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Convolution conditions
for bounded α-starlike functions

of complex order

Abstract. Let A be the class of analytic functions in the unit disc U of the
complex plane C with the normalization f(0) = f

′
(0)− 1 = 0. We introduce

a subclass S∗M (α, b) of A, which unifies the classes of bounded starlike and
convex functions of complex order. Making use of Salagean operator, a more
general class S∗M (n, α, b) (n ≥ 0) related to S∗M (α, b) is also considered under
the same conditions. Among other things, we find convolution conditions for
a function f ∈ A to belong to the class S∗M (α, b). Several properties of the
class S∗M (n, α, b) are investigated.

1. Introduction. Let H denote the class of analytic functions in the unit
disc U = {z ∈ C : |z| < 1}. Let A denote the subclass of H consisting of
functions of the form

(1.1) f(z) = z +
∞∑
k=2

akz
k (z ∈ U) .

For functions f given by (1.1) and g ∈ A defined by g(z) = z +
∑∞

k=2 bkz
k,

z ∈ U , the Hadamard product (or convolution) of f and g is given by

(f ∗ g)(z) = z +

∞∑
k=2

akbkz
k (z ∈ U) .
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Let Ω be a family of functions ω which are analytic in U and satisfy the
conditions ω (0) = 0, |ω (z)| < 1, for every z ∈ U . Given real number M ,
M > 1

2 , let S∗M be the class of bounded starlike functions f ∈ A satisfying
the condition ∣∣∣∣∣zf

′
(z)

f(z)
−M

∣∣∣∣∣ ≤M (z ∈ U) .

This class was introduced and studied by Singh and Singh [16].
We say that f ∈ A belongs to the class F (b,M) (b ∈ C∗ = C\{0}, M > 1

2)

of bounded starlike functions of complex order, if and only if f(z)
z 6= 0 in U

and ∣∣∣∣∣b− 1 + zf
′
(z)

f(z)

b
−M

∣∣∣∣∣ < M (z ∈ U) .

The class F (b,M) was introduced by Nasr and Aouf [9]. Let C(b,M) (b ∈
C∗, M > 1

2) be the class of bounded convex functions of complex order, i.e.,
of functions f ∈ A such that

zf
′
(z) ∈ F (b,M).

This class C(b,M) was introduced and studied by Nasr and Aouf [8].
First let us define the class S∗M (α, b) which unifies the classes of bounded

starlike and convex functions of complex order.

Definition 1. We say that f ∈ A belongs to the class S∗M (α, b) (b ∈ C∗,
α ≥ 0, M > 1

2) of bounded α-starlike functions of complex order, if and

only if f(z)f
′
(z)

z 6= 0 in U and

(1.2)

∣∣∣∣∣1 +
1

b

(
(1− α)zf

′
(z) + αz

(
zf
′
(z)
)′

(1− α)f(z) + αzf ′(z)
− 1

)
−M

∣∣∣∣∣ < M (z ∈ U) .

One can easily show that f ∈ S∗M (α, b) if and only if there is a function
g ∈ S∗M such that

(1.3) (1− α)f(z) + αzf
′
(z) = z

(
g(z)

z

)b
(z ∈ U) .

It was shown in [16] that g ∈ S∗M if and only if for z ∈ U

(1.4)
zg
′
(z)

g(z)
=

1 + ω(z)

1−mω(z)
, m = 1− 1

M
,

for some ω ∈ Ω. Thus from (1.3) and (1.4) follows that f ∈ S∗M (α, b) if and
only if

(1.5)
(1− α)zf

′
(z) + αz

(
zf
′
(z)
)′

(1− α)f(z) + αzf ′(z)
=

1 + [b(1 +m)−m]ω(z)

1−mω(z)
(z ∈ U) .
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Taking specific values of α, b and M , we obtain the following subclasses
studied by various authors:

(1) S∗M (0, b) ≡ F (b,M) and S∗M (1, b) ≡ C(b,M).
(2) S∗M (0, e−iλ cosλ) ≡ Fλ,M (|λ| < π

2 ) is the class of bounded λ-
spirallike functions and S∗M (1, e−iλ cosλ) ≡ Cλ,M (|λ| < π

2 ) is the
class of bounded Robertson functions that satisfy the condition
zf
′
(z) ∈ Fλ,M , which were studied by Kulshrestha [4].

