ANNALES

UNIVERSITATIS MARIAE CURIE – SKŁODOWSKA LUBLIN – POLONIA

VOL. LIII, 4

SECTIO A

1999

KEIKO FUJITA and MITSUO MORIMOTO

Conical Fourier transform of Hardy space of harmonic functions on the Lie ball

ABSTRACT. This paper is an extended version of a talk entitled "Hardy spaces of harmonic functions related to the complex sphere" and given at the 12-th Conference on Analytic Functions. The authors consider Hardy space of complex harmonic functions on the Lie ball with an inner product given by an integral on a part of the boundary of the Lie ball. They determine the image of the space under conical Fourier transformations.

1. Introduction. We denote \mathbb{R}^{n+1} by \mathbb{E} and \mathbb{C}^{n+1} by $\overline{\mathbb{E}}$. Let $z \cdot w = z_1 w_1 + \cdots + z_{n+1} w_{n+1}$, $z^2 = z \cdot z$, and $||z||^2 = z \cdot \overline{z}$. The open and the closed Lie balls of radius r with center at 0 are defined by

$$ar{B}(r) = \{z \in \tilde{\mathbb{E}} : L(z) < r\}, \quad 0 < r < \infty,$$
 $ar{B}[r] = \{z \in \tilde{\mathbb{E}} : L(z) \le r\}, \quad 0 \le r < \infty,$

where $L(z) = \{||z||^2 + (||z||^4 - |z^2|^2)^{1/2}\}^{1/2}$ is the Lie norm. Note that $\tilde{B}(\infty) = \tilde{\mathbb{E}}$.

We denote by $\mathcal{O}(\bar{B}(r))$ the space of holomorphic functions on $\bar{B}(r)$ equipped with the topology of uniform convergence on compact sets and denote by

¹⁹⁹¹ Mathematics Subject Classification. 46F15, 32A45.

 $\mathcal{O}(\bar{B}[r]) = \liminf_{r' > r} \mathcal{O}(\bar{B}(r'))$ the space of germs of holomorphic functions on $\bar{B}[r]$. Put

$$egin{aligned} \mathcal{O}_{\Delta}(ar{B}(r)) &= \{f \in \mathcal{O}(ar{B}(r)) : \Delta_z f(z) = 0\}\,, \ \mathcal{O}_{\Delta}(ar{B}[r]) &= \liminf_{r' > r} \mathcal{O}_{\Delta}(ar{B}(r'))\,, \end{aligned}$$

where $\Delta_z = \partial^2/\partial z_1^2 + \partial^2/\partial z_2^2 + \cdots + \partial^2/\partial z_{n+1}^2$ is the complex Laplacian. We call an element of $\mathcal{O}_{\Delta}(\tilde{B}(r))$ a complex harmonic function on $\tilde{B}(r)$.

Let $n \geq 2$. We define the complex sphere with radius $\lambda \in \mathbb{C}$ by $\bar{S}_{\lambda} = \{z \in \mathbb{E} : z^2 = \lambda^2\}$. If $\lambda = 0$, then \bar{S}_0 is called the complex light cone (or the complex isotropic cone). Put

$$egin{align} ilde{S}_{\lambda}(r) &= ilde{S}_{\lambda} \cap ilde{B}(r)\,, & |\lambda| < r \leq \infty\,, \ ilde{S}_{\lambda}[r] &= ilde{S}_{\lambda} \cap ilde{B}[r]\,, & |\lambda| \leq r < \infty\,, \ ilde{S}_{\lambda,r} &= \partial ilde{S}_{\lambda}[r]\,, & |\lambda| \leq r < \infty\,. \end{aligned}$$

If $|\lambda| < r$, then $\bar{S}_{\lambda,r}$ is a (2n-1)-dimensional compact manifold on which the orthogonal group SO(n+1) acts transitively. If $|\lambda| = r > 0$, then it reduces to the n-dimensional compact manifold $\bar{S}_{\lambda,r} = \bar{S}_{\lambda}[r] = \lambda S_1$, where $S_1 = \{x \in \mathbb{E} : x^2 = 1\}$ is the real unit sphere.

For $f,g\in\mathcal{O}_{\Delta}(\bar{B}[r])$ we put

$$(f,g)_{\tilde{S}_{\lambda,r}} = \int_{\tilde{S}_{\lambda,r}} f(z) \overline{g(z)} \, \dot{d}z \,,$$

where dz is the normalized invariant measure on $\bar{S}_{\lambda,r}$.

After some necessary preparation in Section 2 we show in Section 3 that $(f,g)_{\bar{S}_{\lambda,r}}$ is an inner product on $\mathcal{O}_{\Delta}(\bar{B}[r])$ and denote by $h^2_{\lambda}(\bar{B}(r))$ the completion of $\mathcal{O}_{\Delta}(\bar{B}[r])$ with respect to the inner product $(f,g)_{\bar{S}_{\lambda,r}}$. We can see that $h^2_{\lambda}(\bar{B}(r))$ is isomorphic to a Hardy space of harmonic functions on the Lie ball.

In Section 4, we define the conical Fourier transformation $\mathcal{F}_{\mu,r}^{\Delta}$ for $f \in \mathcal{O}_{\Delta}(\bar{B}(r))$, where μ is another complex number with $|\mu| \leq r$. Then the conical Fourier transform $\mathcal{F}_{\mu,r}^{\Delta}f$ is given by

$$\mathcal{F}^{\Delta}_{\mu, au}f(\zeta)=\int_{ ilde{S}_{\mu, au}}\exp(sz\cdot\zeta)\overline{f(z/s)}dz\,,\;\;\zeta\in ilde{S}_0\,,$$

which does not depend on s > 1 sufficiently close to 1.

Then in Section 5, by introducing a Radon measure on \tilde{S}_0 , we construct the inverse mapping $\mathcal{M}_{\mu,r}$ of the conical Fourier transformation $\mathcal{F}_{\mu,r}^{\Delta}$.

We also study a Hilbert space $\mathcal{E}^2(\bar{S}_0; \mu, \lambda, r)$ of entire functions on \bar{S}_0 which are square integrable with respect to the Radon measure.

Finally, in Section 6, we show that the image of $h_{\lambda}^2(\bar{B}(r))$ under the conical Fourier transformation $\mathcal{F}_{\mu,r}^{\Delta}$ s isomorphic to $\mathcal{E}^2(\bar{S}_0; \mu, \lambda, r)$ and we study a reproducing kernel for $\mathcal{E}^2(\bar{S}_0; \mu, \lambda, r)$.

