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P-valent harmonic mappings 
with finite Blaschke dilatations

Abstract. In this paper we aim at studying p-valent harmonic mappings 
defined on a simply connected domain D in C . In contrast to the analytic 
case, we show that if the number of zeros of a harmonic polynomial of degree 
n is not infinity, it lies between n and n2. Another astonishing behaviour 
is the fact that there exists a two-valent entire harmonic mapping which 
is not a polynomial. However, a p-valent entire harmonic mapping whose 
second dilatation function a is a rational function satisfying |a(oo)| / 1 is 
necessarily a harmonic polynomial. In the second part we provide necessary 
and sufficient conditions for the following problem: Given a simply con­
nected Jordan domain 0 and a finite Blaschke product of degree n. Under 
what conditions there exists a sense-preserving continuous boundary corre­
spondence f* from the unit circle onto dfl covering it p times such that its 
Poisson integral f is p-valent and has the second dilatation a.

1. Introduction. Let D be a domain of the complex plane C . A complex 
valued function w = /(z) = u(z) + iv(z),z = x + iy E D is called a harmonic 
mapping on D, if its real part u(z) and its imaginary part u(z) are harmonic
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functions on D. Using the standard notations of complex partial derivatives 
fz — (Zr - iand fz = (Z® + *Zj/)/2, f is harmonic on D if, and only if 

(1-1) AZ = 4Z« = 0

on D. From (1.1), we immediately deduce the representation

(1-2) f(z) = h(z) + ff(z),

where h and g are analytic multiforms on D. The Jacobian of f is

Jf = IZzl2 - IZrl2 = Ih'l2 - Iff'l2.

Observe that h' and g' are analytic functions on D and that f is an open 
mapping which preserves the orientation if and only if f is not a constant 
and its second dilatation function

(1-3) a(z) = fif'(z)/h'(z)

is analytic on D and satisfies | afz) | < 1 there . The following result strength­
ens Lemma 2.1 in [3].

Lemma 1.1. Let w = f(z) be a complex valued function in C”(D) such 
that its image f(D) is neither a linear segment nor a point. Then f is 
harmonic on D if, and only if either f is analytic on D or f is a solution of 

(1-4) = a(z)fz(z)

where a(z) is a meromorphic function on D such that a e,a for some 
real a.

Proof. If Z is a harmonic mapping on D, then (1.2) implies that either 
h' = 0 or else a = g' /h' is meromorphic on D and f is a solution of 
(1.4). Suppose that a = e,a for some real a, then </'(z) = e‘"h'(z) and 
g(z) = e,Q,h(z) + q where q is a constant. Hence,

/ = h + e~iah + q = 2e~ia/2 Re(eia/2h) + q

which implies that is either a point or a linear segment. But this case
is excluded and hence the necessity of the conditions follows.

For the sufficiency we first let f be analytic on D. Then Z(^) = <t(2) *s 
harmonic. Suppose now that f is a solution of (1.4) and that a is mero­
morphic on D such that |a| is not identically one. Differentiating (1.4) with 
respect to z yields

= 4(fz)z = 4(Zt)t = 4aZzż =
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Hence, A/(z) = 0 whenever |a(zr)| 1. Since |a| is not identically one, the
level set E = {z : |a(z)| = 1} consists of countably many analytic arcs. 
Finally, f being in C”(P) implies that A/ = 0 on D. This concludes the 
proof of the lemma. □

Remarks 1.2.

(1) It is sufficient to require in Lemma 1.1 that f belongs to the Sobolev 
space lFio’c . The regularity of a then implies that f belongs to C”.

(2) If |a| = 1, we cannot conclude that every solution of (1.4) is har­
monic. Indeed, /(z) = e‘“/2zz is a solution of (1.4) with a(z) = e'a 
that is not harmonic in D.

Definition 1.3.

(1) Let f be a function defined on D. We denote the set of zeros of f by 
Z(f,D) and its cardinality by NZ(f, Dj. The mapping f is called 
p-valent on D, if for all complex w, NZ(f — w, D) < p and if there 
is a w0 such that NZ(f — wq, D) = p.

(2) A function f is called locally p-valent at zq G D if there is an ro > 0 
such that f is p-valent on each disk z : |z — zo| < r, r < r0.

