pur: OTA(BITD P Oa(f}(r}) A
Pur: O4(B(r)) = Oa(B]r)).

Further, for T € O4(B(r)) and f € Oa(B(r)), or for T € O (B[r]) and
f € Oa(BI[r)), we have

) P (FPADIE .

This can be proved similarly as Theorem 15 in [10].
Since A exp(z-() = 0 for { € So, we can define the conical Fourier-Borel
transformation for T € O (B|r]) by

(3) FA T — FAT(C) = (T.,exp(2¢)), (€ Sp.
Put

EXP(S();(T)) = {f € 0(50) : Vs, 3oso st [f(Q) £ Cexp(r’L‘(C))} )

Exp(So;[r]) = {f € O(S0) : Vpi ey Ioso st [F(Q] £ CeXP(T'L'(C))} )

where

L7(¢) = sup {|=¢| : L(z) < 1} = {(IICII® + 1¢I?) /2}/*

1s the dual Lie norm. Then we have the following

Theorem 4.2. The conical Fourier-Borel transformation F* gives the fol-
lowing linear topological isomorphisms:

(i) FA : O4(BIr]) = Exp(So;(r)), 0< < oo,
(ii) F2 : 04 (B(r)) = Exp(S8o;[r]), 0<r < oo.

(cf. Theorem 18 in [9]).
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Now we define the conical Fourier transformation ¥, on Oa(B(r)) by
TS = Fo (P a7 '
Then for f € Oa(z‘}(r)). by (2) and (3), we have

F25(C) = (exp(2), £(2))s, , » € € So.

Lemma 4.3. For f =37 fx, f € Oa(B(r)) and fi € 'Pz(]f‘)), we have

(4) Forf(€) = Z NG, n'“,;,7knﬁ(C),

where we put fi({) = ﬁ_(f_) for fi € H¥(So) = PZ(E)ISO-

Proof. We have

=

(5) exp(()= 3 7‘ i (V) Pn(2,0),
k=0 ~'FT
where
Je(t)=T (k + "j 1) (172)” (k+27) Jepnza(t)

<. 1)I‘(k+—'L)
I +_+_.+1)p

[\’J

(t/2)"

=0

is the entire Bessel function (see [6]). Thus by Theorem 2.1 and (1), we get

(4). O
Theorems 4.1 and 4.2 imply the following

Theorem 4.4. Let 0 < 7 < oo. The conical Fourier transformation fﬁ,
gives following antilinear topological isomorphisms:

f° : Oa(B(r)) = Exp(So; (1)),
. 2 Oa(Blr]) =+ Exp(So; [r]) -

u

By Corollary 3.4 we may assume f; € 'Pg(fE) Therefore by (4) and
Theorem 2.1 we obtain the following proposition (see also [8, Thm. 12]):
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Proposition 4.5. Let f = 357, fi € Exp(So; (7)) and fx € H*(So). Then
we have

f = kaGEXP(SO,(T))*E'llmSUP”k'kaC(s <r/2,
k=0

Z fr € Exp(So;[r]) <= llm sup||k'fk||g(k§°.l) < w2,

where || fill (s, ,) = suP{lfe(2) : 2 € S}

5. Radon measures on Sy. Let p, () be a function on [0,00) satisfying

¥ N(k,n)k")2v, 2%
(6) / oot ()l = (N (k, n)k") e, , k=0,1,...,
0 Lk,u.r

and define the Radon measure dgo(#',) on Sy by

/ £(0) dsow,,)(o_/ / FUCYC (1)

Such a functionp, , does exist by a theorem of A. Duran [1]. In case
of |u| = r, K. Ii [5] and R. Wada [12] constructed such a function p,(t) of
eXponential type —r by means of the modified Bessel functions.