2. Homogeneous harmonic polynomials. We denote by $\mathcal{P}_{\Delta}^{k}(\bar{\mathbb{E}})$ the space of k-homogeneous harmonic polynomials on $\bar{\mathbb{E}}$. The dimension of $\mathcal{P}_{\Delta}^{k}(\bar{\mathbb{E}})$ is given by

$$N(k,n) = \frac{(2k+n-1)(k+n-2)!}{k!(n-1)!} = O(k^{n-1}).$$

Let $P_{k,n}(t)$ be the Legendre polynomial of degree k and of dimension n+1. The coefficient $\gamma_{k,n}$ of the highest power of $P_{k,n}(t)$ is known as

$$\gamma_{k,n} = \frac{\Gamma(k + (n+1)/2)2^k}{N(k,n)\Gamma((n+1)/2)k!}$$

and $\overline{P_{k,n}(t)} = P_{k,n}(\overline{t})$. The harmonic extension $\overline{P}_{k,n}(z,w)$ of $P_{k,n}(z\cdot w)$ is defined by

$$\tilde{P}_{k,n}(z,w) = \left(\sqrt{z^2}\right)^k \left(\sqrt{w^2}\right)^k P_{k,n} \left(\frac{z}{\sqrt{z^2}} \cdot \frac{w}{\sqrt{w^2}}\right).$$

Then $\bar{P}_{k,n}(z,w)$ is a symmetric k-homogeneous harmonic polynomial in z and in w. If $z^2=0$ or $w^2=0$, then $\bar{P}_{k,n}(z,w)=\gamma_{k,n}(z\cdot w)^k$.

Theorem 2.1 ([6, Theorem 5.2]). Define the k-harmonic component f_k of $f \in \mathcal{O}_{\Delta}(\bar{B}(r))$ by

$$f_k(z) = N(k,n) \int_{S_1} f(\rho\omega) P_{k,n}(z/\rho,\omega) d\omega, \quad 0 < \rho < r,$$

where $d\omega$ is the normalized invariant measure on S_1 .

Then $f_k \in \mathcal{P}_{\Delta}^k(\bar{\mathbb{E}})$ and $\sum_{k=0}^{\infty} f_k(z)$ converges to f(z) in the topology of $\mathcal{O}_{\Delta}(\bar{B}(r))$. Moreover, we have

$$f = \sum_{k=0}^{\infty} f_k(z) \in \mathcal{O}_{\Delta}(\bar{B}(r)) \iff \lim \sup_{k \to \infty} ||f_k||_{C(S_1)}^{1/k} \le 1/r,$$

$$f = \sum_{k=0}^{\infty} f_k(z) \in \mathcal{O}_{\Delta}(\bar{B}[r]) \Longleftrightarrow \lim \sup_{k \to \infty} ||f_k||_{C(S_1)}^{1/k} < 1/r,$$

where $||f_k||_{C(S_1)} = \sup\{|f_k(x)| : x \in S_1\}.$

For $f,g\in\mathcal{O}_{\Delta}(\tilde{B}[r])$ we define the sesquilinear form $(\,\cdot\,,\,\cdot\,)_{\tilde{S}_{\lambda,r}}$ by

$$(f,g)_{ar{S}_{\lambda,r}} = \int_{ar{S}_{\lambda,r}} f(z) \overline{g(z)} \, \dot{d}z \,, \,\, |\lambda| \leq r \,,$$

where dz is the normalized invariant measure on $\bar{S}_{\lambda,r}$.

For $f_k \in \mathcal{P}^k_{\Delta}(\tilde{\mathbb{E}})$, $g_l \in \mathcal{P}^l_{\Delta}(\tilde{\mathbb{E}})$, R. Wada [13] proved the relation

$$(1) \int_{\tilde{S}_{\lambda,r}} f_k(z) \overline{g_l(z)} dz = L_{k,\lambda,r} \int_{S_1} f_k(x) \overline{g_l(x)} dx = \begin{cases} L_{k,\lambda,r} \int_{S_1} f_k(x) \overline{g_l(x)} dx \\ 0, \quad (k \neq l), \end{cases}$$

where

$$L_{k,\lambda,r} \equiv \left\{ egin{array}{l} |\lambda|^2 P_{k,n} \left(rac{1}{2} \left(rac{r^2}{|\lambda|^2} + rac{|\lambda|^2}{r^2}
ight)
ight) \,, & \lambda
eq 0 \,, \ rac{\gamma_{k,n}}{2^k} \, r^{2k} \,, & \lambda = 0 \,. \end{array}
ight.$$

Note that $L_{k,0,\tau} = \lim_{\lambda \to 0} L_{k,\lambda,\tau}$.

Lemma 2.2 ([3, Lemma 7.2]). $L_{k,\lambda,\tau}$ is a monotone increasing function in $|\lambda|$; that is, for $0 < |\lambda| < |\mu| < r$ and $k \neq 0$, we have

$$2^{-k}\gamma_{k,n}r^{2k} = L_{k,0,r} < L_{k,\lambda,r} < L_{k,\mu,r} < L_{k,r,r} = r^{2k}.$$

By Lemma 2.2, Theorem 2.1, and (1) we have

$$(f,g)_{\tilde{S}_{\lambda,r}} = \sum_{k=0}^{\infty} \int_{\tilde{S}_{\lambda,r}} f_k(z) \overline{g_k(z)} dz = \sum_{k=0}^{\infty} \int_{S_1} f_k(x) \overline{g_k(x)} dx < \infty.$$

Thus $(\,\cdot\,,\,\cdot\,)_{\tilde{S}_{\lambda,r}}$ is an inner product on $\mathcal{O}_{\Delta}(\tilde{B}[r])$.