A. Lyzzaik [4] gave a complete description for the local valencies of a 
harmonic mapping.

2. p-valent harmonic polynomials. In contrast to the analytic case, 
there are nonconstant harmonic polynomials which do not vanish. For ex­
ample /(z) = 1 + z — z is such a one. On the other hand, there are har­
monic polynomials which are not p-valent for every p > 0. For example the 
mapping f(z) = z + z is such a one. Moreover, in both examples the limit 
lim2_oo /(z) does not exist in C . We shall also show that there are harmonic 
mappings on C which are not polynomials such that lim2_>oo /(z) = oo. It 
then follows that such a mapping takes on each value w at most finitely 
many times. In other words, for each w G C , there is a natural number 
p(w) such that NZ(f — w, C ) = p(w).

Theorem 2.1. There are harmonic mappings on C which are not polyno­
mials and satisfy lim2_+oo /(z) = oo.

Proof. Consider the closed set F = {z = x + iy : |z| > 1} U {z : x = 0}. 
Define A:(z) = z if |z| > 1 and A:(z) = 0 if x = 0. By the theorem of 
Arakeljan in uniform approximation theory (see for example [2]) , there 
exists an entire function G(z) such that supzeF |G(z) — fc(z)| < 1. Since G
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is bounded on the imaginary axis, we conclude that G is not a polynomial. 
Moreover, we have | ReG(z)| > |x| — 1 on {z : |i| > 1} and | ReG(z)| > 0 
> |i| — 1 on {z : |x| < 1). Hence, | ReG(z)| > |x| — 1 for all z £ C. Define 
f(z) = Re G(z) + iy. Then we have

l/MI > max(| ReG(2)|,b|) > i(|ReG(z)| + |j|) > i(|»| + |9| - 1)

for all z £ C which implies that lim^^ /(z) = oo. □

A p-valent entire (analytic) function is necessarily a polynomial. Let f 
be a harmonic p-valent mapping on C . Is it true that f is a polynomial ? 
In general this is not the case as we shall see in Example 2.3. However, the 
answer is affirmative if a(oo) exists and |a(oo)| ^f- 1.

Theorem 2.2. Let f be a harmonic p-valent mapping on C. If a(oo) exists 
and |a(oo)| 1, then f is a polynomial.

Proof. Without loss of generality we may assume that |a(oo)| < 1. Hence, 
|a(z)| < 1 in | z| > r for some r > 0 and thus f(z) is an orientation preserving 
harmonic mapping there. Then f admits the representation

OO oo
/(*) = 52 akzk + 52 + CTn |z|-

k= — oo /c= —oo

Set /i(z) = /(1/z). Then /i(z) is a harmonic sense-preserving mapping 
on D = {z : 0 < z < 1/r}. By the similarity principle for quasiregular 
mappings, j\(z} = A o x(z), where \ is a homeomorphism from D onto D 
(keeping the origin fixed) and A is an analytic function on D. Since f is p- 
valent, A has a pole at z = 0 of some order m and by the distortion theorem 
for quasiconformal mappings in the unit disk we conclude that |x(^)| = 
O(|z|K) as z tends to zero for arbitrary K > (1 + |a.(oo)|)/(l — |a(oo)|). 
It follows that the Fourier coefficients an and bn are zero for all n > K. 
Furthermore, since f is harmonic in the plane, we conclude that C = 0. 
Therefore, the singular part of f at infinity is of the form

N N

s(f,z)= 52akzk + $2bkzk
*:=i *;=i

where |6^| < |ajv|- Finally /(z) — S(f,z} is a bounded harmonic function 
in C and hence a constant which concludes the proof of the theorem. □

The following example shows that Theorem 2.1 can be strenghtened: 
There are p-valent and light harmonic mappings on the plane C which are 
not polynomials and satisfy limz_>oo /(z) = oo.
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Example 2.3. Let /(z) = z + Re(e2). Then f is a 2-valent harmonic map­
ping in C that is not a harmonic polynomial. Indeed, for each fixed y,f is 
a convex or a concave non-constant function of x. On the other hand, we 
have limz_*oo /(^) = oo. Finally, note that /(C ) omits open subsets of C .

We are now aiming to get explicit bounds for the number of zeros of a 
harmonic polynomial f satisfying |a(oo)| 1. We shall start with a gene­
ralized argument principle for harmonic functions.

Lemma 2.4 (Generalized argument principle for harmonic mappings). Let 
}(z) be a harmonic mapping defined on the closure D of a Jordan domain 
D. Consider the sets

A'l = {z : |a(z)| > 1} 0 D and R'2 = {z ■ la(2)| < 1} 0 D.

