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Disproof of a conjecture 
on univalent functions

Abstract. We disprove the Gruenberg-Ronning-Ruscheweyh conjecture, 
namely that Re (d * (s/z)) (z) > 0, |z| < 1, holds for g € S, the set 
of normalized univalent functions in the unit disk D, and d analytic with 
|d'(z)| < Red(z) in D, d(0) — 1. Here * stands for the Hadamard product.

1. Introduction. Let A denote the space of analytic functions in the unit 
disc D (with the topology of local uniform convergence), and write f G Ao 
if f G A satisfies /(0) — 1. Let f * g be the Hadamard product of f, g € A, 
and, as usual, S the class of univalent functions f G A, normalized by 
/(0) = 0 =/'(0) - 1. Finally let

(1-1) P := {d G Ao : |d'(.z)| < Red(z), z G D}.

The following conjecture was made by Gruenberg, Rpnning, and Ruscheweyh 
[5].

Conjecture. For d G T> and f\, f2 G S we have

(1-2) Re ^d(z) *z y (A(<) /2(C)y^ (2:) > °,
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Here *x stands for the Hadamard product with respect to the variable x. 
Note that choosing (-^) = ^(1 — z)-2 (the Koebe function) we arrive at a 
weaker form of (1.2):

(1.3) Re (d * (z) > 0, zeD, dtV, feS.

In that same paper the truth of (1.2) was established for fi, fi close 
-to-convex and/or typically real univalent. Also, (1.2) is known to hold in 
general for a number of special functions in D, including, for instance,

oo oo

d(z) = 1 + ^akzk, ^T(A: + l)|a*J < 1,
fc=l fc=i

n
d„(z) = ^2(fc + l)(z/4)fc, n G N.

Jk=O

Other partial verifications, some for (1.3) only, are due to Running [7], 
and others. In this note we disprove (1.2) and (1.3).

Steps towards an overall decision on (1.2) were taken by Fournier and 
Ruscheweyh [2], and recently by Greiner [4],

Let V+ {g E Ao - id E T>, Re(d * g)(z) > 0, z € D}, so that (1.2) and
(1.3) take the equivalent forms

(1.4) - f(/r(C*t./2(<)T6P+’
z Jo 1

and

(1.5) flzzv+, fes,

respectively. A by-product of a general theory developed in [4] was the 
following simple characterization of T>+, namely

(L6) p+ = E5{r^+1,(r^)r:

where co denotes the closed convex hull. We shall give a quick proof of this 
fact in Sect.2. Furthermore, the structure of P+ as exhibited in (1.6) raised 
stronger doubts concerning the truth of (1.4) and (1.5). And indeed, heavy 
computational work produced a function f 6 <S for which f /z was actually 
separated from the compact and convex set by an explicitly constructed 
linear functional. Once this was established, the data thus obtained were
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used to produce a concrete function p € T), in fact a polynomial of degree 
3, which fails to have the property described in (1.3), namely

(1-7)
p(z) = 1 +

+

161 , 69t\ , / 237 277i\ 2 
400 + 250/ Z + \ 2500 _ 1000J ~ 

9 949i \ 3
400 + 10000 J Z '

The actual counterexample to (1.3), as derived in Sect. 2, lacks rigidity as 
the verification of p £ V is just numerical (not really questionable, though). 
And also the question remained open whether the conjecture might survive 
if one further restricts the functions in T> to those with real Taylor coeffi
cients only. That even this is not true can be shown by the following more 
sophisticated argument.

As a convex and compact set D contains its extreme points and, of course, 
it would be sufficient to prove the conjectures for the extreme points only. 
In [2] the question of a characterization of these extreme points was raised. 
It was shown that d 6 T> is necessarily an extreme point of P if d is analytic 
in D and satisfies 7d(z) = 0, |z| = 1, where

(1-8) 7d(^):=Red(3)-|d,(z)|.