The sesquilinear form $(f,g)_{\tilde{S}_{\lambda,r}} = \sum_{k=0}^{\infty} \int_{\tilde{S}_{\lambda,r}} f_k(z) \overline{g_k(z)} dz$ was defined for $f,g \in \mathcal{O}_{\Delta}(\tilde{B}[r])$. However, by Theorem 2.1, for $f \in \mathcal{O}_{\Delta}(\tilde{B}[r])$ and $g \in \mathcal{O}_{\Delta}(\tilde{B}(r))$

$$\int_{\tilde{S}_{\lambda,r}} f(sz) \overline{g(z/s)} dz = \sum_{k=0}^{\infty} \int_{\tilde{S}_{\lambda,r}} f_k(z) \overline{g_k(z)} dz$$

is well-defined for s>1 sufficiently close to 1 and does not depend on s. Sometime we set s. $\int_{\bar{S}_{\lambda,r}} f(z) g(z) dz = \int_{\bar{S}_{\lambda,r}} f(sz) g(z/s) dz$ and call it the symbolic integral over $\bar{S}_{\lambda,r}$. Thus we can extend $(f,g)_{\bar{S}_{\lambda,r}}$ to a separately

continuous sesquilinear form on $\mathcal{O}_{\Delta}(\bar{B}[r]) \times \mathcal{O}_{\Delta}(\bar{B}(r))$ by the symbolic integral. Similarly we can extend $(f,g)_{\tilde{S}_{\lambda,r}}$ to a separately continuous sesquilinear form on $\mathcal{O}_{\Delta}(\bar{B}(r)) \times \mathcal{O}_{\Delta}(\bar{B}[r])$. Therefore, we still have

$$\overline{(f,g)_{\tilde{S}_{\lambda,r}}} = (g,f)_{\tilde{S}_{\lambda,r}}$$

for $f \in \mathcal{O}_{\Delta}(\bar{B}[r])$ and $g \in \mathcal{O}_{\Delta}(\bar{B}(r))$ or for $f \in \mathcal{O}_{\Delta}(\bar{B}(r))$ and $g \in \mathcal{O}_{\Delta}(\bar{B}[r])$.

3. Hardy spaces of harmonic functions on the Lie ball. Let $|\lambda| \leq r$. We denote by $h_{\lambda}^2(\bar{B}(r))$ the completion of $\mathcal{O}_{\Delta}(\bar{B}[r])$ with respect to the inner product $(\cdot,\cdot)_{\bar{S}_{\lambda}}$. By the definition,

$$h_{\lambda}^{2}(\tilde{B}(r)) = \left\{ f = \sum_{k=0}^{\infty} f_{k} : f_{k} \in \mathcal{P}_{\Delta}^{k}(\tilde{\mathbb{E}}), \sum_{k=0}^{\infty} ||f_{k}||_{\hat{S}_{\lambda,r}}^{2} < \infty \right\}.$$

Further, as in the proof of Lemma 3.2 in [2], we can see that $h_{\lambda}^2(\bar{B}(r))$ is isomorphic to the Hardy space:

$$h_{\lambda}^2(\bar{B}(r)) = \left\{ f \in \mathcal{O}_{\Delta}(\bar{B}(r)) : \sup_{0 < t < 1} \int_{\bar{S}_{\lambda,r}} |f(tz)|^2 dz < \infty
ight\}.$$

Proposition 3.1 ([4, Theorem 1.5]). The Hardy space $h^2_{\lambda}(\bar{B}(r))$ is a Hilbert space being a direct sum of the finite dimensional subspaces $\mathcal{P}^k_{\Delta}(\bar{\mathbb{E}})$:

$$h^2_\lambda(ilde{B}(r)) = igoplus_{k=0}^\infty \ ^k_\Delta(ilde{\mathbb{E}})\,.$$

By using Lemma 2.2, we can prove the following

Theorem 3.2 ([4, Theorem 1.5]). For $0 < |\lambda| < |\mu| < r$, we have

$$\mathcal{O}_{\Delta}(\bar{B}[r]) \subset h^2_{\tau}(\bar{B}(r)) \subset h^2_{\mu}(\bar{B}(r)) \subset h^2_{\lambda}(\bar{B}(r)) \subset h^2_{0}(\bar{B}(r)) \subset \mathcal{O}_{\Delta}(\bar{B}(r)) \,.$$

Now we consider the reproducing kernel. Since $|P_{k,n}(z,w)| \leq L(z)^k L(w)^k$ and $\lim_{k\to\infty} (L_{k,\lambda,r})^{1/k} = r^2$ for $|\lambda| \leq r$, the Poisson kernel

$$K_{\lambda,r}(z,w) = \sum_{k=0}^{\infty} \frac{N(k,n)}{L_{k,\lambda,r}} \, \bar{P}_{k,n}(z,\overline{w})$$

is a function on $\{(z,w)\in \tilde{\mathbb{E}}\times \tilde{\mathbb{E}}: L(z)L(w)< r^2\}$ and complex harmonic in z. It satisfies $K_{\lambda,r}(z,w)=K_{\lambda,r}(w,z)$. In particular, $K_{r,r}(z,w)$ is the classical Poisson kernel and the restriction of $K_{0,r}(z,w)$ on $\tilde{S}_0\times \tilde{\mathbb{E}}$ is called the Cauchy kernel on \tilde{S}_0 in [8]:

$$K_{r,r}(z,w) = K_{1,1}(z/r,w/r),$$
 $K_{1,1}(z,\overline{w}) = \frac{1-z^2w^2}{(1+z^2w^2-2z\cdot w)^{(n+1)/2}},$
 $K_{0,r}(z,w) = K_{0,1}(z/r,w/r),$
 $K_{0,1}(z,\overline{w})|_{\tilde{S}_0 \times \bar{\mathbb{E}}} = \frac{1+2zw}{(1-2zw)^n}.$

Using the Poisson kernel, we have the following integral representation for $f \in \mathcal{O}_{\Delta}(\bar{B}(r))$ (Theorem 3 in [7], see also [10] and [11]):

$$f(z) = s. \int_{\tilde{S}_{\lambda,r}} f(w) K_{\lambda,r}(z,w) dw, \quad z \in \tilde{B}(r).$$

For $f \in h^2_{\lambda}(\bar{B}(r))$ we have

Theorem 3.3 ([4, Theorem 1.5]). The Poisson kernel $K_{\lambda,r}(z,w)$ is a reproducing kernel of $h_{\lambda}^2(\bar{B}(r))$ which means that for $f \in h_{\lambda}^2(\bar{B}(r))$ we have the following integral representation:

$$f(z)=(f(w),K_{\lambda,r}(w,z))_{\tilde{S}_{\lambda,r}}=\int_{\tilde{S}_{\lambda,r}}f(w)K_{\lambda,r}(z,w)dw\,,\;\;z\in ilde{B}(r).$$

We denote by $L^2\mathcal{O}(\bar{S}_{\lambda,r})$ the closed subspace of the space of square integrable functions on $\bar{S}_{\lambda,r}$ generated by $\mathcal{H}^k(\bar{S}_{\lambda,r}) = \mathcal{P}^k_{\Delta}(\bar{\mathbb{E}})|_{\bar{S}_{\lambda,r}}$, $k=0,1,2,\ldots$,. Then as a corollary of Theorem 3 in [7] and Theorem 3. 3 we have

Corollary 3.4. The restriction mapping α_{λ} gives the following linear topological isomorphisms:

$$egin{aligned} lpha_{\lambda} : h_{\lambda}^2(ar{B}(r)) & \xrightarrow{\sim} \mathcal{O}_{\Delta}(ar{B}(r)) \,, \\ lpha_{\lambda} : \mathcal{O}_{\Delta}(ar{\mathbb{E}}) & \xrightarrow{\sim} \mathcal{O}(ar{S}_{\lambda}) \,, \end{aligned}$$

where $\mathcal{O}(\bar{S}_{\lambda})$ is the space of holomorphic functions on \bar{S}_{λ} equipped with the topology of uniform convergence on compact sets.