Fix w G C such that Z(f - w, C) fi (9A'i U 9A'2) is empty. Then we have

(2.1) 1VZ(/- w, A'2) - 1VZ(/- w, A\) = / darg(/-w).
2^ JdD

Proof. Since {z : |a(z)| = 1} is a finite union of piecewise analytic curves, 
A\ and A'2 are finite unions of Jordan domains. Let dR'i denote the bound­
ary of Ki,i — 1,2, endowed with the positive orientation on each of its 
components. Then we have

~ (I d arg(/ - w) + I d arg(/ - w) = <b d arg(/ - w)
J dKi In JdK-2 27T JdD

and (2.1) follows. □

Let now f be a polynomial of degree n satisfying |a(oo)| / 1. Then 
without loss of generality we shall assume that |a(oo)| < 1. Fix w G C such 
that Z(f-w, C )n(clA'1u5A'2) is empty. As already noted lim2_>oo /(z) = 00 
and therefore there exists a sufficiently large R(w) > 0 such that |a| < 1 on 
&-R = {z : |z| > R} and N(f — w,Afl) = 0. For D = {z : |z| < R}, (2.1) 
yields

Corollary 2.5. Let f be a harmonic polynomial of degree n. Then for 
fixed w G C such that Z(f - w, C) H (9A\ U 9A'2) is empty, we have

(2-2) NZ(f - w,C) > <f> darg(/ - w) = n.
27T JdD

We are now ready to state a result about the valency of a harmonic 
Polynomial.
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Theorem 2.6. Let f be a harmonie polynomial of degree n and assume 
that |a(oo)| 1. Then f is p-valent on C where n < p < n2. Both bounds
are best possible. Furthermore, we have p = n if and only if s is analytic 
on C or f is of the form

(2.3) s(z) = f(z) + bf(z), |b| / 1

where t(z) is an analytic polynomial and b is a constant.

Proof. If f is analytic on C then p = n. Suppose hence that a(z) is 
not identically infinity. Without loss of generality, we may assume that 
|a(oo)| < 1. The upper bound n2 and its sharpness were shown in [6]. 
Denote by K the set K = {z : |a(z)| > 1}. If K is empty, then by Liouville’s 
theorem, a is a constant and hence f is an affine transformation of an 
analytic polynomial, i.e. of the form (2.3) so that p = n. Suppose now 
that K is not empty. By the maximum principle for analytic functions, we 
conclude that there is a zo E K°, the interior of K, such that a(zo) = oo. 
Put w = s(z0). If /-1(w) D dK is empty, then Corollary 2.5 shows that 
p > NZ(f — w, C) > n. If not, there is a zj in the same component of K° 
such that Z(/ — wi, C ) D dK is not empty and the theorem is proved. □

3. p-valent harmonic mappings which preserve the orientation

3.1. Introduction

Recall, that a nonconstant function f of the class C”(F) is a harmonic 
transformation on D which preserves the orientation if and only if it is 
the solution of the elliptic partial differential equation (1.4) where a(z) is 
an analytic function on D satisfying |a| < 1. Such a mapping is locally 
quasiregular and admits the representation

(3.1) f(z) = A o i/>(z)

where i/i is a sense-preserving homeomorphism defined on D and A is ana­
lytic on 0(F). Hence, such functions behave topologically like analytic func­
tions. In particular, the zeros of f are isolated and the order of a zero of 
f coincidies with the order of the zero of A. Furthermore, the classical ar­
gument principle holds and / is locally p-valent at zq if and only if fz = h1 
has a zero of order p — 1 at z.

Observe that p-valent mappings need not to be sense-preserving. For 
example, /(z) = z + z2 is 4-valent on D = {z : |z| < 2} and we have 
|a(0)| = 0 and |a( 1.5)| = 3.
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Definition 3.1. Let Q be a simply connected Jordan domain of C.
(1) A function is called a sense-preserving quasihomeomorphism

from the unit circle dU into the boundary dSl if it is a pointwise 
limit of sense-preserving homeomorphisms from dU onto d£t and if 
its image contains at least three non-collinear points. If in addition, 
/★(dU) = 5Q, then we say that /* is a sense-preserving quasihome­
omorphism from dU onto dCt.