Special examples are the functions

(1,9) ———- € P, mn = \/n2 + 1 - n, n e N, |x| = 1,1 — mnxzn

(for which (1.2) and (1.3) are only partially verified so far). Kiihnau [6] gave 
a negative answer to (a slightly transformed form of) the question raised in 
[2], namely whether the functions (1.9) are the only ones with this property. 
Later, Fournier and Ruscheweyh [3] obtained a fairly complete picture of 
the set of those functions. This latter information, together with a criterion 
of Bshouty and Hengartner [1], which concerns the form of continuous linear 
functionals over A that are maximized by the Koebe function over S, can 
be used to show the existence of functions in P, even with real coefficients, 
contradicting (1.3). We give the details in Sect. 3.

In spite of the fact that (1.2) and (1.3) are false we believe that they 
can still be a useful source of valid estimates in S, if considered for spe
cific members in P. It is still a fascinating open problem to characterize 
(independently) the set of functions d E Aq satisfying Re (d * (z) > 0,
z 6D, f e s.

The authors wish to thank Richard Fournier for the countless discussions 
on the subject.
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2. The first counterexample
2.1. The structure of T>+. We introduce the following notation: for 
V C Ao set

(2.1) V+ := {w 6 A : Re(u * w)(z) >0, z € D, v G V},

and V++ := (V+)+. Note that this concept is closely related to the one used 
in the duality theory for Hadamard products (cf. [8]). Let

To := { 7-^— + y XZ „ ■ |x|, |l/| < 1} •
(i - xz (i - xzy )

It is then easily verified that

P = V0+, P+ = V0++.

A set V C -4o is said to be complete if f € V implies fx G V for all 
|x| < 1, where fx(z) := /(xz), z G B.

Note that Vo is compact and complete, so that (1.6) follows immediately 
from the following general theorem.

Theorem 1. Let V C Ao be compact and complete. Then V++ = co V.

Proof. We may assume that V is not empty.
1) First, we prove the assertion for V convex. Then we need to show that 
V = V++. That V is a subset of is obvious. To show that V includes 
V++ we assume that there exists h G V++ \ V- Then by a standard sepa
ration theorem in the locally convex topological vector space A we find a 
continuous linear functional A on A satisfying

ReA(h) < a < minReA(u),

for some a G R. In fact, we may assume a — 0, since, otherwise, we can 
replace A by the functional f i-> A(/) — a/(0). By Toeplitz’ representation 
theorem there exists a function g, analytic in D, such that A(/) = (5* /)(1) 
holds for all f G A. Since v0 = 1 belongs to V, we have

0 < Re A(u0) - Re(# * u0)(l) = Re</(0),

which implies that

w(2) g(z) - ilmg(O) 
Reg(0)

is well-defined and is in Ao- Using the completeness of V we find that 
Re(w * v^z) > 0, for all z G B and u G V, which implies w G V+.
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On the other hand, Re(w*/i)(l) < 0 and hence h 0 V++, a contradiction. 
Therefore V 3 V++, as asserted.

2) Now consider the general case for V. We show that V+ = (co V)+. Clearly 
V+ 3 (co V)+. Let w £ V+, so that Re(»*w) > 0 in D for each v € V. Since 
the inequality is invariant under convex combinations, and both V and ćo V 
are compact, it is clear that the same inequality holds for each v G coV 
Hence w G (coV)+.

1) and 2) together give V++ = (coV)++ = co V, as asserted. ■

Corresponding representations of coV in terms of Hadamard duality are 
valid with the right half plane in (2.1) replaced by an arbitrary convex set 
Q with 1 G 9. For details and related results see [4].

2.2. The counterexample. We numerically verify that p in (1.7) is a 
member of D. Figure 1 shows the graph of 7p(e,t), which indicates that this 
function has two local minima, close to t = 0.0 and to t = 2.7. A numerical 
search for these minima with the FindMinimum utility in the software 
package Mathematica 3.0 yields, with 16 digits of precision,

7p(e0 03942138484132064 l) = 0.0001244567844780886..., 
7p(e2723222284O7483i) = 0.006637906373948358.....

Hence we may assume that p G T>.
Ihe Pick function /o(z) := 1 + (l — z — Vl — z + 22) maps D

conformally onto D \ [-1,-7 + 4x/3], and /j(z) := ea/2 < ■=
1/10, maps D onto the right half-plane minus a small circular slit emerging 
from the origin, tangentially to the positive real axis. Hence /2 •— fi is a 
univalent function (slit-mapping) in D.