For related topics see [3].

4. Conical Fourier transformation. Let $\mathcal{O}'_{\Delta}(\bar{B}[r])$ (resp., $\mathcal{O}'_{\Delta}(\bar{B}(r))$) be the dual space of $\mathcal{O}_{\Delta}(\bar{B}[r])$ (resp., $\mathcal{O}_{\Delta}(\bar{B}(r))$). For $T \in \mathcal{O}'_{\Delta}(\bar{B}[r])$, we define the Poisson transformation $\mathcal{P}_{\mu,\tau}$ by $\mathcal{P}_{\mu,\tau}: T \mapsto \mathcal{P}_{\mu,\tau}T(w) = \overline{\langle T_z,_{\mu,\tau}(z,w) \rangle}$. Then we have the following

Theorem 4.1. Let $0 < r < \infty$. The Poisson transformation establishes the following antilinear topological isomorphisms:

$$\mathcal{P}_{\mu,r}: \mathcal{O}'_{\Delta}(\tilde{B}[r]) \xrightarrow{\sim} \mathcal{O}_{\Delta}(\tilde{B}(r)),$$

$$\mathcal{P}_{\mu,r}: \mathcal{O}'_{\Delta}(\tilde{B}(r)) \xrightarrow{\sim} \mathcal{O}_{\Delta}(\tilde{B}[r]).$$

Further, for $T \in \mathcal{O}'_{\Delta}(\bar{B}(r))$ and $f \in \mathcal{O}_{\Delta}(\bar{B}(r))$, or for $T \in \mathcal{O}'_{\Delta}(\bar{B}[r])$ and $f \in \mathcal{O}_{\Delta}(\bar{B}[r])$, we have

(2)
$$\langle T, f \rangle = (f, \mathcal{P}_{\mu,r} T)_{\hat{S}_{\mu,r}}.$$

This can be proved similarly as Theorem 15 in [10].

Since $\Delta_z \exp(z \cdot \zeta) = 0$ for $\zeta \in \bar{S}_0$, we can define the conical Fourier-Borel transformation for $T \in \mathcal{O}'_{\Lambda}(\bar{B}[r])$ by

(3)
$$\mathcal{F}_r^{\Delta}: T \mapsto \mathcal{F}_r^{\Delta} T(\zeta) = \langle T_z, \exp(z\zeta) \rangle, \quad \zeta \in \tilde{S}_0.$$

Put

$$\operatorname{Exp}(\bar{S}_0;(r)) = \left\{ f \in \mathcal{O}(\tilde{S}_0) : \forall_{\tau' > \tau}, \ \exists_{C > 0} \ \text{s.t.} \ |f(\zeta)| \leq C \exp(r' L^*(\zeta)) \right\},$$

$$\operatorname{Exp}(\tilde{S}_0;[r]) = \left\{ f \in \mathcal{O}(\bar{S}_0) : \forall_{r',r}, \ \exists_{C>0} \ \text{s.t.} \ |f(\zeta)| \leq C \exp(r'L^*(\zeta)) \right\},$$

where

$$L^*(\zeta) = \sup \{|z\zeta| : L(z) \le 1\} = \{(||\zeta||^2 + |\zeta|^2)/2\}^{1/2}$$

is the dual Lie norm. Then we have the following

Theorem 4.2. The conical Fourier-Borel transformation $\mathcal{F}_{\tau}^{\Delta}$ gives the following linear topological isomorphisms:

(i)
$$\mathcal{F}_r^{\Delta}: \mathcal{O}_{\Delta}'(\bar{B}[r]) \xrightarrow{\sim} \operatorname{Exp}(\tilde{S}_0; (r)), \quad 0 \leq r < \infty,$$

(ii)
$$\mathcal{F}_r^{\Delta} : \mathcal{O}_{\Delta}'(\bar{B}(r)) \xrightarrow{\sim} \operatorname{Exp}(\bar{S}_0; [r]), \quad 0 < r \leq \infty.$$

(cf. Theorem 18 in [9]).

Now we define the conical Fourier transformation $\mathcal{F}_{\mu,r}^{\Delta}$ on $\mathcal{O}_{\Delta}(\bar{B}(r))$ by

$$\mathcal{F}_{\mu,r}^{\Delta} = \mathcal{F}_r^{\Delta} \circ (\mathcal{P}_{\mu,r})^{-1}$$
.

Then for $f \in \mathcal{O}_{\Delta}(\tilde{B}(r))$, by (2) and (3), we have

$$\mathcal{F}^{\Delta}_{\mu,r}f(\zeta) = (\exp(z\zeta), f(z))_{\tilde{S}_{\mu,r}}, \zeta \in \tilde{S}_0.$$

Lemma 4.3. For $f = \sum_{k=0}^{\infty} f_k, f \in \mathcal{O}_{\Delta}(\tilde{B}(r))$ and $f_k \in \mathcal{P}_{\Delta}^k(\tilde{\mathbb{E}})$, we have

(4)
$$\mathcal{F}_{\mu,r}^{\Delta}f(\zeta) = \sum_{k=0}^{\infty} \frac{L_{k,\mu,r}}{N(k,n)k!\gamma_{k,n}} \, \overline{f_k}(\zeta) \,,$$

where we put $\overline{f_k}(\zeta) = \overline{f_k(\overline{\zeta})}$ for $f_k \in \mathcal{H}^k(\tilde{S}_0) \equiv \mathcal{P}_{\Delta}^k(\tilde{\mathbb{E}})|_{\tilde{S}_0}$.

Proof. We have

(5)
$$\exp(z\zeta) = \sum_{k=0}^{\infty} \frac{1}{k! \gamma_{k,n}} \tilde{j}_k \left(i\sqrt{z^2} \sqrt{\zeta^2} \right) \tilde{P}_{k,n}(z,\zeta),$$

where

$$\tilde{j}_{k}(t) = \Gamma\left(k + \frac{n+1}{2}\right) (t?2)^{-\left(k + \frac{n-1}{2}\right)} J_{k + \frac{n-1}{2}}(t)$$

$$= \sum_{l=0}^{\infty} \frac{(-1)^{l} \Gamma\left(k + \frac{n+1}{2}\right)}{\Gamma\left(k + \frac{n+1}{2} + l\right) l!} (t/2)^{2l}$$

is the entire Bessel function (see [6]). Thus by Theorem 2.1 and (1), we get (4).