(2) A function /*(ełt) is called a sense-preserving weak homeomorphism 
from the unit circle dU onto the boundary <911 if it is a sense- 
preserving quasihomeomorphism which maps dU continuously onto

Since the image of a sense-preserving quasihomeomorphism from dU into 
9Q contains at least three non collinear points, f*(dU) is the boundary of 
a simply connected domain Hi which is contained in 11.

In the rest of this article we shall study p-valent harmonic transformations 
from the unit disk U onto a simply connected Jordan domain 11.

Definition 3.2. Let 11 be a simply connected Jordan domain of C and let 
</> be a conformal mapping from the unit disk U onto D.

(1) A function is a p-valent sense-preserving local homeomor­
phism from the unit circle dU onto the boundary dQ. if

0(Z) = </r' o /*

is a continuous strictly increasing function from [0,27r] onto [0, 2/?7t].
(2) A function /*(e*ł) is called a p-valent sense-preserving local quasi­

homeomorphism from the unit circle dU into d£l if it is a pointwise 
limit of p-valent sense-preserving local homeomorphism from dU 
onto d£l and if its image is the boundary of a subdomain flj of Q. 
If, in addition, /*(ełt) is a continuous map from dU onto d£l then we 
call a p-valent sense-preserving local weak homeomorphism
from dU onto d£l

The solution of the Dirichlet problem for a p-valent sense-preserving lo­
cal homeomorphism from dU onto <911 need not be p-valent. One further 
condition must be enforced.

Definition 3.3. Let 11 be a simply connected Jordan domain of C and 
let be a p-valent sense-preserving local quasihomeomorphism from
dU onto 911. If the second dilatation function a(z) of the solution f of the 
Dirichlet problem satisfies |a| < 1 on U, then we call f a p-valent harmonic 
and sense-preserving mapping from U onto 11.

Let us first show that this definition makes sense.
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Theorem 3.4. Let Q be a simply connected Jordan domain of C and let 
be a p-valent sense-preserving local quasihomeomorphism from dU 

onto dfl. Suppose that the second dilatation function a(z') of the solution
f of the Dirichlet problem satisfies |a| < 1 on U, then

(1) f is p-valent on U.
(2) NZ^'a,U) = p- 1, where

(3.2) ^(z) = eiQh(z)-e-ia5(z), a € R,

(3) If, in addition, Q is a convex Jordan domain, then 0a(z)> a € R, 
are m-valent for some m, 2 < m < p.

Proof. Since |a(,z)| < 1 on U, we can apply the classical argument prin­
ciple and statement (1) follows immediately. Furthermore, for w e Q and 
0 < r < 1, r close to one,

This proves statement (2).
Suppose now that Q is a convex Jordan domain. Then we have

Ime‘°/(z) = Im</>a(2).

Each local maximum (local minimum, respectively) of Im e’Q/(ełt) is a local 
maximum (local minimum respectively) of Im</>Q(eu). These maxima (min­
ima respectively) are attained p times. Hence, jy Im </>Q(eu) changes sign 2p 
times . Since </>Q(f/) has to be a domain, the argument principle applied to 
<f)a — w and iz(t>'a implies that for each a 6 R, <j>a is m-valent, 2 < m < p.

□
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3.2. Boundary behaviour of harmonic 
MAPS ON AN INTERVAL WHERE |a| = 1

Suppose that a(z) admits an analytic extension across an interval I of 
the unit circle and that its absolute value there is one. Then the boundary 
values of f depend strongly on the values of a.

Theorem 3.5. Let a(z) be an analytic function with |a| < 1 on U and 
suppose that a(z) has an analytic extension across an open subinterval J = 
{ełt : a < t < /3} of the unit circle dU such that |a(ar)| = 1 on J.

(1) Let f(z) be a bounded solution of (1.4) and suppose that the radial
limits exist and are of bounded variation on J. Then we have

(3.4) /*(elt) — a(e‘t)/*(e,t) + J f*(eiv)da(eiv) = const, 

almost everywhere on J.
(2) If in addition, f is a p-valent harmonic mapping from U onto a 

Jordan domain Q then the radial limit can be replaced in (3.4) by 
any accumulation point of f at elt. In other words, (3.4) holds for 
each limit value of f when z tends to elt E J.

(3) If f* jumps at etł, (which must and can happen only when f*(J) 
contains a linear segment) then we have

(3.5) arg[/*(e,(‘+0)) - /*(e,(t_0))]= arg(a(e‘‘)) mod jt.