Figure 1
i 4 5 6
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After a renormalization we obtain

M := [/2 W -/?(0M(0) 6 5,

and a direct calculation yields the Taylor expansion

f3{z}=z+-t-z’+—-—2.

162 + 270e’( + 75e2it + 5e3i‘ 4
J------------------------------------------------------------------------------ 2 ,

128
This gives

Re

+

274482 — 276546 cost + 1707 cos2t + 1125cos3t 
1280000

6466 sin t — 5371 sin 2/ — 949 sin 3/ 
256000

0.00112858.

a contradiction to (1.3).

3. The second counterexample. One of the two basic tools for the proof 
of the existence of ‘real’ counterexamples to (1.3) is a result of Bshouty and 
Hengartner [1], which we describe (and adapt) first. Let F be a real valued 
functional on A which admits a Gateaux derivative, i.e. for each f G A 
there exists a continuous linear functional Lf on A such that

F(f + + o(e)) = F(/) + e Re L/(e) + o(e), £ -> 0, iptA.

F is said to be A'-real if Re £/<(iz</(z)) = 0, where A'(z) := z(l — z)-2 is 
the Koebe function, and q is an arbitrary member of 7Y(D), with ę(0) = 0 
and with all Taylor coefficients about the origin real (we denote this class 
of functions by Q).

Lemma 1 [1]. Let F be as above. If F is not K-real then K cannot 
maximize (minimize) F over S.

Corollary 1. Assume that for some d G Ao G 7/(0) and some z0 G <9B 

Re ^d ♦ (z0) > Re (d * y) (zo), / G <S.

Then the Taylor expansion of d(zoz) at the origin has real coefficients only.

Proof. We may assume that zq — 1 so that we have

Re(zd * /)(1) > Re(zd * A')(l), / G 5, z E. D.



Disproof of a conjecture on univalent functions 7

Then the functional F(f) := Re(zd* /)(1),/ € M, fulfils the assumptions of 
Lemma 1 (with LffqT) = F(<p)), and takes its minimum over S at A'. Hence 
it has to be A'-real. This means that Re(zd* 2zę)(l) = 0, Vq G Q- Choosing 
9 = zn ,n G N, we readily deduce that for this to be true a necessary 
condition is that all the Taylor coefficients of d are real. ■

The following lemma is stated in [3] in a slightly different form and is 
immediately derived from those results.

Lemma 2. Let B be a finite Blaschke product. Then there exists a unique 
function d G 7Y(D) fl P such that h := d1 / B G 7Y(D) with h(z) 0 for 
z GD, h(0) > 0, and |A(z)| = Red(z) on 9D.

Note that if B has real Taylor coefficients, then the corresponding d 
must have the same property. This follows from the uniqueness of the 
representation given in Lemma 2, because d(z) and d(z) belong to the 
same B.

Now we can construct the counterexample to (1.3): Choose a Blaschke 
product with real coefficients having at least 2 zeros in D that is nonvanish
ing at the origin. Then the corresponding d of Lemma 2 has real coefficients 
as well, and satisfies d'(0) / 0. Furthermore we note that, by the argument 
principle, there are (at least) three points Zj G 9D,j = 1,2,3, such that 
zj^\zj) < 0. Our construction implies that at least one of the functions 
d(zjz) has not only real Taylor coefficients, say d^z^z). Now assume that 
conjecture (1.3) were true for d. Then, for all f G 5,

Re ^d * —(2q) > 0 = Red(zi) — |d'(zi)|

= Red(zi) + zld'(z1) = Re ^d * —(zj),

which, by Corollary 1, is only possible if d(ziz) has real coefficients, a contra
diction. Hence d is a counterexample to (1.3), with real Taylor coefficients.

It should be noted, however, that - except for (1.9) - none of the functions 
d of Lemma 2 is known. In fact, not a single value (except in the origin) 
of any of these functions is known, since the proof of Lemma 2 is non
constructive, and even the apparently constructive proof in [6] is of such a 
complexity that one can hardly ever hope to get a reasonable approximation 
to any of these functions.
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