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Multiplication formulas for q-Appell polynomials
and the multiple q-power sums

Abstract. In the first article on q-analogues of two Appell polynomials, the
generalized Apostol-Bernoulli and Apostol-Euler polynomials, focus was on
generalizations, symmetries, and complementary argument theorems. In this
second article, we focus on a recent paper by Luo, and one paper on power
sums by Wang and Wang. Most of the proofs are made by using generat-
ing functions, and the (multiple) q-addition plays a fundamental role. The
introduction of the q-rational numbers in formulas with q-additions enables
natural q-extension of vector forms of Raabes multiplication formulas. As
special cases, new formulas for q-Bernoulli and q-Euler polynomials are ob-
tained.

1. Introduction. In 2006, Luo and Srivastava [8, p. 635-636] found new
relationships between Apostol–Bernoulli and Apostol–Euler polynomials.
This was followed by the pioneering article by Luo [10], where multiplica-
tion formulas for the Apostol–Bernoulli and Apostol–Euler polynomials of
higher order, together with λ-multiple power sums were introduced. Luo
also expressed these λ-multiple power sums as sums of the above polynomi-
als. One year later, Wang and Wang [12] introduced generating functions
for λ-power sums, some of the proofs use a symmetry reasoning, which lead
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to many four-line identities for Apostol–Bernoulli and Apostol–Euler poly-
nomials and λ-power sums; as special cases, some of the above Luo identities
were obtained.

In [5] it was proved that the q-Appell polynomials form a commutative
ring; in this paper we show what this means in practice. Thus, the aim
of the present paper is to find q-analogues of most of the above formulas
with the aid of the multiple q-addition, the q-rational numbers, and so on.
Many formulas bear a certain resemblance to the q-Taylor formula, where q-
rational numbers appear to the right in the function argument; this means
that the alphabet is extended to Q⊕q . In some proofs, both q-binomial
coefficients and a vector binomial coefficient occur, this is connected to a
vector form of the multinomial theorem, with binomial coefficients, unlike
the case in [3, p. 110].

This paper is organized as follows: In this section we give the general
definitions. In each section, we then give the specific definitions and special
values which we use there.

In Section 2, multiple q-Apostol–Bernoulli polynomials and q-power sums
are introduced and multiplication formulas for q-Apostol–Bernoulli polyno-
mials are proved, which are q-analogues of Luo [10].

In Section 3, multiplication formulas for q-Apostol–Euler polynomials are
proved. In Section 4, formulas containing q-power sums in one dimension,
q-analogues of Wang and Wang, [12] are proved. Then in Section 5, mixed
formulas of the same kind are proved. Most of the proofs are similar, where
different functions, previously used for the case q = 1, are used in each
proof.

We now start with the definitions. Some of the notation is well-known
and can be found in the book [3]. The variables i, j, k, l,m, n, ν will denote
positive integers, and λ will denote complex numbers when nothing else is
stated.

Definition 1. The Gauss q-binomial coefficient are defined by

(1)
(
n

k

)
q

≡ {n}q!
{k}q!{n− k}q!

, k = 0, 1, . . . , n.

Let a and b be any elements with commutative multiplication. Then the
NWA q-addition is given by

(2) (a⊕q b)n ≡
n∑
k=0

(
n

k

)
q

akbn−k, n = 0, 1, 2, . . . .

If 0 < |q| < 1 and |z| < |1− q|−1, the q-exponential function is defined by

(3) Eq(z) ≡
∞∑
k=0

1

{k}q!
zk.
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The following theorem shows how Ward numbers usually appear in ap-
plications.

Theorem 1.1. Assume that n, k ∈ N. Then

(4) (nq)
k =

∑
m1+...+mn=k

(
k

m1, . . . ,mn

)
q

,

where each partition of k is multiplied with its number of permutations.

The semiring of Ward numbers, (N⊕q ,⊕q,�q) is defined as follows:

Definition 2. Let (N⊕q ,⊕q,�q) denote the Ward numbers kq, k ≥ 0 to-
gether with two binary operations: ⊕q is the usual Ward q-addition. The
multiplication �q is defined as follows:

(5) nq �q mq ∼ nmq,

where ∼ denotes the equivalence in the alphabet.

