
AI XV, 1 (2015) 7 - 11 ANNALES UMCS INFORMATICA DOI: 10.1515/umcsinfo-2015-0001

Heterogeneous Data Integration Architecture-Challenging Integration

Issues

Michal Chromiak1∗, Marcin Grabowiecki

1Institute of Computer Science, Maria Curie-Sklodowska University,

pl. M. Curie-Sklodowskiej 5,

20-031 Lublin, Poland

Abstract � As of today, most of the data processing systems have to deal with large amount of data

originated in numerous sources. Data sources almost always di�er regarding its purpose of existence. Thus

model, data processing engine and technology di�er intensely. Due to current trend for systems fusion there

is a growing demand for data to be present in common way regardless of its legacy. Many systems has been

devised as an answer to such integration needs. However, the present data integration systems mostly are

dedicated solutions that brings constraints and issues when considered in general. In this paper we will focus

on the present solutions for data integration, their �aws originating in their architecture or design concepts and

present an abstract and general approach that could be introduced as an answer to existing issues. The system

integration is considered out of scope for this paper, we will focus particularly on e�cient data integration.

Keywords: grid integration model, heterogeneous integration, distributed architecture, data integration, big data,

distributed transaction, warehouse, ETL, OLAP

1 Data Integration Role

Integrating distributed data and service resources is

an ultimate goal of many current technologies, includ-

ing distributed and federated databases, brokers based

on the CORBA standard [1], Sun's RMI, P2P technolo-

gies, grid technologies, Web Services [2], Sun's JINI [3],

virtual repositories [4], metacomputing federations [5, 6]

and perhaps others. The distribution of resources has de-

sirable features such as autonomic maintenance and ad-

ministration of local data and services, unlimited scala-

bility due to many servers, avoiding global failures, sup-

porting security and privacy, etc. On the other hand,

there is a need for global processing of distributed re-

sources that treats them as a centralized repository with

resource location and implementation transparency. Such

integration is needed especially when considering domains

(e.g. spatial) with large amounts of data that is required

for further analysis [7] and optimisation [8], but is origi-

nated from many sources. Distributed resources are often

developed independently (with no central management)

thus with the high probability they are heterogeneous,

that is, incompatible concerning, in particular, local data-

base schemas, naming of resource entities, coding of val-

ues and access methods. There are methods to deal with

heterogeneity, in particular, federated databases, brokers

based on the CORBA standard and virtual repositories.

The integrated data context is essential in terms of under-

standing the domain. The more the data is isolated from

colligated data, the less informative it is. In other words,

∗mchromiak@umcs.pl

data Integration plays a signi�cant role, as the data puz-

zle is meaningful only while it is considered in particular

context. Therefore the integration is so crucial for mod-

ern systems. Present information systems must deal with

large amount of data. Thus, the big data concepts are

becoming particularly important. The data itself in most

cases is scattered, uses di�erent models or query engines,

is stored in di�erent locations and administered by inde-

pendent administrators. In scope of data integration this

situation is undesirable. At present, despite of many ded-

icated solutions for data integrations (see section 3) or

global caching [9], most of them are not considered gen-

eral enough to provide an abstract layer that could unify

all of the data integration on ground of general solution.

The rest of the paper is organized as follows. We focus

on problems during data integration and common models

that address them in Section 2, existing data integrations

solutions and their issues in Section 3. We also propose

an abstract approach that would solve the issues present

in Section 4. Section 5 concludes.

2 The Models of Integration (Enterprise

Design Patterns)

Integration may continue using multiple techniques

utilizing their each of their particular advantages where

needed. However, it is believed that asynchronous mes-

saging technique plays an increasingly important role

among other styles. Apart from asynchronous messaging,

there are other approaches that solve the same problem,

7



AI XV, 1 (2015) 7 - 11 ANNALES UMCS INFORMATICA DOI: 10.1515/umcsinfo-2015-0001

each has its distinct advantages and disadvantage. In

general approaches to integration can be considered in

order of evolution:

• shared �le - one party writes to a �le and other

reads from it. File contact details, format and

access timing must be agreed between parties

using it.

• shared database - one database is a data source

and store for many applications

• Remote Method Invocation - one party exposes

to the world its interface to inner procedures

that can be later executed form outside of this

party. The communication is real-time and syn-

chronous.