(4) If f* is continuous at elt, then we have

(3.6) = 0.

(5) If f* is not constant on a subinterval of J, then the right limit
(3.7) lim arg[/*(e’(‘+/l)) — /*(e'^-0^)]= -^arg a(eu) mod it.

/i|0 2

Proof. The proof is essentially the same as the one given in Corollary 2.5 
m [1] which is stated for univalent harmonic mappings □

The relation (3.4) can be expressed in the differential form
(3.8) #•(«“) - a^dfle") = 0,
°r equivalently by
(3.9) Im(v/<?9dr(e‘‘)) = 0.
°n J. Hence
(3-10) arg d/*(e*‘) = arg a(e‘‘) mod n,

whenever d/*(e*t) / 0 on J.
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3.3. The inverse image of a boundary point

We first introduce the notion of a regulated domain.

Definition 3.6.
(1) We call /3(r) a regulated function on the interval [a, 6] if the one­

sided limits (/3(t + 0) and (/3(r - 0) exist for all t £ [a, &].
(2) Let 9 be a simply connected domain of C and suppose that the

boundary d£l is locally connected (every prime end is a singleton). 
Let ęibe a conformal mapping from U onto Q. We call fi a regulated 
domain if for each prime end q = w(t') = of dSl the direction
angle of the forward (half-)tangent at w(r),

(3.11) /3(g) = lim arg[w(s) — w(r)] = lim arg[w(s) - g],
s|t s|t

exists and defines a regulated function. For more details see [5].

Let 9 be a simply connected regulated domain of C and let f be a 
p-valent harmonic sense-preserving mapping from U onto fi. Let q be a 
prime end of dfl. Then we have (/*)-1(g) = u£=1 Jk(g). other words, the 
preimage of q is the union of p mutually disjoint closed intervals Jk(q) = 
{e,t,7fc(9) < t < 6k(q)},l < k < p. of dU.

Remarks 3.7.
(1) If f* has a jump at extk then we have for all interior points q of this 

jump, 7fc(g) = ófc(g) = e'tk.
(2) Observe that the cluster sets C(f*, e'7*^) and C(/*,e"5*^) contain 

q but they may contain other points if a jump occurs.
(3) If Jk(q) is a continuum then |a| = Ion Jfc(g).
(4) If a has an analytic continuation across an interval J of dU such 

that |a| = 1 on J and Jk(q) C J, then we conclude from (3.7) that

/3(g) = limarg[r(e*XM’)+'l)) - /‘(e^Mł)-0))]
AJO

(3-12)
— -- arg a(e"5k(<?)) mod 7r.

The next theorem states that under the conditions of item 4 of the pre­
vious remark, the total change of — arg a(elZ) over the interval Jk(<f) is 
either equal to the opening angle a(g) as seen from the inside of the domain 
or, if 7T < o(g) < 27t, it can also be o(g) — 7r.
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Theorem 3.8. Let fl be a simply connected regulated domain of C and 
let f be a p-valent harmonic orientation-preserving mapping from U onto 
fl. Suppose that a(z), as defined by (1.4), admits an analytic continuation 
across an open interval J C dU such that |ot(2r)| = 1 there. Let q be a 
prime end of dLl and suppose that Jk^q) C J for at least one k, 1 < k < p. 
Denote by a(q) the opening angle at q as seen from the inside of fl. Set 
A(t) = arg a(e,4),e’4 £ J as a continuous function and define AAfc(q) = 
|[A(ójt(q)) — A(7fc(ę))]- Then we have the following relation between a(q) 
and AAfc(q).

(1) If 0 < a(q) < 7T. then a(q) = AAfc(q).
(2) If 7T < a(q) < 2ir. then either a(q) = &Ak(q) or a(q) = AAfc(q)—1T.

Proof. The proof goes along the same lines as in Theorem 2.13 in [1]. We 
have

|£(eił) = €ah'(eH) + e^g'^j = 2eith'(e<<) 

and ______

1 1 eiłh'(eiv) ®A(e*t)

on Jk(q) \ Z(h',dU). In other words, we get

arg |^(e‘‘) = - j arg a(e*‘) mod tt

on A(q) \ Z(h',9U). Hence, arg f£(e’‘) is a monotone decreasing function 
on Jk(q) \ Z(h',dU). If ea £ Z(h',dU), then a jump of the magnitude tt 
appears. From the geometry, we also get /3(q) < arg ^(e’() < /?L(q) + 27r 
°n Jfc(q)\ Z(h',dU) where /^(q) - % is the direction angle of the backward 
half-tangent of dSl. Fix t and s, 7*,(q) < t < s < <5fc(q) and suppose that 
^'(e^jh^e’4) 7^ 0. Then by the continuity of arg a(e'4), we conclude that

0 < |[arg a(e,s) - arg (e“)] < /?L(q) + tt - /3(q) = a(q).