Theorem 1.2. Functional equations for Ward numbers operating on the
q-exponential function. First assume that the letters mq and nq are inde-
pendent, i.e. come from two different functions, when operating with the
functional. Then we have

(6) Eq(mqnqt) = Eq(mnqt).

Furthermore,

(7) Eq(jmq) = Eq(jq)
m = Eq(mq)

j = Eq(nq �q mq).

Proof. Formula (6) is proved as follows:

(8) Eq(mqnqt) = Eq((1⊕q 1⊕q · · · ⊕q 1)nqt),

where the number of 1s to the left is m. But this means exactly Eq(nqt)m,
and the result follows. �

Definition 3. The notation
∑

~m denotes a multiple summation with the
indices m1, . . . ,mn running over all non-negative integer values.

Given an integer k, the formula

(9) m0 +m1 + . . .+mj = k

determines a set Jm0,...,mj ∈ Nj+1.
Then if f(x) is the formal power series

∑∞
l=0 alx

l, its k’th NWA-power is
given by

(10) (⊕∞q,l=0alx
l)k ≡ (a0 ⊕q a1x⊕q . . .)k ≡

∑
|~m|=k

∏
ml∈Jm0,...,mj

(alx
l)ml

(
k

~m

)
q

.
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We will later use a similar formula when q = 1 for several proofs.
In order to solve systems of equations with letters as variables and Ward

number coefficients, we introduce a division with a Ward number. This is
equivalent to q-rational numbers with Ward numbers instead of integers.

Definition 4. Let Q⊕q denote the set of objects of the following type:

(11)
mq

nq
, where

mq

mq
≡ 1,

together with a linear functional

(12) v, R[x]×Q⊕q → R,

called the evaluation. If v(x) =
∑∞

k=0 akx
k, then

(13) v

(
mq

nq

)
≡
∞∑
k=0

ak
(mq)

k

(nq)k
.

Definition 5. For every power series fn(t), the q-Appell polynomials or Φq

polynomials of degree ν and order n have the following generating function:

(14) fn(t)Eq(xt) =

∞∑
ν=0

tν

{ν}q!
Φ(n)
ν,q (x).

For x = 0 we get the Φ
(n)
ν,q number of degree ν and order n.

Definition 6. For fn(t) of the form h(t)n, we call the q-Appell polynomial
Φq in (14) multiplicative.

Examples of multiplicative q-Appell polynomials are the two q-Appell
polynomials in this article.

2. The NWA q-Apostol–Bernoulli polynomials.

Definition 7. The generalized NWA q-Apostol–Bernoulli polynomials
B

(n)
NWA,λ,ν,q(x) are defined by

(15)
tn

(λEq(t)− 1)n
Eq(xt) =

∞∑
ν=0

tνB
(n)
NWA,λ,ν,q(x)

{ν}q!
, |t+ log λ| < 2π.

Notice that the exponent n is an integer.

Definition 8. A q-analogue of [10, (20) p. 381], the multiple q-power sum
is defined by

(16) s
(l)
NWA,λ,m,q(n) ≡

∑
|~j|=l

(
l
~j

)
λk
(
kq
)m

,

where k ≡ j1 + 2j2 + · · ·+ (n− 1)jn−1, ∀ji ≥ 0.
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Definition 9. A q-analogue of [10, (46) p. 386], the multiple alternating
q-power sum is defined by

(17) σ
(l)
NWA,λ,m,q(n) ≡ (−1)l

∑
|~j|=l

(
l
~j

)
(−λ)k

(
kq
)m

,

where k ≡ j1 + 2j2 + · · ·+ (n− 1)jn−1, ∀ji ≥ 0.

Remark 1. For l = 1, formulas (16) and (17) reduce to single sums, as will
be seen in section 4.

We now start rather abruptly with the theorems; we note that limits like
λ→ 1 and q → 1 can be taken anywhere in the paper, and also in the next
one [6]; see the subsequent corollaries. Much care is needed in the proofs,
since the Ward numbers need careful handling.

Theorem 2.1. A q-analogue of [10, p. 380], multiplication formula for
q-Apostol–Bernoulli polynomials.