By Corollary 4.5 and limk_.oo(Lkl,\,r)l/k = r2, for F € Exp(So;|[r]) and
G € Exp(So; (r)) (resp., F € Exp(So; (r)) and G € Exp(So; [r])) the integral

[, QG dSur(O)

So

is well-defined and it defines a separately continuous sesquilinear form on
Exp(So;[r]) x Exp(So; (7)) (resp., Exp(So;(r)) x Exp(So;[r])). If w € So
and 2 € B(r), then the function w + exp(z - w) belongs to Exp(So,[r])
Therefore, for F € Exp(So; (r)) we can define M, ,F(z) by

(7) M, F(z) = /S exp(2¢)F(C) dSo(ur)(C), z € B(7).

We denote by M, , the transformation F — M, . F. By Theorem 2.1,
(5) and (1) we have the following
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Lemma 5.1. For F = 37, Fi € Exp(So;(r)) and Fy € H¥(Sp), we have

2 Nk, 0k n —, .
My F(w) =S 'M.)__L Fr(w).
k=0 ky“,r

Theorem 5.2. The mappir;g M, . gives following antilinear topological
isomorphisms and is inverse to the conical Fourier transformation f;?‘r :

M, - 1 Exp(So; (r)) — Oa(B(r)),
M .» : Exp(So; [r]) = Oa(B[r]).

Proof. By Lemmas 4.3 and 5.1 we have M, o F2 f(z) = f(z) for
f € Oa(B(r)) and Fo, oMy, =F(z)for F e Exp(So; (r)). Thus M, , is
bijective, whereas M, , and .7-';3',. are inverse to each other. O

For (,£ € Sy we put

BurlC,6) = [ exp(zQ)exp(a8)dz

So

Proposition 5.3. For F € Exp(So;(r)) we have

(8) F&) = [ FOEGH 0,0

So

Proof. Let F =Y .7 Fr € Exp(So; (7)) and Fx € H*(Sp). Then

Sies

F(€) = F5 o M., F(€) = (exp(ze), i exp(zoﬁc“)d%(,‘,)(o)

= [ explsz-) [ exple/s - OYFTC) g€
Su.r J 5

= [ [ exn(£)eRpE0IdF(6) dBagun (€
50 /5, .,

:/3 F(C)Eu,T(Caf)dSO(u.r)(C)7

where s > 1 is sufficiently close to 1. a
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Now we employ the theorem of A. Duran ([1]) again, and there is a C*
function p,, 5 ,(t) which satisfies

r OO i 2 ok
(g) / $2k (N(k,n)k!) Yin2" L v JE=g 0

~(t)dt =
py,A, ( ) (Lk.p,f)z

Define the Radon measure ng(,‘,,\‘,) on .5-'0 by

/5,0 F(¢)dSo(un)(€) = /Ooo (/0 F(tC’)C") pur(t)dt.

W~hen lul = |Al, (9) reduces to (6), pux,r(t) to p,r(t) and dSp(, .- to
dSO(u,,-). Put

£ (Saisnrvr) = {F € On) s [ IFQ)FdBogunn(©) < o0}

When lu| = |A|, we denote £2(So; 1, A, ) by £2(So; g, 7).

Theorem 5.4. The Hilbert space £*(So; 1, A, 1) is a Hilbert space being a
direct sum of the finite dimensional subspaces H"(So) :

82(5'0;#,/\, r) = @Hk(go).

Proof. Let F = Yoo Fi(€) € 82(50,;1,,/\ r) and F, € H*5(Sp). By the
definition of the Radon measure dSo(u a,r)» We have

/ Tt /SO F(tc')c") P ()t

/s |F(C)*dSogux,r)(C)

(10) = / th (Fis Fi) 5, , Pu,r(t)dt
s k=0
e (VL n)k Ven2 Liar
Z Prea i ipyg,
= "y
This completes the proof. s

By (10) and Lemma 2.2 we have the following
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Corollary 5.5. If |p1| < |p2| < r, then

E%(So; 1, A7) C E3(S0i p2, A, 7).
If |A] <|Ag| <, then

E%(S0; 1y A1, 7) D E2(S0; 1y Aa, 7).
If |m| =M, |p2| = |A2| and |p| < |p2], then

52(5‘0; M1, 7‘) C 82(50;#2’T)'

6. The .'r'"“?, image of h2(B(r)). Now we consider the image of the Hardy
space hi(B (r)) under the conical Fourier transformation F2,.
Let f € h%(B(r)). Since h2(B(r)) C Oa(B(r)) and

20)k a(z
(11) exp(2() = Z( C) J Pi;c!v(k nC)

for z € E and ¢ € Sy, we have
For Q) = (exp(2¢), £(2))s, .