Passing to the limit, we obtain

AAfc(q) = j[A(^fc(q)) - A(7fc(q))] < a(q),

for all 0 < o(q) < 2ir. Since we have /3(q) = — arg a(elSk^>) and /^(q) = 
~ j arg a(el7d9))mod 7r for all prime ends q £ dfl, we conclude that equality 
holds in (3.12) and we get

a(q) = 7T - /3(q) + /3L(q) = j arg a(e'6k(~q} - arg a(enic(q)) mod tt.
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Finally, the same argument as given in the proof of Theorem 4.5 in [1] 
shows that the case o(<?) = 2tt and ófc(ę) = 7fc(<z) cannot occur, since 911 is 
a regulated domain. □

4. p-valent harmonic mappings with finite Blaschke dilatations

In the first paragraph of this chapter we describe the image domains H 
of p-valent harmonic and sense-preserving mappings from the unit disk U 
onto 11 whose dilatation function afz) is a finite Blaschke product.

4.1 A GEOMETRIC CHARACTERIZATION OF THE IMAGE DOMAIN

Let
TV oo

(4.1) a(z) = e*7 TT -Z = V akzk, |pfe| <1, 1 < k < N, 
k=l ‘ k=0

be a finite Blaschke product of degree N and let f be a p-valent solution of 
the partial differential equation (1.4), /z = a(z)/z(z), which maps U onto 
a Jordan domain 11. Since a is analytic on the closed unit disk U satisfying 
|a| = 1 on 917, (3.9) holds for all t G [0,27r]. Furthermore, the relation 
(3-12),

/?(ę) = lim arg[/*(e‘(M,)+'l)) - /*(««»)-<>))]
Zi|0

= — | arg a(e,l5k^^) mod tt,

holds for all k, 1 < k < p. Hence, H is a regulated Jordan domain. On the 
other hand, Theorem 3.8 says that

(1) If 0 < a(ę) < 7T. then a(q) = AAfc(ę).
(2) If 7T < o(q) < 27T. then either a(ę) = AAk(ę) or a(q) = AAfc(q) — tt. 

independently of k, 1 < k < p, where A(l) = arg a(e’() is defined as a 
continuous function and AAfe(ę) = |[A(ófc(ę)) — A(7fc(</))].

We shall use the following notation.

Definition 4.1. Let 11 be a simply connected regulated domain of C . We 
say that a prime end q G 911 is a point of convexity (with respect to Q) if 
there is a line segment L containing q as an interior point such that L \ {</} 
lies in the exterior of 11.

Remarks 4.2.
(1) A Jordan domain of C has at least three points of convexity.
(2) A boundary point q of a bounded convex domain 11 is a point of 

convexity if and only if it is an extreme point of 11.
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Definition 4.3. A prime end q £ <90 is said to be a complete resting point 
of order n(g) of /* if AAjt(ę) = a(g) holds for n(g) intervals A(g).

Remarks 4.4.

(1) If the prime end q is an interior point of a linear segment of dLl, then 
either q is an interior point of a jump of f* at eltk in which case 
A\Ak{q} = 0 or the Jk(q) is not a singleton and we have AAfc(g) = 7T.

(2) Each prime end with an opening angle a(g) strictly less than ir is a 
complete resting point of order p of In particular, if «(g) = 0, 
then Jfc(g) is a singleton for all k, 1 < k < p, yet q is still a complete 
resting point of order p of /*. On the other hand, if a(g) > tt, A(g) 
is a continuum for all k, yet it may happen that n(g) = 0.

The main result of this section is:

Theorem 4.5. Let Q be a simply connected regulated domain of C and 
let a(z) be a finite Blaschke product. Let f be a p-valent solution of (1.4) 
which maps U onto Q. Then we have

(!) Z,69n«(g) = JV + 2p.
(2) dQ contains at most 2 + N/p points of convexity.