(18) B
(n)
NWA,λ,ν,q(mqx) =

(mq)
ν

(mq)n

∑
|~j|=n

λk
(
n
~j

)
B

(n)
NWA,λm,ν,q

(
x⊕q

kq
mq

)
,

where k = j1 + 2j2 + · · ·+ (m− 1)jm−1, and
kq
mq
∈ Q⊕q .

Proof. We use the well-known formula for a geometric sum.
∞∑
ν=0

B
(n)
NWA,λ,ν,q(mqx)

tν

{ν}q!
=

tn

(λEq(t)− 1)n
Eq(mqxt)

=
tn

(λmEq(mqt)− 1)n

(
m−1∑
i=0

λiEq(iqt)

)n
Eq(mqxt)

by(7)
=

(
t

(λmEq(mqt)− 1)

)n ∑
|~j|=n

(
n
~j

)
λkEq

(
(x⊕q

kq
mq

)mqt

)

=
∞∑
ν=0

 (mq)
ν

(mq)n

∑
|~j|=n

(
n
~j

)
λkB

(n)
NWA,λm,ν,q

(
x⊕q

kq
mq

) tν

{ν}q!
.

(19)

The theorem follows by equating the coefficients of tν

{ν}q ! . �

Corollary 2.2. A q-analogue of [10, p. 381]:

(20) BNWA,λ,ν,q(mqx) =
(mq)

ν

m

m−1∑
j=0

λjBNWA,λm,ν,q

(
x⊕q

jq
mq

)
.
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Corollary 2.3. A q-analogue of Carlitz formula [2], [10, p. 381]

(21) B
(n)
NWA,ν,q(mqx) =

(mq)
ν

(mq)n

∑
|~j|=n

(
n
~j

)
B

(n)
NWA,ν,q

(
x⊕q

kq
mq

)
,

where k = j1 + 2j2 + · · ·+ (m− 1)jm−1, and
kq
mq
∈ Q⊕q .

Theorem 2.4. A formula for a multiple q-power sum, a q-analogue of [10,
(25) p. 382]:

s
(l)
NWA,λ,m,q(n) =

l∑
j=0

(
l

j

)
(−1)l−jλ(n−1)j+l

{m+ 1}l,q

×

(
m+l∑
k=0

(
m+ l

k

)
q

B
(j)
NWA,λ,k,q

(
(n− 1)j + lq

)
B

(l−j)
NWA,λ,m+l−k,q

)
.

(22)

Proof. We use the generating function technique. Put k = j1 + 2j2 + · · ·+
(n− 1)jn−1. It is assumed that ji ≥ 0, 1 ≤ i ≤ n− 1, zeros are neglected.

∞∑
ν=0

s
(l)
NWA,λ,ν,q(n)

tν

{ν}q!
by(16)

=
∞∑
ν=0

∑
|~j|=l

(
l
~j

)
λk
(
kq
)ν tν

{ν}q!

by(16)
=

(
λEq(t) + λ2Eq(2qt) + · · ·+ λn−1Eq(n− 1qt)

)l
=

(
λnEq(nqt)
λEq(t)− 1

− λEq(t)
λEq(t)− 1

)l
=

l∑
j=0

(
l

j

)
(−1)l−j

(
λnEq(nqt)
λEq(t)− 1

)j ( λEq(t)
λEq(t)− 1

)l−j
by(7)
= t−l

l∑
j=0

(
l

j

)
(−1)l−jλ(n−1)j+l

∞∑
k=0

B
(j)
NWA,λ,k,q

(
(n− 1)j + lq

) tk

{k}q!

×
∞∑
i=0

B
(l−j)
NWA,λ,i,q

ti

{i}q!
=
∞∑
ν=0

 l∑
j=0

(
l

j

)
(−1)l−jλ(n−1)j+l

{m+ 1}l,q

×
m+l∑
k=0

(
m+ l

k

)
q

B
(j)
NWA,λ,k,q

(
(n− 1)j + lq

)
B

(l−j)
NWA,λ,m+l−k,q

]
tν

{ν}q!
.

