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Abstract. Let L be a fixed homogeneous elliptic operator in R2 and let 
Pl be the space of all polynomials in R2 (so called L-polynomials) which 
are annihilated by L. For any set E C R2 let LfE) denote the set of all 
functions u which satisfy Lu = 0 in some open set E' 3 E depending on u.

In this paper the author deals with the following Problem A: Under 
what conditions on a compact set X C R2 each function f € C(X) with 
Lf = 0 on the interior X° of X can be uniformly approximated on X by 
L-polynomials.

1. Introduction. Let C(X) be the space of all continuous complex-valued 
functions on a compact set X with the uniform norm. The following theorem 
°f S. N. Mergelyan [7] is well known.
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Theorem M. Let X be a compact set in C. Then each function f £ C(X), 
holomorphic on X° (the interior of X), can be uniformly approximated on 
X by polynomials of a complex variable if and only if <C\X is connected.

We are interested in analogous results for approximation by bianalytic 
polynomials and by polynomial solutions of other elliptic equations.

Let L be any fixed homogeneous elliptic operator in R2 of order n > 2 
with constant complex coefficients. In this paper our special attention will 
be given to the case L = Ln = d™ = dn/d'z” (recall that d = d/d~z is the 
Cauchy-Riemann operator) and to the case L = L* = (d/dx\ — \d/dx2}n 
(where A £ C \ R). In other words we will consider the approximation by 
n-analytic polynomials (for n > 2) and by solutions of the elliptic equations 
(of order n > 2) with constant complex coefficients and equal characteristic 
roots.

Let be the space of all polynomials in R2 which are annihilated by L 
(these polynomials are called £-polynomials).

For any set E C R2 let us denote by L(E) the set of all functions 
u, which are defined and satisfy the equation Lu = 0 in some open set 
E' 3 E, (depending on u). Denote by Pl(X) the closure in C(A) of the 
set {p|x | p e PL}-

We will be interested in the approximation problem for ’’classes of func­
tions”, which can be formulated as follows.

Problem A. Under what conditions on a compact set X C R2 each func­
tion f £ C(X) with Lf = 0 on the interior X° of X (a necessary ap- 
proximability condition) can be uniformly on X (with arbitrary accuracy) 
approximated by L-polynomials (or, in another words, when Pl(X) = 
C(X)nL(X°))?

Recall that a function f is said to be n-analytic in a domain D C C 
(n > 1) if Lnf = 0 everywhere in D in the classical sense. Note that if D is 
a domain in C then any function f which is n-analytic in D has the form 
f(z) = ^2=0 ^kfk(z}i where fk (k = 0,..., n - 1) are analytic in D.

Respectively, a polynomial p is said to be n-analytic if Lnp = 0 ev­
erywhere in C. It is clear that any n-analytic polynomial p has the form 
p(z) — IZfcZo zkPk(z)i where pk (k = 0,...,n — 1) are polynomials of a 
complex variable.

In what follows, 2-analytic functions and 2-analytic polynomials are cal­
led bianalytic functions and bianalytic polynomials, respectively.

Set Pn = PLn and Pn(X) = PL.(X).
In the case n = 1 the approximation problem stated above was completely 

solved by S.N.Mergelyan in pure topological terms (see [7] and Theorem M 
above).
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The sufficient condition for uniform approximability of functions by n- 
analytic polynomials (n > 2), similar to the assumption of the Mergelyan 
theorem, was obtained by J. J. Carmona [1]:

Theorem C. If the complement C \ X of the compact set X C C is con­
nected then Pn(X) = C(X) 0 £n(X0) for any integer n > 2.

An approximability criterion in Problem A for L = Ln (n > 2) and for 
closed rectifiable Jordan curves X was obtained in [3]. This criterion was 
formulated in terms of special analytic characteristic of the curve under 
consideration. So, the sufficiency condition in Theorem C is not necessary 
and there are no topological criteria for n-analytic (n > 2) polynomial 
approximations.