• asynchronous messaging - one party publishes

messages1 to a common message channel and the

other parties can read those messages at later

time from the channel. However, the channel

and the message format must be agreed.

3 The Collation of Issues With Data

Integration Solutions

Current research in the �eld of database integration is

focused around detailed areas without general approach

that would be a complete (i.e. independent, extensible by

design) and tested concept. The solutions that we propose

in this paper bring the �exibility and abstraction layer

enabling unrestricted design for networking and schema

customization. The existing research in the domain of

integration of heterogeneous databases has provided a di-

verse array of solutions. The main heterogeneous DB in-

tegration issues that are being answered in this research

�eld has been brie�y classi�ed in the past 1995 in [10] and

[11]. However, some attempts has take place even earlier

in 1983 [12]. At present, the main area of interest regard-

ing the integration techniques is basing on XML solutions.

It is believed, as mentioned in [13], that the XML has be-

come the indisputable standard both for data exchange

and content management, and moreover that is about to

become the lingua franca of data interchange. This point

of view can be justi�ed by immense number of research

papers, like [14, 15, 16] and many more, trying to uti-

lize the XML technology as the tool for database scheme

and data representation. The XML has also become part

of many commercial products supported by giants of the

software industry like Microsoft [17], Oracle [18] or IBM.

Another aspect of signi�cance of the integration re-

search should be considered in the �eld of enterprise.

1Message is data structure - such as a string, a byte array, a

record, or an object. It can be interpreted simply as data, as the

description of a command to be invoked on the receiver, or as the

description of an event that occurred in the sender

Since 1992 [19] the concept of data warehouse has been

proposed, and the database vendors have rushed to imple-

ment the functionalities for constructing data warehouses.

That made on-line analytical processing (OLAP) emerge

as a technology for decision support systems. However,

problems may arise in building a data warehouse with

pre-existing data, since it has various types of heterogene-

ity. This integration scheme for data warehouse however

had to focus on some con�icts, namely value-to-value,

attribute-to-attribute and table-to-table. These con�icts

are not exclusive, they may occur in any pair of relations

at the same time. Such heterogeneity occurs frequently

in two distinct pre-existing databases, when di�erent

databases are designed by di�erent designers or driven

by di�erent assumptions. This con�icts are resolved only

partially or are considered out of scope.

The idea of the presented projects is aimed to solve all

of the issues and prepare monolithic solution. While in

case of published achievements the results can be accessed

and classi�ed freely there is still a considerable amount of

closed, enterprise solutions that are mainly dedicated for

commercial DBMS. In this paper we try to challenge and

solve problems we further elaborate in following sections.

OLAP OLAP is a decision supporting software that

gathers data in multidimensional structures (hyper-

cubes). It also enables the analysis (statistical, sale,

�nancial, etc.) of collected data. OLAP solutions are

populated with data from heterogeneous sources i.e.

multiple vendor and models (databases, pliki, services,

etc.). Data acquisition and transformation is done by

ETL tools. The design concept of OLAP is to collect

analyzed data fast and e�ectively. Unfortunately there

is no formally uni�ed query language for OLAP imple-

mentations1. There are three types of OLAP systems

- ROLAP (relational), MOLAP (multidimensional) and

HOLAP (hybrid). The indisputable advantage of OLAP

is fast analysis of historical data, collected periodically

from data sources and aggregated in form of data storing

structures.

However, it must not be forgotten that data acquisi-

tion and transformation is a tedious and time consuming

process. This utilize hardware resources intensively

regardless of actual needs of analytical process client.

The fact of often unnecessary data collecting from data

sources bring overhead to networking and contributing

systems when considering big data. Another problem

would be the fact that the OLAP analytical processes

almost always are based on outdated data. This is due

to continuous data changes in contributory systems and

periodical data acquisitions to OLAP. Therefore OLAP

client is reported with historical results. It is not a

problem in all systems but it is a serious �aw when

8



AI XV, 1 (2015) 7 - 11 ANNALES UMCS INFORMATICA DOI: 10.1515/umcsinfo-2015-0001

considering current data requests.

ETL Modern enterprise solutions, mostly base on ETL

tools. Modern information systems often require input

from multiple data sources (databases, xml �les, csv �les,

web services, etc.). What is more, the integration of data

brings possibilities of data transformation and analysis.