[o o] 1 -~
=1 k Dm (Pk'"(z,C),f(Z))s.".'

(13) = Lk VBT '
_kz_:_k"y Nk J(€)
= Lkpr T
= —= | Prnl(z,0), -
gk‘"}knf&\r ( k(25 C) f(z))s,,,
For z € E and (e 5’0, put
= Ly ,-(ZC Ly ,.I-’k n(Z,C)
13 £(3.0) = ] 10 kA V‘ T % .
(13) R ; L Aol = Lk

If ¢ € So is fixed, then eX( -, () is a complex harmonic function on E. Hence
eX(+, ¢) € R%(B(r)). Therefore by (12), for f € h%(B(r)), we have

(14) Furf(Q) = (exp(2(), £(2))5,, = (€5(2:), £(2))3, , -
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Theorem 6.1. The conical Fourier transformation F2B _ gives the antilinear
unitary isomorphism:

(15) Fir B3 (B(r)) = €2(Soi A1)

Pl'oof Let f = Y02, fc € h(B(r)), fx € PL(E) and put F({) =
F2.(C). Then by Lemma 4.3, (9) and (1), we have

[ 1P PdSann(@) = [ 172, £(O)dS0gunn (C)
J S, J 3

S L) e T o TRV G TS WY
k=0 (Lku,r)? N(k.n)k!-yk‘“) So.:
o0

2 Lk Ar Lk AT

=Z ! ”fk”501 _ZLko ka”s°1

k=0 k=0 0,1

Z k,\r||fk|| Z“fknzsx,,
k=0

=R, = /s IS < oo,

Combining Theorem 6.1 with Theorems 3.2 and 4.4 , we obtain
Proposition 6.2. Let |A| < r and || < r. Then we have
Exp(So; [r]) € £%(So; 1, A,7) C Exp(So; (7))
Since £2(So; 4, A,7) C Exp(So;(r)), the inverse mapping of (15) is given
by (7) and every F € £*(So; p,A,7) is represented by the integral formula
(8). But we also have formulas correspondmg to (7) and (8) in terms of the

function e5(z,¢) and the measure dSo(“ Ar)

Proposition 6.3. Let F € Exp(So;(r)). Then we have
Mo F(2) = [, 4 OF QS0 (0

Proof. By (7), (6), (9), (11) and (13), the statement easily follows. a
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Theorem 6.4. The function
(l) ua\r(c E \(Z ';) € (""E))‘?,\

is a reproducing kernel for £2(Sq; i, A, 7); that is, for F € £2(So; u, A, 7) we
have the following integral representation:

F(€) = /F IR, L e (91

We have

. L (el e o
= = P n(¢,6).

(]]) E#.A,T(C’E) ;} N(k,n)(k!7k'n)2Lk’A'r k, (( 6)

The Poisson kernel Ky .(z,w) can be given as follows:

(i) Kanlz,w) = [ (e, Q0500 ()

Proof. If we write down the formula F(£) = 2, o M, F({) using the
function e5(z,() and (14), we get the reproducing formula (ii):

Eu./\,r(c’ f) = (e‘;(z, O? ef\‘(z, E))Sx,r

oo

5 ( 1 Ly, “)2 (Pk'n(z,(),Pk_n(z,f))s

1
k=0 kMven L

2
Z( 1 I'””) M g (6B

o1
k=0 L'rknLk.\r (k )

S Ukl p, (7).

A,r

l

NG (ke P L
(iii)
[, 46 )T OBt

(N(kv n)k!):z’yk,n?k[/k,/\,r ( lk ST
(Llcpr)2 k'}knlk\r

) Pun(2,0), Pan(,0))

1l
M

vt N(/C n)22 LkO ] 2 ( } = y -
= (k P n(z,w = K) (2, w).
k=0 Yk, nLk AT N(k n) kz: kA7
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