In what follows we will use the following notation. A contour means a 
closed Jordan curve. If T is a contour then D(r) denotes a domain bounded 
by T and not containing oo. If it is clear from the context then we will write 
D instead of P(r).

For the readers convenience we recall the main definition and state the 
main result of the paper [3].

Definition Fl. A rectifiable contour T is said to be a Nevanlinna contour if 
C = G((j/F(£) on T, where G and F (F 0) are bounded analytic functions 
m D(r) and equality is understood in the sense of (angular) boundary values 
almost everywhere with respect to the length differential on T.

Note that by the boundary uniqueness theorem [5, Chapt. X, §2, Th. 3] 
the function G/F in P(r) is uniquely determined.

Simple calculations show that the circle is a Nevanlinna contour but the 
boundary of an arbitrary polygon and the boundary of an arbitrary ellipse 
which is not a circle are not Nevanlinna contours.

Theorem F2. Let r be a rectifiable contour in C and let n > 2 be an 
integer. The following conditions are equivalent:

(a) pn(r) / c(r),
(b) T is a Nevanlinna contour.

In this paper we shall consider the mentioned approximation problem 
for n-analytic functions (n > 1) in a more general setting. Our first main 
result (Theorem 2.3 in §2) is a generalization of Theorem F2 to arbitrary 
(not necessary rectifiable) contours in C. Problem A for L — Ln (n > 2) and 
for compact sets X of special type, which are not contours is considered in 
§3 (see Proposition 3.2). In particular, Proposition 3.2 points out essential
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differences between the cases of uniform approximation by bianalytic and 
harmonic polynomials.

Problem A is closely related to the Dirichlet problem for the operator 
L. In §4 this relation is studied for L = Ln (n > 1). It is proved (see 
Proposition 4.1), that if T is a contour which contains some analytic arc, 
then the classical Dirichlet problem for bianalytic functions is (in general) 
unsolvable in the domain D(T). It follows from Theorem 4.2 that there 
exists a contour T in C such that Problem A with X = T and L = L2 
and the Dirichlet problem in the domain D(T) for bianalytic functions are 
not equivalent. One unsolved problem related to the Dirichlet problem for 
bianalytic functions is stated in §4.

In §5 all mentioned results are generalized to elliptic operators with equal 
characteristic roots.

In what follows the signs □ and ■ denote the beginning and the end of 
the proof, resp.

2. Uniform approximations by n-analytic polynomials on contours
in C. Let T be a contour (not necessary rectifiable) in C and let D = D(T) 
be a domain, bounded by T and not containing 00. Denote by I? = {|w| < 1} 
the unit disk and denote by 7 — {77 £ C : \rj\ = 1} the unit circle.

Fix a conformal map h of the unit disk B onto D which is extended to a 
homeomorphism of B onto D by Caratheodory’s theorem and let t = h~l 
be an inverse mapping.

In what follows all measures are finite, complex and Borel.
Let y be a measure on 7. Define a measure fi(i/) on T by setting /i(z/)(S') = 

i/(r(5)) where 5 is a Borel subset of T. For the measure p on T we define 
the measure r(/z) on 7 by analogy. Put £ = fi(o'), where da(rf) = dr) on 7.

For the case of non-rectifiable contours we need the following modification 
of the notion of a Nevanlinna contour.

Definition 2.1. A contour T is said to be a Nevanlinna-type contour if 
( = u,(t(C))/u(t(()) almost everywhere on T with respect to the measure 
£, where u(r/) and v(rf) (u 0) are boundary values of some bounded 
functions u(w) and u(w) holomorphic in the unit disk.

It is easy to see that the definition of a Nevanlinna-type contour is in­
dependent of the map h and so the notion of a Nevanlinna-type contour is 
well defined.