Theorems 4.1 and 4.2 imply the following

Theorem 4.4. Let $0 < r < \infty$. The conical Fourier transformation $\mathcal{F}_{\mu,r}^{\Delta}$ gives following antilinear topological isomorphisms:

$$\mathcal{F}^{\Delta}_{\mu,r}: \mathcal{O}_{\Delta}(\tilde{B}(r)) \xrightarrow{\sim} \operatorname{Exp}(\tilde{S}_0; (r)),$$

$$\mathcal{F}^{\Delta}_{\mu,r}: \mathcal{O}_{\Delta}(\tilde{B}[r]) \xrightarrow{\sim} \operatorname{Exp}(\tilde{S}_0; [r]).$$

By Corollary 3.4 we may assume $f_k \in \mathcal{P}_{\Delta}^k(\bar{\mathbb{E}})$. Therefore by (4) and Theorem 2.1 we obtain the following proposition (see also [8, Thm. 12]):

Proposition 4.5. Let $f = \sum_{k=0}^{\infty} f_k \in \operatorname{Exp}(\bar{S}_0; (r))$ and $f_k \in \mathcal{H}^k(\bar{S}_0)$. Then we have

$$f = \sum_{k=0}^{\infty} f_k \in \operatorname{Exp}(\bar{S}_0; (r)) \iff \limsup_{k \to \infty} ||k! f_k||_{C(\tilde{S}_{0,1})}^{1/k} \le r/2,$$

$$f = \sum_{k=0}^{\infty} f_k \in \operatorname{Exp}(\tilde{S}_0; [r]) \iff \limsup_{k \to \infty} ||k! f_k||_{C(\tilde{S}_{0,1})}^{1/k} < r/2,$$

where $||f_k||_{C(\tilde{S}_{0,1})} = \sup\{|f_k(z): z \in \tilde{S}_{0,1}\}.$

5. Radon measures on \bar{S}_0 . Let $\rho_{\mu,r}(t)$ be a function on $[0,\infty)$ satisfying

(6)
$$\int_0^\infty t^{2k} \rho_{\mu,r}(t) dt = \frac{(N(k,n)k!)^2 \gamma_{k,n} 2^k}{L_{k,\mu,r}}, \quad k = 0, 1, \dots,$$

and define the Radon measure $dar{S}_{0(\mu,\tau)}$ on $ar{S}_0$ by

$$\int_{\tilde{S}_0} f(\zeta) d\tilde{S}_{0(\mu,r)}(\zeta) \equiv \int_0^\infty \int_{\tilde{S}_{0,1}} F(t\zeta') d\zeta' \, \rho_{\mu,r}(t) dt.$$

Such a function $\rho_{\mu,r}$ does exist by a theorem of A. Duran [1]. In case of $|\mu| = r$, K. Ii [5] and R. Wada [12] constructed such a function $\rho_r(t)$ of exponential type -r by means of the modified Bessel functions.

By Corollary 4.5 and $\lim_{k\to\infty} (L_{k,\lambda,r})^{1/k} = r^2$, for $F \in \text{Exp}(\bar{S}_0; [r])$ and $G \in \text{Exp}(\bar{S}_0; (r))$ (resp., $F \in \text{Exp}(\bar{S}_0; (r))$) and $G \in \text{Exp}(\bar{S}_0; [r])$) the integral

$$\int_{\bar{S}_0} F(\zeta) \overline{G(\zeta)} \, d\bar{S}_{0(\mu,r)}(\zeta)$$

is well-defined and it defines a separately continuous sesquilinear form on $\operatorname{Exp}(\bar{S}_0;[r]) \times \operatorname{Exp}(\bar{S}_0;(r))$ (resp., $\operatorname{Exp}(\bar{S}_0;(r)) \times \operatorname{Exp}(\bar{S}_0;[r])$). If $w \in \bar{S}_0$ and $z \in B(r)$, then the function $w \mapsto \exp(z \cdot w)$ belongs to $\operatorname{Exp}(\bar{S}_0;[r])$. Therefore, for $F \in \operatorname{Exp}(\bar{S}_0;(r))$ we can define $\mathcal{M}_{\mu,r}F(z)$ by

(7)
$$\mathcal{M}_{\mu,r}F(z) = \int_{\bar{S}_0} \exp(z\zeta)\overline{F(\zeta)} \, d\bar{S}_{0(\mu,r)}(\zeta) \,, \quad z \in \bar{B}(r) \,.$$

We denote by $\mathcal{M}_{\mu,\tau}$ the transformation $F \mapsto \mathcal{M}_{\mu,\tau}F$. By Theorem 2.1, (5) and (1) we have the following

Lemma 5.1. For $F = \sum_{k=0}^{\infty} F_k \in \operatorname{Exp}(\tilde{S}_0; (r))$ and $F_k \in \mathcal{H}^k(\bar{S}_0)$, we have

$$\mathcal{M}_{\mu,r}F(w) = \sum_{k=0}^{\infty} rac{N(k,n)k!\gamma_{k,n}}{L_{k,\mu,r}}\,\overline{F_k}(w)\,.$$

Theorem 5.2. The mapping $\mathcal{M}_{\mu,r}$ gives following antilinear topological isomorphisms and is inverse to the conical Fourier transformation $\mathcal{F}_{\mu,r}^{\Delta}$:

$$\mathcal{M}_{\mu,r} : \operatorname{Exp}(\bar{S}_0;(r)) \xrightarrow{\sim} \mathcal{O}_{\Delta}(\tilde{B}(r)),$$

 $\mathcal{M}_{\mu,r} : \operatorname{Exp}(\bar{S}_0;[r]) \xrightarrow{\sim} \mathcal{O}_{\Delta}(\bar{B}[r]).$

Proof. By Lemmas 4.3 and 5.1 we have $\mathcal{M}_{\mu,r} \circ \mathcal{F}^{\Delta}_{\mu,r} f(z) = f(z)$ for $f \in \mathcal{O}_{\Delta}(\tilde{B}(r))$ and $\mathcal{F}^{\Delta}_{\mu,r} \circ \mathcal{M}_{\mu,r} = F(z)$ for $F \in \operatorname{Exp}(\tilde{S}_0;(r))$. Thus $\mathcal{M}_{\mu,r}$ is bijective, whereas $\mathcal{M}_{\mu,r}$ and $\mathcal{F}^{\Delta}_{\mu,r}$ are inverse to each other.