Proof. Let CRP be the set of complete resting points q £ dfl of order 
n(g) and let E be the set of prime ends q £ dH such that o(g) = 2t and 
for which 7jt(g) = f>k(q} for as many as m(g) k's. As atore-said, define 
A(t) = arg a(elt} as a continuous function of 1,0 < t < 2ir. Then we have 
T(2tt) - 4(0) = 2Np. Choose a prime end qo £ dfl and put

n(g) m(q)

(4.2) B(‘) = z E E a*)E E jA(i),
1 qECRP k=l qEE k=l

B(«i(go)) = /3(go),

where Ręfc(l) is the Heaviside function = 0 if <$i(go) < f < ^fc(g) and
Hqk(t} = 1 if ófc(ę) < t < ^i(go) + 2tt. Observe that for each q £ dLl and 
each fc, 1 < k < p, we have B(ófc(g)) = /?(?) and J9(7fc(g)) = ^(g) where 
^(g) - 7T is the direction angle of the backward half-tangent of dLl.

a) We begin by showing that the second sum contains only finitely many 
terms. Indeed, if not, there is a sequence of pime ends qj £ E converging 
from one side to a prime end q* E 90 for which P(qj} ~ PiAqj'l = -7r- There­
fore, the sequence does not converge which contadicts the hypothesis
that 0 is a regulated domain. Hence E is a finite point set.
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b) The relation

(go) + 2tt) - B(Ą(g0)) = 2p7r
(4-3) = TT n(g) _ Tf y" ra(g) — Nt.

qECRP q&E

shows that there are only finitely many complete resting points of positive 
order.

c) Next, we show that there is no prime end in dtt with a(g) = 2n. 
Indeed, if there is one, then there must be infinitely many points of convexity 
with opening angles a(g) < ir. Since each of them is a complete resting point, 
we are led to a contradicition.

d) Finally, the first statement of the theorem follows from

(4.4) J3(ói(g0) + 27r) - P(ói(g0)) = 2p7r = 7T n(g) -
qeCRP

The second part follows from the facts that each point of convexity is a 
complete resting point of order p and that f* is a p-valent local quasi- 
homeomorphism from dU onto dLt. In other words, we have 2px + Ntt = 
7r EqtcilP n(?) — Pnc7r) where nc is the number of points of convexity of 
dtt. □

Example 4.6. The function /(z) = zp + zp^n+1^/(n + 1) is a p-valent 
harmonic mapping defined on U. Its dilatation function is a(z) = znp = zN 
and the boundary of its image domain fi contains the nc = n + 2 = 2 + N/p 
points of convexity g7 = n±|e27rtk/(n+i), g < fc < n + 1.

Example 4.7. The function

1 1 + \f2iz — z1 i ri + 21
1 - \/2iz - z2 + 2"S .i - <

is a univalent (p = 1) harmonic mapping from U onto a rectangle. Its 
dilatation function is a(z) = -z4 and its image domain has nc = 4 < 
2 + N/p — 6 points of convexity. The points w = i/4 and w = —i/4 are 
complete resting points yet they are not points of convexity.

4.2 The inverse problem

Let a(z) be a Blaschke product of degree N and let f be a p-valent 
solution of (1.4) which maps U onto a regulated Jordan domain Q. We 
have seen that the relation (3.9),

lm(y/= 0
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on dU is a necessary condition for f which implies that 9ft contains at most 
2 + N/p points of convexity and that /* contains 2p + N complete resting 
points. It is natural to ask if the condtion (3.9) is also sufficient. Or else, 
for a given regulated Jordan domain whose boundary has at most 2 + IV/p 
points of convexity must there be a p-valent solution of (1.4) which maps U 
onto ft. The answer for both questions is negative. For instance, it is shown 
m [1] that there is no univalent solution of fź(z) = z2 fz(z) which maps 
U onto the rectangle R — (0,2) x (0,1). The next result gives a complete 
answer to these questions.