Note that for rectifiable contours the notions of a Nevanlinna contour 
and a Nevanlinna-type contour are the same. The author doesn’t know any 
example of the Nevanlinna-type contour T such that T is not a Nevanlinna 
contour. However, the following statement holds:
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Remark 2.2. If T is an arbitrary closed Jordan curve, such that T contains 
two analytically independent analytic arcs then T is not a Nevanlinna-type 
contour (see the proof of the Corollary 5.5).

The main result of the present paper is the following theorem.

Theorem 2.3. Let T be a contour in C and let n > 2 be an integer. The 
following conditions are equivalent:

(a) pn(T) * c(r),
(b) r is a Nevanlinna-type contour.

Note that if T is an arbitrary closed Jordan curve in R2, then the condi­
tions for identity of the spaces Pn(r) and C(T) are the same for all n > 2.

Before proving the Theorem 2.3 we will formulate and prove some tech­
nical propositions. Recall that 7 is the unit circle.

Proposition 2.4. Let p be a measure on T. Then p is orthogonal to the 
system if and only if the measure y = r(/x) on 7 is orthogonal to
the system {wfc}^L0.

D Suppose that p is orthogonal to the system {z*}]*L0 on
By the Walsh theorem [10, Chapter 2, §2.4] Pi(P) = C(D) C Li(P). 

Hence, since rk E C(D) D Ti(P), we have

J T]kdy(rf) = f[T(C)]kdp(O = 0 

-7 r

for any A: = 0,1,.... Hence, y is orthogonal to the system {wfc}£L0 on 7.
Conversely, suppose that y is orthogonal to the system {wfc}£L0 on 7. 

But p = b(i/) and the orthogonality of p to the system {z^^Lq on I’ may 
be verified by the same way. ■

Let y be a measure on 7 such that y is orthogonal to the system {wfc}^_0. 
By the F.Riesz-M.Riesz theorem [4, Chapt. 2, §7] it follows that y is abso­
lutely continuous with respect to the measure o on 7, that is, there exists 
such a CT-integrable function y>(-) on 7 that dy(rf) = y?(q)dq. It is well known 
that 93(77) are angular boundary values of a function y>(w) that belongs to 
the class IT (recall that II\ is the Hardy class in the unit disk). We have
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Proposition 2.5. Suppose that the measure v on 7 is orthogonal to the 
system and let p = h(i/). Then dp^Q = <p(r(())d£(£), where
<p = du/do.

□ Suppose that v is orthogonal to the system {u>fc}£T0 on 7 and let <p(-) be 
the density of v with respect to the measure <r, that is i/(Si) = fs tp(r})dr/.

Let S C r. Then we have

//(S) = v(r(5)) = f = I <p(r(())d£((;)
Jt(s) Js

by definition of the measure £. ■

□ Proof of Theorem 2.3. Let n > 2 be an integer.
(a) => (b) Suppose that Pn(T) C(r). Since P2(T) C Pn(r), it follows 
that P2(r) C(r). Then there exists a non-zero measure pi on T such 
that

yc dM1«)=o,

(2.1) yam ^1(0 = 0, 

r

holds for all m G Z+ = {0,1,... }.
Define the measure p2 on T by setting:

(2.2) <M() = <<W().

It follows from (2.1), (2.2) that Jr dp2(£) = 0, for all m G Z+. Then the 
measures pi and //2 are orthogonal to all complex polynomials on T.

Put us = T^ps), s = 1 and 2. According to the Proposition 2.4 the 
measures and i/2 are orthogonal to the system on 7, that is
di/s(p) = us(r/)dp, s - 1, 2. Here 111(77) and u2(t?) are the boundary values 
of some functions u1(w) and u2(w) that belong to the class H\.

According to Proposition 2.4 we have

(2.3) d/xs(O = u.(r«))d£«), a = 1, 2.