(23)

The theorem follows by equating the coefficients of tν

{ν}q ! . �
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Corollary 2.5. A q-analogue of [10, (26) p. 382]: The generating function
for s(l)NWA,λ,ν,q(n) is

∞∑
ν=0

s
(l)
NWA,λ,ν,q(n)

tν

{ν}q!
=

(
λnEq(nqt)
λEq(t)− 1

− λEq(t)
λEq(t)− 1

)l
=
(
λEq(t) + λ2Eq(2qt) + · · ·+ λn−1Eq(n− 1qt)

)l
.

(24)

Theorem 2.6. A recurrence relation for q-Apostol–Bernoulli numbers, a
q-analogue of [10, (32) p. 384].

(mq)
lB

(l)
NWA,λ,n,q =

n∑
j=0

(
n

j

)
q

(mq)
n

(mq)n−j
B

(l)
NWA,λm,j,qs

(l)
NWA,λ,n−j,q(m),(25)

where k = j1 + 2j2 + · · ·+ (m− 1)jm−1.

Proof. We use the definition of q-Appell numbers as q-Appell polynomial
at x = 0.

(mq)
lB

(l)
NWA,λ,n,q

by(18)
= (mq)

n
∑
|~ν|=l

λk
(
l

~ν

)
B

(l)
NWA,λm,n,q

(
kq
mq

)

= (mq)
n
∑
|~ν|=l

λk
(
l

~ν

) n∑
j=0

(
n

j

)
q

B
(l)
NWA,λm,j,q

(
kq
mq

)n−j

=
n∑
j=0

(
n

j

)
q

(mq)
n

(mq)n−j
B

(l)
NWA,λm,j,q

∑
|~ν|=l

λk
(
l

~ν

)
(kq)

n−j by(16)
= LHS.

(26)

�

3. The NWA q-Apostol–Euler polynomials. We start with some rep-
etition from [3]:

Definition 10. The generating function for the first q-Euler polynomials
of degree ν and order n, F(n)

NWA,ν,q(x), is given by

(27)
2nEq(xt)

(Eq(t) + 1)n
=
∞∑
ν=0

tν

{ν}q!
F(n)
NWA,ν,q(x), |t| < π.

Definition 11. The generalized NWA q-Apostol–Euler polynomials
F
(n)
NWA,λ,ν,q(x) are defined by

(28)
2n

(λEq(t) + 1)n
Eq(xt) =

∞∑
ν=0

tνF
(n)
NWA,λ,ν,q(x)

{ν}q!
, |t+ log λ| < π.
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Theorem 3.1. A q-analogue of [10, (37) p. 385], first multiplication for-
mula for q-Apostol–Euler polynomials.

F
(n)
NWA,λ,ν,q(mqx) = (mq)

ν
∑
|~j|=n

(−λ)k
(
n
~j

)
F
(n)
NWA,λm,ν,q

(
x⊕q

kq
mq

)
,(29)

where k = j1 + 2j2 + · · ·+ (m− 1)jm−1, m odd.

Proof.
∞∑
ν=0

F
(n)
NWA,λ,ν,q(mqx)

tν

{ν}q!
=

2n

(λEq(t) + 1)n
Eq(mqxt)

=
2n

(λmEq(mqt) + 1)n

(
m−1∑
i=0

(−λ)iEq(iqt)

)n
Eq(mqxt)

=

(
2

(λmEq(mqt) + 1)

)n ∑
|~j|=n

(
n
~j

)
(−λ)kEq

(
(x⊕q

kq
mq

)mqt

)

=
∞∑
ν=0

(mq)
ν
∑
|~j|=n

(
n
~j

)
(−λ)kF

(n)
NWA,λm,ν,q

(
x⊕q

kq
mq

) tν

{ν}q!
.

(30)

The theorem follows by equating the coefficients of tν

{ν}q ! . �

Theorem 3.2. A q-analogue of [10, (38) p. 385], second multiplication
formula for q-Apostol–Euler polynomials.

F
(n)
NWA,λ,ν,q(mqx)

=
(−2)n(mq)

ν+n

{ν + 1}n,q(mq)n

∑
|~j|=n

(−λk)
(
n
~j

)
B

(n)
NWA,λm,ν+n,q

(
x⊕q

kq
mq

)
,

(31)

where k = j1 + 2j2 + · · ·+ (m− 1)jm−1, m even.

