
AI XV, 1 (2015) 12 - 15 ANNALES UMCS INFORMATICA DOI: 10.1515/umcsinfo-2015-0002

Inter-thread communication e�ciency

Jarosªaw Sagan1

1Institute of Computer Science, Maria Curie-Sklodowska University,

pl. M. Curie-Sklodowskiej 5, 20-031 Lublin, Poland

Abstract � In this paper I compare inter-thread communication methods: blocking queue and LMAX

Disruptor without synchronization according to a number of threads (CPU cores) and consumer rate. The

research is carried out using a multiprocessor machine with Non Uniformed Memory and Oracle Java Runtime

Environment. I determine if processing on many multi-core CPUs with NUMA is faster than on single multi-

core CPU or vice versa.

Keywords: multi-threading, multi-thread processing

1 Introduction

A lot of computer systems use multi-thread processing.

In the thread and locks concurrency model threads com-

municate with each other. In most cases parallel process-

ing is much more e�cient than single thread execution.

But when thread tasks are short (high frequency com-

puting), the thread communication time can be longer

than the task execution time. It causes that the multi-

thread execution time is longer or close to that of thread.

To solve the problem the LMAX Disruptor pattern can

be used. The LMAX Disruptor is a concurrent frame-

work created to improve multi-thread high frequency pro-

cessing e�ciency. It dispose of synchronization which is

time consuming. The thread synchronization problem is

greater when time of consumer execution is short and

there are many consumers. In this case, the time spent on

synchronizing threads is close to the consumer execution

time. Moreover, thread management by the operating

system kernel causes loss of time. The kernel switches ex-

ecution to another thread so CPU spends time on another

thread and replaces some cache lines with the preemptive

thread data. This causes that the total time of parallel

execution is longer than the single thread processing. The

disruptor was designed to be CPU cache-friendly [1].

The LMAX Disruptor technical paper contains compar-

ison of array blocking queue and the LMAX Disruptor on

a single CPU multi-core machine. There are �ve con�gu-

rations of producer consumer connection: one producer to

one consumer (unicast), one producer to pipeline of three

consumers (pipeline), three producers to one consumer

(sequencer), one producer to three consumers (multicast),

one producer to two consumers that produces data to

third consumer (diamond). In the LMAX Disruptor tech-

nical the paper are presented throughput results for the

above �ve con�gurations without time consuming opera-

tions inside of the consumer handling [1]. I compare com-

munication between producer and consumer via blocking

queue with the Disruptor pattern according to a number

of CPU cores. I focus on the total processing time, CPU

usage and impact of multiprocessor NUMA environment

on thread scaling. The research takes into account the

consumer execution time.

2 Other concurrency models

There are many known concurrency models, but in this

paper only one �threads and locks� implementation of pro-

ducer consumer pattern is described. For example, in-

stead of the �threads and locks� concurrency model one

of the models: actors, communicating sequential process,

data parallelism, map reduce can be used in concurrent

application [2].

2.1 Producer consumer pattern

The standard inter-thread communication method

commonly used in Java is the communication between

the producer and consumer via a blocking queue. Using

a blocking queue is simpler and less prone to bugs than

waiting and noti�ng inside the producer and consumer

[3]. Using the blocking queue pattern is presented in

Figure 1. The producer thread calculates or obtains

data from a resource and puts it into a queue to perform

further processing parallel. Consumer threads obtain

data from queue and process it. Each element from a

queue is processed by only one consumer thread.

The most e�cient queue in adding and removing ele-

ments is the ArrayBlockingQueue. The ArrayBlockingQueue

size is �xed so queue internal object creation methods are

not used. In most of the applications queues are empty

or full. This is due to the fact that producer thread

throughput is di�erent from the total consumer threads

throughput. When the queue is empty and consumer

thread call take element method consumer thread is

blocked until an element is added to the queue. When

12



AI XV, 1 (2015) 12 - 15 ANNALES UMCS INFORMATICA DOI: 10.1515/umcsinfo-2015-0002

the queue is full and producer thread call put element,

producer thread is blocked until a consumer thread takes

an element from the queue. ArrayBlockingQueue uses a

lock to block taking and adding elements.

Figure 1. Producer consumer in-

ter threads communication using

ArrayBlockingQueue

2.2 LMAX Disruptor

Programming inter-thread communication with the

LMAX Disruptor is completely di�erent from that using

the standard method. Instead of ArrayBlockingQueue

Disruptor uses Ring bu�er. The Ring bu�er consists of

Object array with the �xed size. The ring bu�er size

should be an power of 2 to make faster modulo operation

on array index calculation. Ring bu�er array elements

are preinitialized on the disruptor start up. Array ele-

ments are created to increase the chance of continuity

of data in memory. If sequentially processing data are

continuous in memory, CPU cache is able to pre-fetch

data to processing by CPU. The disruptor processing

schema is presented on �gure 2 [1].

Figure 2. Producer consumer inter

thread communication using the disrup-

tor.

Implementation of producer using the disruptor pattern

requires change of programmer thinking. The producer

thread does not create data and pushes it into the queue.

The producer call publish event with a given event trans-

lator. Than the even translator is called by disruptor to

�ll element data with new values. The event translator

does not create a new object but only �lls existing one

with new data. This strategy reduces garbage creation

(temporary objects to be removed by Garbage Collector

in the future). It causes that the ring bu�er data remain

consistent in memory independent of producer call times

[1].