By (2.2) and (2.3) dp2«) = n2(r«))d£«) = <dpi«) = ć“i(7'«))rf-c«), 
or, in other words, we have £ = u2(r(Q)/u1(r(C)) £-almost everywhere 
on T. According to [6, Th. 6.11] Pi C N (where N is the Nevanlinna class) 
and so we can replace the ratio u2(w)/ui(w) by the ratio of two bounded
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analytic functions u and v in the unit disk U2(w)/ui(w) = u(w)/u(w). 
Hence the contour T is a Nevanlinna-type contour.

(b) => (a) Let T be a Nevanlinna-type contour. We need to show that 
P„(r) / C(T)). Define a measure p on T by setting

dp«) = nn-1(r«))d£«).

Then, according to Cauchy theorem, we have by definition of £:

y <>^(0=y

= J ufc(r(ox-fc-\r(<))Cd£(<)
r

= y uk(r))vn-k~\r))hm(r))dr) = 0
7

for any ra £ Z+ and for integer k < n. It is clear, that p 0. Theorem 2.3 
is proved. ■

3. Uniform approximation by n-analytic polynomials on special 
compact sets in C. Recall, that a contour T is said to be an analytic 
contour if it is an image of the circle under a map which is conformal in 
a neighborhood of this circle. Respectively, an analytic arc is a conformal 
image of a segment.

It is well known that if T is an analytic contour then there exists 
a function S holomorphic in some neighborhood U of T such that 
r = {z E U : z = S(z)}. Respectively, if 7 is an analytic arc then there 
exists an analytic element ({/, S') such that S is holomorphic in the neigh­
borhood U of 7 and £ — S(^) on 7. This function S is called the Schwarz 
function of the contour T (or of the arc 7).

Let 7j and 72 be two analytic arcs. Denote by (Fi,Si) and (C^,^) the 
corresponding analytic elements. We say, that 71 and 72 are analytically 
dependent if the analytic elements (ĆĄ, Si) and (Ui,Si) are analytic con­
tinuations of each other. Otherwise, we say that 71 and 72 are analytically 
independent.

We will use the following result of Davis (see [2, Chapter 14]).
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Theorem D. Let D be a Jordan domain whose boundary dD is analytic 
and has the Schwarz function S(z). Assume that 0 £ D and that z = h(w) 
fh(O) = 0/ maps B conformally onto D. Then S(z) is meromorphic in D if 
and only if h(w) is a rational function of w.

In other words, an analytic contour T is a Nevanlinna contour if and only 
if the conformal map of the unit disk onto the domain F(T) is rational.

We need the following

Lemma 3.1. Let L be a contour in C. Then in any neighborhood of T 
there exists an analytic Nevanlinna contour.

□ Let D = F(T) and let h be a conformal map of the unit disk B onto D. 
For 6 E (0,1) we denote by Bg the disk {|w| < 0} and set hs = h\Bf.

By Theorem M for any £ > 0 there exists a polynomial p6e of a complex 
variable such that ||/i£ — PeIIbT < £-

Let V be a neighborhood of T and U = V D D. Then there exists 
such 6 = 6(U') and e = e(Z7) that re = p^dBg) is the contour in U. By 
construction T£ is an analytic contour and re is a Nevanlinna contour by 
Theorem D. ■

Now we are going to prove the following conditions for uniform approx- 
imability of functions by n-analytic polynomials.

Proposition 3.2. Let n > 2 be an integer.
1. Let Ti and r2 be two contours in C such that T2 C F(Ti). Set X =

F(I\) \ F(r2). Then Pn(X) / C(X) D £„(X°).
2. Let X be a compact set in C such that X = r U {oi,...,ap}, where 

r is not a Nevanlinna contour and ai,...,ap are the points, such that 
aj E F(r) (j = 1,...,p). Then Pn(X) = C(X).