Therefore, the data needs to be extracted, transformed

and loaded to the destination system which usually is a

data warehouse. ETL (Extract Transform Load) meets

those needs. There are numerous ETL solutions origi-

nating in enterprise2 and open source3 vendors, all shar-

ing the same model. The �Extract� phase is challenging

as needs to handle multiple data sources. The databases

themselves are di�erent regarding their model: relational,

object, document, graph, column-oriented, etc. Only re-

lational databases include many SQL dialects and what

is more the NewSQL is coming. Finally, the web applica-

tions can sometimes be also the data source (web spider-

ing). The �Transform� phase modi�es the extracted data.

Simple tasks such as selection of speci�c columns, column

joining, data �ltration (selecting data from formula based

ranges), formula based data transformations, aggregation,

table joining, sorting, etc. Some more complicated tasks

are also pivoting or disaggregation of repeating columns

into a separate detail table. At this stage the data types

are processed (eg. data interpretation from string values).

The last phase is data �Load� to data warehouse. Depend-

ing on strategy, new data can be periodically overwritten

or new data is written while providing timestamp of data

aggregation.

The ETL plays a great role for the speci�c architec-

ture that it represent. However, ETL is not general or

abstract and moreover, has some quite signi�cant issues.

Let us focus on the conceptual problems of ETL. The

fundamental issue with ETL is that the model, where the

data collecting is periodical, what brings the danger that

when the data goes to data warehouse it is already out-

dated or will soon become such. ETL ignores fact that

the data sources keep changing on regular basis. Collect-

ing data takes place only at particular time moments i.e.

once a day, once a week, etc. In result data warehouse

most of the time contains historical data. For applica-

tions where the data can be historical this is not an issue.

However, when the online data processing is required ETL

is unacceptable.

Another architectural concept of ETL is unavoidable

data pulls, regardless whether the data are to be viewed

or analyzed or not. This can generate redundant network

chatter and increase data source systems load, often un-

necessarily. One needs to remember that often data load

2Oracle Data Integrator, SQL Server Transformation Services,

IBM InforSphere DataStorage
3Talend Open Studio, Pentaho Data Integration

is transactional and therefore reliable and consistent but

also requires large resource request per transaction.

4 Proposed Abstract Integration

Solutions

Answering the need of a general and abstract architec-

ture for data integration, we introduce some of the tech-

niques that we have used to overcome the issues men-

tioned in previous section, while still preserving the key

functionalities of exemplary solutions. The proposed ar-

chitecture depict in the Figure 1 is based on processing

metadata instead of the actual data itself. The architec-

ture brings the following advantages by design:

(1) e�ciency - metadata instead of real data

(2) manageable - easy to manage due to only struc-

tures manipulation

(3) tra�c optimization - less network connections

(4) reliability - less data to transfer; not relying on

network reliability

(5) optimized - uses only native queries; brings the

most of native data source optimizations

(6) no distributed transactions

Below we discuss the reasons for applying the following

assumptions and justify their usage in the architecture

depicted in Figure 1.

4.1 Solution Proposal for the ETL issues

The ETL issues discussed above can be overcome

thanks to a general architecture particularly design

thanks to its data-less model. The key is to provide

the data that are up to date with the source state. To

achieve this i.e. obtain the data same as the data stored

in data source, we have devised an architecture that

provides not the data itself but the fast access method

for the requested data. The Fast Access Method (FAM)

would be the data source native query, that would pull

the data in the fastest possible way the data source

can provide. Such query would di�er across di�erent

models. For instance, in relational model the fastest

method for reaching the data is calling them by their

primary key, in object database it would be the OID

(object ID), etc. Basing on this idea, we utilize a ded-

icated metamodel [20] that is based not on the data

itself but on the complex metadata that also includes the

FAM. The metamodel for representing the integration

patterns is presented in [21] and is out of scope of this

paper, however, it enables the means to obtain a pure

native query (FAM) from a metadata model to pull the

actual data from the data source. Such data are not

only current but are also pulled e�ectively. For example.

Let us assume the goal of extracting about a billion of

9



AI XV, 1 (2015) 7 - 11 ANNALES UMCS INFORMATICA DOI: 10.1515/umcsinfo-2015-0001

Figure 1. Proposed architecture for the heterogeneous data integration grid

records using not optimized query. This would bring

major latency issues and could even cause system crash,

which is not acceptable. A native query basing on the

best row ID (primary key, object ID, etc.) is the most

e�ective way to query arbitrary data source. This is due

to the native nature of query. The model utilizing native

query can use all of the optimization techniques that the

data source provide. This is done transparently as the

native optimization methods (i.e. indexing) are managed

by the database engine that processes each native query.