For $\zeta, \xi \in \tilde{S}_0$ we put

$$E_{\mu, au}(\zeta,\xi) = \int_{ ilde{S}_0} \exp(z\zeta) \overline{\exp(z\xi)} dz.$$

Proposition 5.3. For $F \in \text{Exp}(\tilde{S}_0; (r))$ we have

(8)
$$F(\xi) = \int_{\tilde{S}_0} F(\zeta) \overline{E_{\mu,r}(\zeta,\xi)} d\tilde{S}_{0_{(\mu,r)}}(\zeta).$$

Proof. Let $F = \sum_{k=0}^{\infty} F_k \in \operatorname{Exp}(\tilde{S}_0; (r))$ and $F_k \in \mathcal{H}^k(\tilde{S}_0)$. Then

$$F(\xi) = \mathcal{F}^{\Delta}_{\mu,r} \circ \mathcal{M}_{\mu,r} F(\xi) = \left(\exp(z\xi), \int_{\tilde{S}_{0}} \exp(z\zeta) \overline{F(\zeta)} \, d\tilde{S}_{0(\mu,r)}(\zeta) \right)_{\tilde{S}_{\mu,r}}$$

$$= \int_{\tilde{S}_{\mu,r}} \exp(sz \cdot \xi) \overline{\int_{\tilde{S}_{0}} \exp(z/s \cdot \zeta) \overline{F(\zeta)} \, d\tilde{S}_{0(\mu,r)}(\zeta)} dz$$

$$= \int_{\tilde{S}_{0}} \int_{\tilde{S}_{\mu,r}} \exp(z\xi) \overline{\exp(z\zeta)} dz F(\zeta) \, d\tilde{S}_{0(\mu,r)}(\zeta)$$

$$= \int_{\tilde{S}_{0}} F(\zeta) \overline{E_{\mu,r}(\zeta,\xi)} \, d\tilde{S}_{0(\mu,r)}(\zeta),$$

where s > 1 is sufficiently close to 1.

Now we employ the theorem of A. Duran ([1]) again, and there is a C^{∞} function $\rho_{\mu,\lambda,r}(t)$ which satisfies

(9)
$$\int_0^\infty t^{2k} \rho_{\mu,\lambda,r}(t) dt = \frac{(N(k,n)k!)^2 \gamma_{k,n} 2^k L_{k,\lambda,r}}{(L_{k,\mu,r})^2}, \quad k = 0, 1, \dots$$

Define the Radon measure $dar{S}_{0(\mu,\lambda,r)}$ on $ar{S}_0$ by

$$\int_{\tilde{S}_0} F(\zeta) d\tilde{S}_{0(\mu,\lambda,r)}(\zeta) = \int_0^\infty \left(\int_{\tilde{S}_{0,1}} F(t\zeta') \dot{\zeta}' \right) \rho_{\mu,\lambda,r}(t) dt.$$

When $|\mu| = |\lambda|$, (9) reduces to (6), $\rho_{\mu,\lambda,r}(t)$ to $\rho_{\mu,r}(t)$ and $d\tilde{S}_{0(\mu,\lambda,r)}$ to $d\tilde{S}_{0(\mu,r)}$. Put

$$\mathcal{E}^2(\bar{S}_0;\mu,\lambda,r) = \left\{ F \in \mathcal{O}(\bar{S}_0) : \int_{\bar{S}_0} |F(\zeta)|^2 d\bar{S}_{0(\mu,\lambda,r)}(\zeta) < \infty \right\}.$$

When $|\mu| = |\lambda|$, we denote $\mathcal{E}^2(\bar{S}_0; \mu, \lambda, r)$ by $\mathcal{E}^2(\bar{S}_0; \mu, r)$.

Theorem 5.4. The Hilbert space $\mathcal{E}^2(\bar{S}_0; \mu, \lambda, \tau)$ is a Hilbert space being a direct sum of the finite dimensional subspaces $\mathcal{H}^h(\bar{S}_0)$:

$$\mathcal{E}^2(ar{S}_0;\mu,\lambda,r)=igoplus_{k=0}^\infty \mathcal{H}^k(ar{S}_0).$$

Proof. Let $F = \sum_{k=0}^{\infty} F_k(\zeta) \in \mathcal{E}^2(\bar{S}_0; \mu, \lambda, r)$ and $F_k \in \mathcal{H}^k(\bar{S}_0)$. By the definition of the Radon measure $d\bar{S}_{0(\mu,\lambda,r)}$, we have

(10)
$$\int_{\hat{S}_{0}} |F(\zeta)|^{2} d\tilde{S}_{0(\mu,\lambda,r)}(\zeta) = \int_{0}^{\infty} \left(\int_{\hat{S}_{0,1}} F(t\zeta')\dot{\zeta}' \right) \rho_{\mu,\lambda,r}(t) dt$$

$$= \int_{0}^{\infty} \sum_{k=0}^{\infty} t^{2k} (F_{k}, F_{k})_{\hat{S}_{0,1}} \rho_{\mu,\lambda,r}(t) dt$$

$$= \sum_{k=0}^{\infty} \frac{(N(k,n)k!)^{2} \gamma_{k,n} 2^{k} L_{k,\lambda,r}}{(L_{k,\mu,r})^{2}} ||F_{k}||_{\hat{S}_{0,1}}^{2}.$$

This completes the proof.

By (10) and Lemma 2.2 we have the following

Corollary 5.5. If $|\mu_1| < |\mu_2| \le \tau$, then

$$\mathcal{E}^2(\tilde{S}_0; \mu_1, \lambda, r) \subset \mathcal{E}^2(\tilde{S}_0; \mu_2, \lambda, r).$$

If $|\lambda_1| < |\lambda_2| \le r$, then

$$\mathcal{E}^2(\tilde{S}_0;\mu,\lambda_1,r)\supset \mathcal{E}^2(\tilde{S}_0;\mu,\lambda_2,r).$$

If $|\mu_1| = |\lambda_1|, |\mu_2| = |\lambda_2|$ and $|\mu_1| < |\mu_2|$, then

$$\mathcal{E}^2(\tilde{S}_0; \mu_1, r) \subset \mathcal{E}^2(\tilde{S}_0; \mu_2, r).$$

6. The $\mathcal{F}^{\Delta}_{\mu,r}$ image of $h^2_{\lambda}(\bar{B}(r))$. Now we consider the image of the Hardy space $h^2_{\lambda}(\bar{B}(r))$ under the conical Fourier transformation $\mathcal{F}^{\Delta}_{\mu,r}$.