□ 1. By Lemma 3.1 there exists an analytic Nevanlinna contour T C X°.
Let S'(-) be a Schwarz function of T. Then S may be extended to a 
meromorphic function in F(T). Let ai,...,a^ be the poles of S(-) in 
F(r). Put F(z) = rij=i(2 — aj) an(I G(z) = *S'(z)F(z). Take a point 
b E F(r2)\ {ai,...,a*} such that G(h) / 0. Suppose that the function 
/(z) = z/(z — h)|r may be uniformly approximated on X by a sequence of 
n-analytic polynomials. Then f may be uniformly on T approximated by the 
sequence of the n-analytic polynomials {<7j(z) = 22fc=o Then the

function p(z) = G(z)Fn_2(z)/(z — h) may be uniformly approximated on T 
by the sequence of functions ^grn(z) = G*(z)Fn_fc_1(z)pfc(z)} holo­

morphic in F(r). But g has a pole at the point b. This contradicts the max­
imum principle for holomorphic functions. Hence Pn(N) C(X)riF„(A’0).
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2. Assume the converse: P„(X) / C(X). Then Pi(X) ± C(X) and there 
exists a measure p on X such that fx zk dp(z') = 0 and fx zzk dp(z) = 0, 
where k — 0,1,2,.... Define the measures p\ and /x2 on T by:

J=2

dp2«) = (®i - o IBaJ -

It is not difficult to verify that the measures pj and p2 are orthogonal to 
all complex polynomials: Jr zk dps(z) = 0 (as s = 1,2 and k = 0,1,2,...). 
Then, we have d/zs(£) = fs(C)dC, s = 1,2, where the functions /S(C) (as 
5 = 1,2) are angular boundary values of fs(z) (as s = 1,2) that belong to 
the class Ei (with respect to D(T)).

Simple calculations show that

(BT- OAK) ń(«i - O = AK) ń(a> - O

J=2 i=l

almost everywhere on T and according to this equality it is not difficult to 
show that the function £ on T can be represented as a quotient of functions 
that belong to the class E\. It is well known that each function f G E\ in D 
may be represented as a quotient of two bounded functions holomorphic in 
D- Thus, the contour T is a Nevanlinna contour. This contradiction proves 
Part 2. ■

It is worth comparing the conditions for uniform approximability of func­
tions by bianalytic and by harmonic polynomials.

The following Walsh-Lebesgue theorem (see [4, Chapt. II] and [9, p.503]) 
is a criterion of uniform approximability of functions by harmonic polyno­
mials. We formulate it in such a form as in [8]. For a compact set X denote 
by X the union of X and all bounded components of its complement C\X. 

Theorem WL. Let X be a compact set in C. Then

PA(X) = C(X)n A(X°)

if and only if dX — dX (here A is the Laplace operator in C).

So, Proposition 3.2 points out the essential difference between the cases of 
uniform approximation by bianalytic and harmonic polynomials. In fact, if 
the compact set Xj satisfies the conditions of part 1 of Proposition 3.2, then 
Pn(Xj) C(Xi)n£n(Xi°) and if the compact set X2 satisfies the conditions 
°I part 2 of Proposition 3.2, then Pn(X2) = C(X2) (here X£ = 0). Clearly, 
^Xs jz dXs for s = 1 and s = 2.
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4. Relations with the Dirichlet problem. In this section we consider 
the Dirichlet problem for n-analytic functions (solvability and uniqueness) 
and discuss its relations with the uniform approximation problem stated 
above.

For a contour T in R2 and for the elliptic operator L of order n > 2 with 
constant complex coefficients we set

sL(r) = {f eC(r)|3F eC(Ęr))ni(D(r)) such that p|r = /},

and 5Ln(r) = 5n(r). We will be interested in the following problem: Under 
what conditions on a contour T is Pn(T) equal to 5n(T)?

It follows from Theorem C that 5n(T) C Pn(T) for any integer n and it is 
easily seen from the maximum principle for holomorphic functions and for 
harmonic functions that Pi(T) = Sj(r) and Pa(T) = 5a(T), respectively.