(3) S∗M (0, 1) ≡ S∗M is the class of bounded starlike functions.
(4) S∗∞(0, (1 − α)e−iλ cosλ) ≡ Sλ(α) (|λ| < π

2 , 0 ≤ α < 1) is the class
of λ-spirallike functions of order α (see Libera [6]) and S∗∞(1, (1 −
α)e−iλ cosλ) ≡ Cλ(α) (|λ| < π

2 , 0 ≤ α < 1) (see Kulshrestha [5] and
Sizuk [15]).

(5) S∗∞(0, b) ≡ S(b), is the class of starlike functions of complex order
(see Nasr and Aouf [10]).

(6) S∗∞(1, b) ≡ C(b) is the class of convex functions of complex order
(see Wiatrowski [17] and Nasr and Aouf [7]).

(7) S∗∞(0, 1−α) ≡ S∗(α) (0 ≤ α < 1) is the class of starlike functions of
order α and S∗∞(1, 1− α) = C(α) (0 ≤ α < 1) is the class of convex
functions of order α (see Robertson [12]).

(8) S∗∞(0, 1) ≡ S∗, S∗∞(1, 1) ≡ C and S∗∞(0, e−iλ cosλ) ≡ Sλ(|λ| < π
2 )

are the classes of starlike, convex and spirallike functions (More
about these classes one can see in the Goodman’s book [3]).

For f ∈ A, Salagean [13] introduced the following operator Dnf (n ∈
N0 = N ∪ {0} = {0, 1, 2, 3, . . .}) which is called the Salagean operator:

D0f(z) = f(z), D1f(z) = Df(z) = zf
′
(z),

Dnf(z) = D(Dn−1f(z)) (z ∈ U) .

From the definition of Dnf it follows at once that

(1.6) Dnf(z) = z +
∞∑
k=2

knakz
k (z ∈ U) .

With the aid of Salagean operator, we introduce the class S∗M (n, α, b) as
follows:

Definition 2. Let M > 1
2 , b ∈ C∗, α ≥ 0 and n ∈ N0. A function f ∈ A is

said to be in the class S∗M (n, α, b) if and only if,∣∣∣∣1 +
1

b

(
(1− α)Dn+1f(z) + αDn+2f(z)

(1− α)Dnf(z) + αDn+1f(z)
− 1

)
−M

∣∣∣∣ < M (z ∈ U) .

We note that S∗M (n, 0, b) ≡ Hn(b,M) which was studied by Aouf et al. [1].
The object of the present paper is to investigate some convolution prop-

erties of the class S∗M (α, b). Using these properties, we obtain the necessary
and sufficient condition for f ∈ A to belong to the class S∗M (n, α, b). Also we
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establish the relationship among the classes S∗M (n+1, α, b) and S∗M (n, α, b).
These results generalize the related works of some authors.

2. Convolution conditions. Unless otherwise mentioned, we assume
throughout this article that b ∈ C∗, M > 1

2 , α ≥ 0 and n ∈ N0.

Theorem 1. A function f of the form (1.1) is in the class S∗M (α, b) if and
only if

(2.1)
1

z

[
f(z) ∗

{
(1− α)

z − Cz2

(1− z)2
+ α

z + (1− 2C)z2

(1− z)3

}]
6= 0 (z ∈ U)

where C = Cθ = e−iθ+[b(1+m)−m]
b(1+m) , θ ∈ [0, 2π).