Theorem 4.8. Let a(z) be a Blaschke product of degree N and let ft be 
a simply connected regulated Jordan domain whose boundary contains at 
most 2 + NJp points of convexity. Let be ap-valent sense-preserving
local quasihomeomorphism from dU onto dfl satisfying the relation (3.9). 
Then the solution of the Dirichlet problem is a p-valent harmonic sense- 
preserving mapping from U onto ft if and only if the relation

(4.5)

holds true on U.
L 2% a(e{t) - a(z)

= 0

Proof. The proof is exactly the same as the one given for Theorem 3.6 in 
[1]. Essentially one shows that fź(z) — a(z)fz(z) is analytic on U and is 
identically zero there. The argument principle yealds the statement of the 
theorem. □

Since a(z) is rational function of degree N, we will show that the condi­
tion (4.5) can be replaced by a system of [7V/2] (the integer part of 1V/2) 
equations. Let

m m
z -Pk inkafz) = e‘7 TT [ * Z-fc ] n‘, V nk = N, |pfc| < 1, I < k < m,

m
X2)=n(z-pfc)n*,

fc=l
m

9(2)=n/1and
fc=i

2" aie") - a(z) 
elt — z

t(z) = e->/2zq(z) J
= z j2" e-'^'2 - z

Jo ea ~ z Jo -z

= z / 
Jo pit _ df

r2v
‘(e’4) — z / e’ 

To
i7/2 X*) df*(eił}. 

elt — z
-i-y/2. 9(2)
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Observe that t(z^) is a polynomial of degre N and that the condition (4.5) 
is equivalent to the condition

(4.6) t(z) = 0, z G U.

Hence, we may replace (4.5) by TV + 1 equations of the form T,(t) = 0,1 < 
h < TV, where the T,’s are N + 1 linearly independent continuous linear 
functionals defined on the linear space H(U') of analytic functions on U. 
Next, we have

and

which implies that zNt(l/~z) = t(z). Finally, the condition t(0) = 0 is auto­
matically satisfied and we are left with only [TV/2] equations. Summarizing 
we have shown

Theorem 4.9. The necessary and sufficient condition (4.5) in Theorem 4.8 
can be replaceed by any linearly independent set of [TV/2] linear functionals. 
In particular, we may choose them from the set of point evaluations of t(z) 
and their derivatives, i.e., from the set

(4-7) (1 -pkeił)J 1 < j < nk, 1 < k < m,

where

771 771

u(z) = ei7 n [±Z2L]n*,£„fc = N, |p,| <1, 1 < k < m.
k=l VkZ k=0

Application 4.10. Let a(z) = z2 and p = 2. Then the sum of the orders 
of the complete resting points is 2p + N = 6. Since the number of convexity 
points of 9ft is at least three and at most 2 + N/p = 3 we conclude that 
9ft has exactly 3 points of convexity, say wi,w2 and W3. Put W4 = uq and 
choose a t = tk from elt — The necessary and sufficient conditions
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for the existence of a 2-valent solution of (1.4) are the relations (3.9) and
(4.5). The first one determines the boundary correspondence while the 
second one can be expressed by the single equation

(4.8) cHd/*(eił) = 0.

By (3.9), we have Im[e’<d/*(e't)] = Im[^/a(eit)d/*(e’<)] = 0 and we get

3 "tk + 1

tk

(4.9)

fc=l Jtk k—l

— i[Zj — h + I3 — + ^2 — ^3] = 0

where /*. denotes the euclidean length of the positively oriented arc of dQ, 
joining Wk to . Hence, given any Jordan domain dfl with three points of 
convexity, there is a unique boundary correspondence /*(e’4) which satisfies 
(3.9). On the other hand (4.9) shows that the necessary and sufficient 
condition (4.8) is always satisfied. Therefore, the solution of the Dirichlet 
Problem is automatically a 2-valent solution of (1.4) which maps U onto Q. 
Finally let us remark that f can be obtained by the relation /(z) = /i(z2) 
where j\ is a univalent solution of f-z(z') ~ zfz(,z) which maps U onto D.

Application 4.11. Let a(z) = z3 and p = 2. Then the sum of the orders 
of the complete resting points is exactly 2p + N = 7. Since the number of 
convexity points of <9Q is at least three and at most [2+N/p] = 3 we conclude 
that dQ, has exactly 3 points of convexity, say wl5W2 and W3. As in the 
Previous application, put W4 = wj and choose a t = tk from elt — f-^Wk). 
In addition, we need to find a complete resting point of order one such that 
together with (3.9) the condition (4.5) also holds. The first one determines 
the boundary correspondence while the second one can be expressed again 
by the single equation

r2ir
/ e’td/*(e’<) = 0.

Jo
Note that the nice geometric property of (4.8) in the last example does no 
more hold. Moreover, it is not the case that for every Q there exists a 
two-valent solution of /?(z) = z3fz(z] which maps U onto fZ.
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