Note that the maximum principle for n-analytic (n > 1) functions is not 
true. In fact, the function /(z) = 1 — zz is equal to zero on the unit circle, 
but |/| > 0 in the interior of the unit disk.

Most likely, by this reason, the classes Pn(r) and S„(r) are not equivalent 
for n > 1. Without loss of generality we consider only the case n = 2. We 
show, that C(T) ^(r) even under very simple conditions for the contour 
T. The case of an arbitrary integer n > 2 can be considered analogously.

Proposition 4.1. Let r be a contour containing an analytic arc y. Then
c(F) / s2(r).

□ We construct a neighborhood U of the arc 7 and a function <p (analytic 
in P) such that ( — ip(Q on 7. Consider the function f — l/(z-a)|r, 
a E D n U and show that f £ ^(T).

Suppose that f E ^(T) and let P be a desired continuation. Then 
P(z) = Po(z)+zPi(z) where Fq and Pi are analytic in D = P(r). According 
to [1, Lemma 3] we have

(4-4)
ui(F , dist(z, T)) 

dist(z, T)
for z E D.l^iWI < A

Here u(P, <5) is the module of continuity of functions P on D and A is an 
absolute constant.

Consider the function Fr(z) = Po(^) + ¥’(2r)Pi(z) which is defined in 
D n U (recall that <p is analytic in D D P). According to (4.4) we have

P(z) - Pr(z) = Pi(z)(z - </>(z)) =4 0

as z —> T (T P, z G D n P, (here denotes the uniform convergence). 
Consequently, Fp is continuous in D fl P and equal to f on T. According
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to the boundary uniqueness theorem [5, Theorem X.2.3] we have Fp = f 
everywhere in D D U. Note that f has a pole at the point a and there are 
no singularities of Fp in D C\U. This contradiction shows that f 0 S^T).

■
The following result follows from Remark 2.2 and Proposition 4.1.

Theorem 4.2. Let T be a contour containing two analytically independent 
analytic arcs. Then P2(T) = C(r) / S2(r).

The following problem remains open: Is it true that C(T) 52(T) for 
any contour T C C (or even for a boundary T of an arbitrary Caratheodory 
domain)?

5. Generalization to elliptic operators with equal characteristic 
foots. Let A £ C \ R and L*u = (d/dxi — Xd/9:r2)nu. Then the operator 
L* is elliptic. Put P* = PLx and P*(X) = PL*(X).

Let z = Xj + i,X2 and x = (xi,a:2). Set

di = 9/dzi - A9/9x2, d2 = d/dx-i + A9/9z2,

so that L^u = 9"u. Define the “new variables”

Then the following orthogonality property holds: dszt = bst as s,t = 1,2. 
Tor example, if A = — i then we have d\ = 2d and z\ = z/2, z2 — z/2.

Define the transformation T\ : C -+ C by setting T\z = z2. Then 
T\z = Z! .

Proposition 5.1. Let D be a domain in R^ f £ T^(F) and g(g) — 
/(Ta-S). Then dng = 0 in T\D C

□ Let A = a + ib and 1/A = c + id. Take a point y E T\D and set x = Tx 1y. 
One has

Ry induction we can prove that d g(y} = [(iA)n/bn]L^f(x} which ends the 
Proof. ■
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Corollary 5.2.
(1) A polynomial solution p of the equation L*u - 0 has the form p(z) =

£fc=o z\Pk(z2), where po(-), Pi(-), • • •, Pn-i(-) are complex polynomials.
(2) Let X be a compact set in R2 and let Y = T\X. Then the image of 

the class P*(X) under the transformation T\ (namely under the trans­
formation g(y) = /(T^y)) is the class Pn(Y) and the image of the class 
L^(X) is the class Ln(Y).

It is clear, that if X is a compact set in R2r[ then Y — T\X is a 
compact set in and all topological properties of X and Y are the
same.