Proof. A function f is in the class S∗M (α, b) if and only if

(1− α)zf
′
(z) + αz

(
zf
′
(z)
)′

(1− α)f(z) + αzf ′(z)
=

1 + [b(1 +m)−m]ω(z)

1−mω(z)
(z ∈ U) ,

where m = 1− 1
M , which is equivalent to

(2.2)
z
[
(1− α)f(z) + αzf

′
(z)
]′

(1− α)f(z) + αzf ′(z)
6= 1 + [b(1 +m)−m]eiθ

1−meiθ

(z ∈ U , θ ∈ [0, 2π)) and further to

(2.3)
z
[
(1− α)f(z) + αzf

′
(z)
]′ (

1−meiθ
)

−
[
(1− α)f(z) + αzf

′
(z)
] (

1 + [b(1 +m)−m]eiθ
)
6= 0

for some z ∈ U and θ ∈ [0, 2π). It is well known that

(2.4) f(z) = f(z) ∗ z

(1− z)
, zf ′(z) = f(z) ∗ z

(1− z)2
(z ∈ U) .

Using (2.4), it is easy to verify that

(2.5) (1− α)f(z) + αzf
′
(z) = f(z) ∗ z − (1− α)z2

(1− z)2
(z ∈ U) .

Since z(f ∗ g)
′

= f ∗ zg′ , we have

(2.6) z
[
(1− α)f(z) + αzf

′
(z)
]′

= f(z) ∗ z + (2α− 1)z2

(1− z)3
(z ∈ U) .

Substituting (2.5) and (2.6) into (2.3), we get

(2.7)

1

z
[f(z) ∗ {−(1− α)(1− z)[b(1 +m)eiθz

−
(

1 + [b(1 +m)−m]eiθ
)
z2]

− α(1− z)b(1 +m)eiθz + 2α(1−meiθ)z2}/(1− z)3] 6= 0
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(z ∈ U , θ ∈ [0, 2π)) i.e., equivalently,

1

z
[f(z) ∗ {−(1− α)(1− z)[b(1 +m)eiθz −

(
1 + [b(1 +m)−m]eiθ

)
z2]

− α[b(1 +m)eiθz + {b(1 +m)eiθ

− 2
(

1 + [b(1 +m)−m]eiθ
)
}z2]}/(1− z)3] 6= 0

for some z ∈ U and θ ∈ [0, 2π). Thus (2.7) can be rewritten as follows

1

z

[
f(z) ∗

{
(1− α)

z − e−iθ+[b(1+m)−m]
b(1+m) z2

(1− z)2

+ α
z +

(
1− 2 e

−iθ+[b(1+m)−m]
b(1+m)

)
z2

(1− z)3

}]
6= 0

where z ∈ U , θ ∈ [0, 2π). Hence the proof of Theorem 1 is complete. �

Remark 1.

(1) Taking α = 0 in Theorem 1, we obtain the result obtained by El-
Ashwah [2, Theorem 2.1].

(2) Taking α = 1 in Theorem 1, we obtain the result obtained by El-
Ashwah [2, Theorem 2.4].

(3) Taking α = 1, b = 1 − β (0 ≤ β < 1), M = ∞ and eiθ = x in
Theorem 1, we obtain the result obtained by Silverman et al. [14,
Theorem 1].

(4) Taking α = 0, b = 1 − β (0 ≤ β < 1), M = ∞ and eiθ = x in
Theorem 1, we obtain the result obtained by Silverman et al. [14,
Theorem 2].

(5) Taking α = 1, b = e−iλ cosλ (|λ| < 1), M = ∞ and eiθ = x in
Theorem 1, we obtain the result obtained by Padmanabhan and
Ganesan [11, Theorem 1] with B = −1 and A = 1.

(6) Taking α = 0, b = e−iλ cosλ (|λ| < 1), M = ∞ and eiθ = x in
Theorem 1, we obtain the result obtained by Padmanabhan and
Ganesan [11, Theorem 2] with B = −1 and A = 1.