The general architecture actually has no knowledge of

the actual optimization happening at the data source

side. The native query is simply send to the datasource

and the result is the requested data. Such an approach

results in up-to-date and reliable data on demand. This is

particularly important in online applications that require

current data state. The metamodels advantage over the

data model for i.e. ETL, is that it is only metadata about

the data. No data dependent constraints are necessary.

In fact such issues are going to be considered and handled

at the target data source with its best optimization of

native query engine and without any e�ort at global

integration scale.

4.2 Solution Proposal to OLAP issues

As the OLAP systems are based on ETL populating the

OLAP with source data, the downsides of ETL discussed

above have become also part of OLAP systems. Due to

this inherent drawback from ETL on ground of current

data acquisition, the proposed solution is solving the issue

by delivering up-to-date content that is pulled on demand.

4.3 No distributed transactions

The discussed architecture, due to metadata utilization,

can also store simple updates apart from selecting queries.

However, this requires further elaboration. In case of pro-

posed data integration solution, the data stored at data

sources can be updated with extra records. This brings

us to a point when a data replication in a distributed grid

environment must be handled. Let us assume then, that

the system is going to add one record that needs to be

replicated in three integrated databases controlling the

same schema. The integrator sends native updating re-

quest to all three sources. Now, the problem is when one

of the three sources is not able to update its state and thus

cause potential inconsistency in integrated grid. In regu-

lar distributed system, in such condition, one would have

to apply one of the following solutions. First approach is a

distributed two phase commit which means all actions be-

ing a part of the same transaction. This implies tying up

all of the systems in voting process until the unsuccessful

update on failed source is going to be handled or until re-

maining two sources will rollback the distributed update.

Both cases bring major ine�ciency forcing entire system

to halt until the problem is resolved. Another, more ad-

vanced solution, would be dividing the distributed trans-

action into distinct transactions but in an asynchronous

queue. This way you can send the database update mes-

sage by enqueuing the update message in one transaction

and forget about it. This is actually not really distributed

due to the fact that close location of the queue broker and

the message sender is required. This means that such so-

lution requires the queue broker and the database to be

collocated, in the same datacenter with fast connectivity

and high availability. The queuing system takes care of

everything by utilizing reliable messaging. The target sys-

tems then processes update message locally in transaction

from the queue. So each dequeue of message and update

to a data source is a separate transaction. Now, in case

when one of the data sources will not make an update

from the queue, there is no way of instantaneous rollback

on remaining sources, that has already accomplished this

task with success. A compensation process is required in

such case. This is done by sending message from the sys-

tem that failed to process the transaction to the remaining

systems, either to rollback or to handle this situation in

other arbitrary way. The big advantage of this solutions

is that transactions happen quickly, asynchronously and

do not tie up entire system over one transaction. On the

other hand it is not really distributed due to collocation

requirement and while intense system load this can bring

major system slow down due to need of compensation

even with fast connectivity.

10



AI XV, 1 (2015) 7 - 11 ANNALES UMCS INFORMATICA DOI: 10.1515/umcsinfo-2015-0001

In our solution a transaction is not required. In the

exemplary case, when two out of three data sources ac-

cept the update and the third one does not, we simply

change the metamodel of integrator to store access meth-

ods pointing only to the �rst two parties where the update

has succeeded. Now, in case of asking integrator for all

updated records, only the data sources that has made up-

dates with success (i.e. data source one and two) will be

made available to pull data. The third data source will be

considered only while querying for data that it has man-

aged to store until this update message. This can be done

due to metamodel presented in [20].

4.4 Architecture open to optimization

The key aspect of integration relies on networking.

High availability is clue to integrate resources e�ciently.

Considering intensive networking tra�c the optimization

of retrieving replicated data is crucial to e�ective and

responsive communication. Therefore, we have prepared

architecture for replaceable load balancing algorithms

[22] covering access to replicated data. The architecture

at the level of integrator is also prepared for applying

optimizations that has already been used for ORM so-

lutions like Hibernate [23, 24, 25, 26]. The results of

the mentioned optimization are published in separate

paper. In [27] the authors has proven that exemplary

optimization technique basing on query rewriting and

order dependencies can be applied to arbitrary data

source without need to interfere with the database engine

and thus regardless of its origin. This is due to e�ective

design of the proposed architecture and its �exibility and

agility of appliance.