Let $f \in h^2_{\lambda}(\bar{B}(r))$. Since $h^2_{\lambda}(\bar{B}(r)) \subset \mathcal{O}_{\Delta}(\bar{B}(r))$ and

(11)
$$\exp(z\zeta) = \sum_{k=0}^{\infty} \frac{(z\zeta)^k}{k!} = \sum_{k=0}^{\infty} \frac{\tilde{P}_{k,n}(z,\zeta)}{k!\gamma_{k,n}}$$

for $z \in \tilde{\mathbb{E}}$ and $\zeta \in \tilde{S}_0$, we have

(13)
$$\mathcal{F}_{\mu,\tau}^{\Delta} f(\zeta) = (\exp(z\zeta), f(z))_{\tilde{S}_{\mu,\tau}}$$

$$= \sum_{k=0}^{\infty} \frac{1}{k! \gamma_{k,n}} \left(\tilde{P}_{k,n}(z,\zeta), f(z) \right)_{\tilde{S}_{\mu,\tau}}$$

$$= \sum_{k=0}^{\infty} \frac{L_{k,\mu,\tau}}{k! \gamma_{k,n} N(k,n)} \overline{f}_{k}(\zeta)$$

$$= \sum_{k=0}^{\infty} \frac{L_{k,\mu,\tau}}{k! \gamma_{k,n} L_{k,\lambda,\tau}} \left(\tilde{P}_{k,n}(z,\zeta), f(z) \right)_{\tilde{S}_{\mu,\tau}}.$$

For $z \in \bar{\mathbb{E}}$ and $\zeta \in \bar{S}_0$, put

(13)
$$e_{\lambda}^{\mu}(z,\zeta) = \sum_{k=0}^{\infty} \frac{L_{k,\mu,r}(z\zeta)^{k}}{L_{k,\lambda,r}k!} = \sum_{k=0}^{\infty} \frac{L_{k,\mu,r}\bar{P}_{k,n}(z,\zeta)}{L_{k,\lambda,r}k!\gamma_{k,n}}.$$

If $\zeta \in \bar{S}_0$ is fixed, then $e^{\mu}_{\lambda}(\cdot,\zeta)$ is a complex harmonic function on $\tilde{\mathbb{E}}$. Hence $e^{\mu}_{\lambda}(\cdot,\zeta) \in h^2_{\lambda}(\bar{B}(r))$. Therefore by (12), for $f \in h^2_{\lambda}(\bar{B}(r))$, we have

(14)
$$\mathcal{F}^{\Delta}_{\mu,r}f(\zeta) = (\exp(z\zeta), f(z))_{\hat{S}_{\mu,r}} = (e^{\mu}_{\lambda}(z,\zeta), f(z))_{\hat{S}_{\lambda,r}}.$$

Theorem 6.1. The conical Fourier transformation $\mathcal{F}_{\mu,r}^{\Delta}$ gives the antilinear unitary isomorphism:

(15)
$$\mathcal{F}^{\Delta}_{\mu,r}: h^{2}_{\lambda}(\bar{B}(r)) \xrightarrow{\sim} \mathcal{E}^{2}(\bar{S}_{0}; \mu, \lambda, r).$$

Proof. Let $f = \sum_{k=0}^{\infty} f_k \in h_{\lambda}^2(\tilde{B}(r)), f_k \in \mathcal{P}_{\Delta}^k(\tilde{\mathbb{E}})$ and put $F(\zeta) = \mathcal{F}_{\mu,r}^{\Delta}f(\zeta)$. Then by Lemma 4.3, (9) and (1), we have

$$\begin{split} &\int_{\bar{S}_{0}} |F(\zeta)|^{2} d\bar{S}_{0(\mu,\lambda,r)}(\zeta) = \int_{\bar{S}_{0}} |\mathcal{F}_{\mu,r}^{\Delta} f(\zeta)|^{2} d\bar{S}_{0(\mu,\lambda,r)}(\zeta) \\ &= \sum_{k=0}^{\infty} \frac{(N(k,n)k!)^{2} \gamma_{k,n} 2^{k} L_{k,\lambda,r}}{(L_{k,\mu,r})^{2}} \left(\frac{L_{k,\mu,r}}{N(k,n)k! \gamma_{k,n}}\right)^{2} ||f_{k}||_{\bar{S}_{0,\lambda}}^{2} \\ &= \sum_{k=0}^{\infty} \frac{2^{k} L_{k,\lambda,r}}{\gamma_{k,n}} ||f_{k}||_{\bar{S}_{0,1}}^{2} = \sum_{k=0}^{\infty} \frac{L_{k,\lambda,r}}{L_{k,0,1}} ||f_{k}||_{\bar{S}_{0,1}}^{2} \\ &= \sum_{k=0}^{\infty} L_{k,\lambda,r} ||f_{k}||_{\bar{S}_{1}}^{2} = \sum_{k=0}^{\infty} ||f_{k}||_{\bar{S}_{\lambda,r}}^{2} \\ &= ||f||_{\bar{S}_{\lambda,r}}^{2} = \int_{\bar{S}_{\lambda,r}} |f(z)|^{2} \dot{z} < \infty \,. \end{split}$$

Combining Theorem 6.1 with Theorems 3.2 and 4.4, we obtain

Proposition 6.2. Let $|\lambda| \le r$ and $|\mu| \le r$. Then we have

$$\operatorname{Exp}(\bar{S}_0;[r]) \subset \mathcal{E}^2(\bar{S}_0;\mu,\lambda,r) \subset \operatorname{Exp}(\bar{S}_0;(r)).$$

Since $\mathcal{E}^2(\bar{S}_0; \mu, \lambda, r) \subset \operatorname{Exp}(\bar{S}_0; (r))$, the inverse mapping of (15) is given by (7) and every $F \in \mathcal{E}^2(\bar{S}_0; \mu, \lambda, r)$ is represented by the integral formula (8). But we also have formulas corresponding to (7) and (8) in terms of the function $e^{\mu}_{\lambda}(z,\zeta)$ and the measure $d\bar{S}_{0(\mu,\lambda,r)}$:

Proposition 6.3. Let $F \in \text{Exp}(\bar{S}_0; (r))$. Then we have

$$\mathcal{M}_{\mu,r}F(z)=\int_{\tilde{S}_0}e^{\mu}_{\lambda}(z,\zeta)\overline{F(\zeta)}dar{S}_{0(\lambda,\mu,r)}(\zeta).$$

Proof. By (7), (6), (9), (11) and (13), the statement easily follows.