Theorem 2. A function f of the form (1.1) is in the class S∗M (n, α, b) if
and only if

(2.8) 1−
∞∑
k=2

kn (k−1)[e−iθ−m]−b(1+m)
b(1+m) [(1− α) + αk]akz

k−1 6= 0

for all θ ∈ [0, 2π) and z ∈ U .
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Proof. Note that f ∈ S∗M (n, α, b) if and only if Dnf ∈ S∗M (α, b). Thus
from Theorem 1, we have f ∈ S∗M (n, α, b) if and only if

(2.9)
1

z

[
Dnf(z) ∗

{
(1− α)

z − Cz2

(1− z)2
+ α

z + (1− 2C)z2

(1− z)3

}]
6= 0 (z ∈ U)

where C = Cθ = e−iθ+[b(1+m)−m]
b(1+m) and θ ∈ [0, 2π), i.e., if and only if

(2.10)

1

z

[
Dnf(z) ∗

{
(1− α)

[
Cz

1− z
+

(1− C)z

(1− z)2

]
+ α

[
2(1− C)z

(1− z)3
− (1− 2C)z

(1− z)2

]}]
6= 0

(z ∈ U). Since for z ∈ U ,

z

1− z
= z +

∞∑
k=2

zk,
z

(1− z)2
= z +

∞∑
k=2

kzk

and
z

(1− z)3
= z +

∞∑
k=2

k(k + 1)

2
zk,

from (1.6) and (2.10) it follows that

1−
∞∑
k=2

kn
(k − 1)[e−iθ −m]− b(1 +m)

b(1 +m)
[(1− α) + αk]akz

k−1 6= 0

(z ∈ U). This completes the proof of Theorem 2. �

Theorem 3. If f ∈ A satisfies the inequality

(2.11)
∞∑
k=2

(k − 1 + |b|)[(1− α) + αk]kn |ak| ≤ |b| ,

then f ∈ S∗M (n, α, b).

Proof. Since ∣∣∣∣(k − 1)[e−iθ −m]− b(1 +m)

b(1 +m)

∣∣∣∣ ≤ (k − 1 + |b|)
|b|

,

so ∣∣∣∣∣1−
∞∑
k=2

(k − 1)[e−iθ −m]− b(1 +m)

b(1 +m)
[(1− α) + αk]knakz

k−1

∣∣∣∣∣
≥ 1−

∞∑
k=2

∣∣∣∣(k − 1)[e−iθ −m]− b(1 +m)

b(1 +m)

∣∣∣∣ [(1− α) + αk]kn |ak| |z|k−1

≥ 1−
∞∑
k=2

k − 1 + |b|
|b|

[(1− α) + αk]kn |ak| > 0
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(z ∈ U). Thus (2.8) holds, which ends the proof. �

Theorem 4. S∗M (n+ 1, α, b) ⊂ S∗M (n, α, b).

Proof. Let f ∈ S∗M (n+ 1, α, b). By Theorem 2, we have

(2.12) 1−
∞∑
k=2

(k − 1)[e−iθ −m]− b(1 +m)

b(1 +m)
[(1− α) + αk]kn+1akz

k−1 6= 0

(z ∈ U), which is equivalent to

(2.13)

[
1 +

∞∑
k=2

kzk−1

]

∗

[
1−

∞∑
k=2

kn
(k−1)[e−iθ−m]−b(1+m)

b(1 +m)
[(1− α) + αk]akz

k−1

]
6=0

(z ∈ U). Since[
1 +

∞∑
k=2

kzk−1

]
∗

[
1 +

∞∑
k=2

1

k
zk−1

]
= 1 +

∞∑
k=2

zk−1 (z ∈ U) ,

by using the property, if f 6= 0 and g ∗ h 6= 0, then f ∗ (g ∗ h) 6= 0, (2.13)
can be written as

(2.14) 1−
∞∑
k=2

kn
(k − 1)[e−iθ −m]− b(1 +m)

b(1 +m)
[(1− α) + αk]akz

k−1 6= 0

(z ∈ U). Thus the assertion follows from Theorem 2. �

(1) Putting α = 0 in Theorems 2, 3 and 4, we get the results obtained
by El-Ashwah [2, Theorems 2.7, 3.1 and 3.4].

(2) Putting α = 1 in Theorems 2, 3 and 4, we get the results obtained
by El-Ashwah [2, Theorems 2.8, 3.2 and 3.5].
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