5 Conclusions and Future Work

Existing solutions that has been widely used tend to

solve speci�c problems not even trying to generalize due

to their constrained applications. In this paper we have

presented the ways that we believe can challenge the prob-

lems that the existing solutions do not aim to solve. On

ground of an abstract model, that is out of scope for this

paper, our solutions can be combined into fully abstract

and general architecture for heterogeneous data integra-

tion. In future papers we will introduce the entire ar-

chitecture that has been devised to challenge the general

problems of data integration in heterogeneous and dis-

tributed environment.

References

[1] http://www.omg.org/technology/documents/corba_spec_catalog.htm,

2010.

[2] http://en.wikipedia.org/wiki/list_of_web_service_speci�cations,

2010.

[3] http://www.jini.org/wiki/jini_architecture_speci�cation,

2009.

[4] K. Kuliberda, R. Adamus, J. Wislicki, K. Kaczmarski, T. M.

Kowalski, and K. Subieta. A generic proposal for a transparent

integration of distributed data by an autonomous layer in a vir-

tual repository. an International Journal (MAGS), 3(4):393�

410, 2007.

[5] M. W. Sobolewski. Computing and metacomputing intergrid.

Proc. 10th International Conference on Enterprise Informa-

tion Systems, Barcelona, Spain, 2008.

[6] M. W. Sobolewski. Federated collaborations with exertions.

pages 127�132, 2008.

[7] R. Grycuk et al. Content-based image indexing by data cluster-

ing and inverse document frequency. Communications in Com-

puter and Information Science, pages 374�383, 2014.

[8] M. Lupa and A Piórkowski. Spatial query optimization based

on transformation of constraints man-machine interactions.

242, 2014.

[9] P. Leszczynski and K. Stencel. Update propagator for joint scal-

able storage. Fundam. Inform., 119(3-4), 2012.

[10] P. Hepner. Integrating heterogeneous databases: An overview,

school of computing and mathematics. Deakin University, Gee-

long, Victoria, Australia, 1995.

[11] V. D. Gilgor and G. L. Luckenbaugh. Interconnecting heteroge-

neous database management system. IEEE Comp. Soc. Press,

17(1), 1983.

[12] S. E. Madnick. A taxonomy for classifying commercial ap-

proaches to information integration in heterogeneous environ-

ments. Database Engineering - Special Issues on Database

Connectivity, 13(2), 1999.

[13] V. Rajeswari et al. Heterogeneous database integration for web

applications. International Journal on Computer Science and

Engineering, 1(13):227�234, 2009.

[14] S. C. Tseng Frank. Heterogeneous database integration using

xml.

[15] S. Wei-Jung and H. Minng-Ying. An interactive tool based on

xml technology for data exchange between heterogeneous erp

systems. Journal of CIIE, 22(4):273�278, 2005.

[16] P. Rodriguez-Gianolli and J. Mylopoulos. A semantic approach

to xml-based data integration conceptual modeling.

[17] Microsoft TechNet. http://technet.microsoft.com/en-

us/library/ms151835.aspx.

[18] J. Basu Nirav Chanchani. Heterogeneous xml-based data inte-

gration.

[19] B. Inmon. Building the data warehouse.

[20] M. Chromiak and K. Stencel. A data model for heterogeneous

data integration architecture. 424, 2014.

[21] M. Chromiak and K. Stencel. The linkup data structure for

heterogeneous data integration platform. 7709:263�274, 2012.

[22] et al. A. Piorkowski. Load balancing for heterogeneous web

servers. 79:189�198, 2010.

[23] P. Wisniewski and K. Stencel. Query rewriting based on meta-

granular aggregation. pages 457�468, 2013.

[24] M. Gawarkiewicz and P. Wisniewski. Partial aggregation using

hibernate. pages 90�99, 2011.

[25] A. Boniewicz et al. On materializing paths for faster recursive

querying. pages 105�112, 2013.

[26] M. Burzanska et al. Recursive queries using object relational

mapping.

[27] M.Chromiak et al. Exploiting order dependencies on primary

keys for optimization. 2014.

11