The event consuming method (consumer) is also called

by disruptor. The programmer must implement work

handler. Work handler receives in the parameter data an

element to be processed and the element sequence num-

ber. The consumer method should not create many local

objects because of Garbage Collector. But when data

are processing, other library methods are called. Those

libraries may produce objects in young generation mem-

ory. In this research I created a worker that generates

object in young generation memory.

3 Material and methods

The research is carried out on the scienti�c cluster node

with two Intel(R) Xeon(R) CPU X5650 2.67GHz proces-

sor with Hyper Threading technology. Two processors

are two NUMA nodes. Threads task does not perform IO

operation. For each element received from the producer

consumer threads creates a new local integer array with

100 consecutive numbers and sort it 1 or 15 or 300 times

depending on con�guration. It causes that this data must

be swept by Java Garbage Collector. Local thread data

are stored in young generation of Java Heap Space. These

data should not be moved to old gen.

The research is carried out for 1 (high frequency), 15

(medium frequency) and 300 (low frequency) array sort

times for both LMAX Disruptor, blocking queue and se-

quential. Sequential processing is single thread processing

where the producer creates event and executes the con-

sumer. The number of consumer threads increases from 1

to 11. Each thread is bound to next core. The producer

thread is also bound to one core. When the consumer

thread count is in the range from 1 to 5 only one NUMA

node is used. When consumer thread count is larger than

5 processing is performed on two NUMA nodes. To bind

threads to CPUs I use Java-Thread-A�nity library [4].

Hyper Threading technology creates two logical proces-

sors for each core. It provides increase of e�ciency when

threads perform I/O operation. In this research I/O oper-

ations are reduced so I use only one virtual CPU per core.

Using one thread per core makes results analysis simpler.

Measured values are wall-time and CPU usage. The CPU

usage is a system plus user time divided by wall-time. In

all con�guration producer creates 40 000 000 events.

13



AI XV, 1 (2015) 12 - 15 ANNALES UMCS INFORMATICA DOI: 10.1515/umcsinfo-2015-0002

3.1 Results

In the Figure 3 execution time is compared for dis-

ruptor, standard and sequential for high frequency pro-

cessing. High frequency processing using the standard

blocking queue is less e�cient than sequential process-

ing. Processing using the LMAX disruptor is much faster

than sequential and uses as many whole cores as threads.

The blocking queue method can not use whole the CPU

power, which is shown on Figure 6. Processing using one

NUMA node is more e�cient than using both nodes for

the standard method and LMAX disruptor. The total

processing time increases when processing on two NUMA

nodes compared to processing on a single node. When

processing on a single node all data or most of data are

stored in the CPU cache. When processing on two nodes,

data are shared between two processors. Processors may

invalidate their cash lines mutually so they must fetch

data from memory, which is time consuming, especially

on NUMA.

Figure 3. High frequency processing

execution time comparison.

Figure 4. Medium frequency process-

ing execution time compariso.

Medium frequency processing using the standard block-

ing queue is more e�cient than sequential processing if

only there is more than one consumer which is presented

in Figure 4. Processing using the LMAX disruptor is a

Figure 5. Low frequency processing ex-

ecution time comparison.

Figure 6. High frequency processing

CPU usage.

Figure 7. Medium frequency process-

ing CPU usage.

little more e�cient than the standard method and uses as

many whole cores as threads. The blocking queue method

can not use the whole CPU power when processing on

both NUMA nodes, as shown in Figure 7. When process-

ing on one NUMA node the standard CPU usage method

is as high as the disruptor one. Low frequency process-

ing using the standard blocking queue is more e�cient

than the sequential processing if only there is more than

one consumer as presented in Figure 5. Processing using

the blocking queue is as that using the LMAX disruptor.

14



AI XV, 1 (2015) 12 - 15 ANNALES UMCS INFORMATICA DOI: 10.1515/umcsinfo-2015-0002

Figure 8. Low frequency processing

CPU usage.

The standard method CPU usage is as high as disruptor

(Figure 8).

4 Conclusions

Performance tests in this research are performed on two

multi-core processors NUMA machine. Nowadays NUMA

is a very popular architecture but it is worth performing

similar tests on the uniform memory access multi-core

multiprocessor machine.

For high frequency processing parallelization using the

standard method is not as e�cient as sequential process-

ing or disruptor. The LMAX Disruptor is very e�cient

in high frequency processing. Binding all threads to only

one NUMA node is more e�cient than processing on two

nodes. Processing using the LMAX Disruptor exploits as

many whole CPU cores as threads. High frequency pro-

cessing using the blocking queue does not exploit th CPU

power. The LMAX Disruptor always uses as many whole

cores as threads. The LMAX disruptor is better in high

frequency processing. Medium and low frequency pro-

cessing using the LMAX Disruptor is comparable to the

blocking queue. Also in this case the LMAX Disruptor is

slightly faster.

References

[1] Thompson Martin, Farley Dave, Barker Michael, and Gee Patri-

cia andStewart Andrew. Disruptor: High performance alterna-

tive to bounded queues for exchanging data between concurrent

threads. 2011.

[2] Butcher Paul. Seven Concurrency Models in Seven Weeks:

When Threads Unravel. Pragmatic Programmers, LLC, 2014.

[3] Eckel Bruce. Thinking in Java. Fourth Edition. Prentice Hall

PTR Upper Saddle River, 2005.

[4] Java thread a�nity https://github.com/peter-lawrey/java-

thread-a�nity.

15