Note that for the operator L) the following statements are true and 
immediately follow from Theorem C and Theorem 2.3, respectively, after the 
change of variables (see Proposition 5.1 and Corollary 5.2 for justification 
of the mentioned change of variables).

Corollary 5.3. Let X C R2 be a compact set with connected complement 
and let n > 1 be an integer. Then P*(X) = C(A)n^(A°).

Corollary 5.4. Let T be a contour in R2 and n > 2 be an integer. Then 
P^(T) C(T) if and only if the contour T\T is a Nevanlinna-type contour.

The following corollary of Theorem 5.4 is useful for the analysis of the 
concrete examples.

Corollary 5.5. Let T be a contour including two analytically independent 
analytic arcs, A £ C \ R, and let n > 2 be an integer. Then P„(T) = C(T).

□ It follows from Proposition 2.3 that if T' is a contour and T' contains two 
analytically independent analytic arcs, then Pn(T') = C(T').

In fact, let us show that if Pn(r') 7^ C(r') then any two analytic arcs 
7i C rz and 72 C T' are analytically dependent. Since Pn(r') / C(r*), it 
follows from Theorem 2.3 that T' is a Nevanlinna-type contour. On the other 
hand, according to the definition of an analytic arc we have ( = tps(() on ys, 
where <ps is analytic in the neighborhood Us of ys (s = 1 and 2). Assume 
that U\ n D(Y') and U2 O D(T') are simply connected and Ui 0 U2 = ill. 
Compare the representation of the function £ on T', using in the definition 
of a Nevanlinna-type contour with the above mentioned representations 
of such functions on 71 and 72. Then the analytic elements (<pi,tĄ) and 
(<P2, U2) can be analytically continued into each other so that yi and 72 are 
analytically dependent.
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Note that the transformation T\ maps two analytically independent an­
alytic arcs into two analytically independent analytic arcs and apply the 
part 2 of Corollary 5.2. ■

The following result is a consequence of Proposition 4.1 and Corollary 
5.5.

Theorem 5.6. There exists a contour P with P2A(T) = C(T)

References

[1] Carmona, J. J., Mergelyan approximation theorem for rational modules, J. Approx. 
Theory 44 (1985), 113-126.

[2] Davis, P., The Schwarz function and its applications, Carus Math. Monographs 17, 
Math. Assoc, of America, Washington, 1974.

[3] Fedorovski, K. Yu., Uniform n-analytic polynomial approximations of functions on 
rectifiable contours in C Math. Notes 59, No.4 (1996), 435-439.

[4] Gamelin, T., Uniform algebras, Prentice Hall, Englewood Cliffs., 1969.
[5] Goluzin, G. M., Geometrical theory of functions of one complex variable (Russian), 

Gostekhizdat. Moscow-Leningrad, 1952.
[6] Hayman, W., Meromorphic functions, Oxford Univ. Press. Oxford, 1964.
t7] Mergelyan, S. N., Uniform approximations of functions of a complex variable, Us- 

pekhi Mat. Nauk. [Russian Math. Surveys] 7, No.2 (1952), 31-122.
[®] Paramonov, P. V., Cm-approximation by harmonic polynomials on compact sets in 

R", Russian Acad. Sci. Sb. Math. 78, No.l (1994), 231-251.
[9] Walsh, J. L., Interpolation and approximation by rational functions in the complex 

domain, Amer. Math. Soc. Colloq. Publ. XX (1960).
[40] _____ , The approximation of harmonic functions by harmonic polynomials and by

harmonic rational functions, Bull. Amer. Math. Soc. 35 (1929), 499-544.

Management Information System Institute
Russian State University of Management
Ryazanski av. 99, Moscow-109542, RUSSIA
e-mail:const@fedorovski.mccme.ru received November 11, 1998

mailto:const%40fedorovski.mccme.ru