Theorem 6.4. The function

(i)
$$E_{\mu,\lambda,r}(\zeta,\xi) = (e^{\mu}_{\lambda}(z,\zeta), e^{\mu}_{\lambda}(z,\xi))_{\hat{S}_{\lambda,r}}$$

is a reproducing kernel for $\mathcal{E}^2(\bar{S}_0; \mu, \lambda, r)$; that is, for $F \in \mathcal{E}^2(\bar{S}_0; \mu, \lambda, r)$ we have the following integral representation:

$$F(\xi) = \int_{\bar{S}_0} F(\zeta) \overline{E_{\mu,\lambda,r}(\zeta,\xi)} d\bar{S}_{0(\lambda,\mu,r)}(\zeta).$$

We have

(ii)
$$E_{\mu,\lambda,r}(\zeta,\xi) = \sum_{k=0}^{\infty} \frac{(L_{k,\mu,r})^2}{N(k,n)(k!\gamma_{k,n})^2 L_{k,\lambda,r}} \, \tilde{P}_{k,n}(\zeta,\overline{\xi}).$$

The Poisson kernel $K_{\lambda,r}(z,w)$ can be given as follows:

(iii)
$$K_{\lambda,\tau}(z,w) = \int_{\tilde{S}_0} e^{\mu}_{\lambda}(z,\zeta) \overline{e^{\mu}_{\lambda}(w,\zeta)} d\tilde{S}_{0(\lambda,\mu,\tau)}(\zeta).$$

Proof. If we write down the formula $F(\xi) = \mathcal{F}_{\mu,r}^{\Delta} \circ \mathcal{M}_{\mu,r} F(\zeta)$ using the function $e_{\lambda}^{\mu}(z,\zeta)$ and (14), we get the reproducing formula (ii):

$$E_{\mu,\lambda,r}(\zeta,\xi) = (e_{\lambda}^{\mu}(z,\zeta), e_{\lambda}^{\mu}(z,\xi))_{\tilde{S}_{\lambda,r}}$$

$$= \sum_{k=0}^{\infty} \left(\frac{1}{k! \gamma_{k,n}} \frac{L_{k,\mu,r}}{L_{k,\lambda,r}}\right)^{2} \left(\tilde{P}_{k,n}(z,\zeta), \tilde{P}_{k,n}(z,\xi)\right)_{\tilde{S}_{\lambda,r}}$$

$$= \sum_{k=0}^{\infty} \left(\frac{1}{k! \gamma_{k,n}} \frac{L_{k,\mu,r}}{L_{k,\lambda,r}}\right)^{2} \frac{L_{k,\lambda,r}}{N(k,n)} \tilde{P}_{k,n}(\zeta,\bar{\xi})$$

$$= \sum_{k=0}^{\infty} \frac{(L_{k,\mu,r})^{2}}{N(k,n)(k! \gamma_{k,n})^{2} L_{k,\lambda,r}} \tilde{P}_{k,n}(\zeta,\bar{\xi}).$$

$$\begin{aligned} &\int_{\tilde{S}_{0}}e_{\lambda}^{\mu}(z,\zeta)\overline{e_{\lambda}^{\mu}(w,\zeta)}d\tilde{S}_{0(\lambda,\mu,r)}(\zeta) \\ &=\sum_{k=0}^{\infty}\frac{(N(k,n)k!)^{2}\gamma_{k,n}2^{k}L_{k,\lambda,r}}{(L_{k,\mu,r})^{2}}\left(\frac{L_{k,\mu,r}}{k!\gamma_{k,n}L_{k,\lambda,r}}\right)^{2}\left(\tilde{P}_{k,n}(z,\zeta),\tilde{P}_{k,n}(w,\zeta)\right)_{\tilde{S}_{0,1}} \\ &=\sum_{k=0}^{\infty}\frac{N(k,n)^{2}2^{k}}{\gamma_{k,n}L_{k,\lambda,r}}\frac{L_{k,0,1}}{N(k,n)}\tilde{P}_{k,n}(z,\overline{w}) = \sum_{k=0}^{\infty}\frac{N(k,n)}{L_{k,\lambda,r}}\tilde{P}_{k,n}(z,\overline{w}) = K_{\lambda,r}(z,w). \end{aligned}$$

REFERENCES

- [1] Duran, A. J., The Stieltjes moments problem for rapidly decreasing functions, Proc. Amer. Math. Soc. 107 (1989), 731-741.
- [2] Fujita, K., Hilbert spaces related to harmonic functions, Töhoku Math. J. 48 (1996), 149-163.
- [3] _____, Hilbert spaces of eigenfunctions of the Laplacian, (to appear in the Proceedings of the First International Congress of the ISAAC, Reproducing Kernels and Their Applications, Kluwer Academic Publishers.
- [4] _____and M. Morimoto, Reproducing kernels related to the complex sphere, preprint.
- [5] Ii, K., On a Bargmann-type transform and a Hilbert space of holomorphic functions, Töhoku Math. J. 38 (1986), 57-69.
- [6] Morimoto, M., Analytic functionals on the sphere and their Fourier- Borel transformations, Complex Analysis, Banach Center Publications 11 PWN-Polish Scientific Publishers, Warsaw, 1983.
- [7] _____, A generalization of the Cauchy-Hua integral formula on the Lie ball, Tokyo J. Math. 22 (1999 (to appear)).
- [8] and K. Fujita, Analytic functionals and entire functionals on the complex light cone, Hiroshima Math. J. 25 (1995), 493-512.
- [9] _____, Conical Fourier-Borel transformation for harmonic functionals on the Lie ball, Generalizations of Complex Analysis and their Applications in Physics, Banach Center Publications 37 (1996), 95-113.
- [10] _____, Analytic functionals on the complex sphere and eigenfunctions of the Laplacian on the Lie ball, Structure of Solutions of Diffrential Equations, World Scientific, 1996.
- [11] _____, Eigenfunctions of the Laplacian of exponential type, New Trends in Microlocal Analysis, Springer, 1996.
- [12] Wada, R., On the Fourier-Borel transformations of analytic functionals on the complex sphere, Töhoku Math. J. 38 (1986), 417-432.
- [13] _____, Holomorphic functions on the complex sphere, Tokyo J. Math. 11 (1988), 205-218.

Faculty of Culture and Education Saga University, Saga 840-8502, Japan received 23 November 1998

Department of Mathematics International Christian University 3-10-2 Osawa, Mitaka-shi, Tokyo 181-8585, Japan