Corollary 3.3. A q-analogue of [10, (43) p. 386]:

(32)

FNWA,λ,ν,q(mqx) =

=


(mq)

ν
m−1∑
j=0

(−λ)jFNWA,λm,ν,q

(
x⊕q

jq
mq

)
, m odd ,

−2(mq)ν+1

m{ν+1}q

m−1∑
j=0

(−λ)jBNWA,λm,ν+1,q

(
x⊕q

jq
mq

)
, m even,

where
jq
mq
∈ Q⊕q .
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Theorem 3.4. A formula for a multiple alternating q-power sum, a q-
analogue of [10, (51) p. 387]:

σ
(l)
NWA,λ,m,q(n) = 2−l

l∑
j=0

(
l

j

)
(−1)jnλ(n−1)j+l

{m+ 1}l,q

×

(
m+l∑
k=0

(
m+ l

k

)
q

F
(j)
NWA,λ,k,q

(
(n− 1)j + lq

)
F
(l−j)
NWA,λ,n+l−k,k,q

)
.

(33)

Proof. We use the generating function technique. Put k = j1 + 2j2 + · · ·+
(n− 1)jn−1. It is assumed that ji ≥ 0, 1 ≤ i ≤ n− 1.

∞∑
ν=0

σ
(l)
NWA,λ,ν,q(n)

tν

{ν}q!
by(17)

=
∞∑
ν=0

∑
|~j|=l

(
l
~j

)
(−1)l(−λ)k

(
kq
)ν tν

{ν}q!

by(17)
= (−1)l

∑
|~j|=l

(
l
~j

)
(−λEq(t))

k

=
(
λEq(t)− λ2Eq(2qt) + · · ·+ (−1)nλn−1Eq(n− 1qt))

)l
=

(
(−λ)nEq(nqt)
λEq(t) + 1

+
λEq(t)

λEq(t) + 1

)l
=

l∑
j=0

(
l

j

)
(−1)l−j

(
(−λ)nEq(nqt)
λEq(t) + 1

)j ( λEq(t)
λEq(t) + 1

)l−j
by(7)
= 2−l

l∑
j=0

(
l

j

)
(−1)jnλ(n−1)j+l

∞∑
k=0

F
(j)
NWA,λ,k,q

(
(n− 1)j + lq

) tk

{k}q!

×
∞∑
i=0

F
(l−j)
NWA,λ,i,q

ti

{i}q!
=
∞∑
ν=0

2−l
l∑

j=0

(
l

j

)
(−1)jnλ(n−1)j+l

{m+ 1}l,q

×
m+l∑
k=0

(
m+ l

k

)
q

F
(j)
NWA,λ,k,q

(
(n− 1)j + lq

)
F
(l−j)
NWA,λ,n+l−k,k,q

]
tν

{ν}q!
.

The theorem follows by equating the coefficients of tν

{ν}q ! . �

Corollary 3.5. A q-analogue of [10, (52) p. 387]: The generating function
for σ(l)NWA,λ,ν,q(n) is

∞∑
ν=0

σ
(l)
NWA,λ,ν,q(n)

tν

{ν}q!
=

(
(−λ)nEq(nqt)
λEq(t)− 1

+
λEq(t)

λEq(t) + 1

)l
=
(
λEq(t)− λ2Eq(2qt) + · · ·+ (−1)nλn−1Eq(n− 1qt)

)l
.

(34)
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Theorem 3.6. A q-analogue of [10, p. 389]. For m odd, we have the
following recurrence relation for q-Apostol–Euler numbers.

F
(l)
NWA,λ,n,q = (−1)l

n∑
j=0

(
n

j

)
q

(mq)
n

(mq)n−j
F
(l)
NWA,λm,j,qσ

(l)
NWA,λ,n−j,q(m),(35)

where k = j1 + 2j2 + · · ·+ (m− 1)jm−1.

Proof.

F
(l)
NWA,λ,n,q

by(29)
= (mq)

n
∑
|~ν|=l

(−λ)k
(
l

~ν

)
F
(l)
NWA,λm,n,q

(
kq
mq

)

= (mq)
n
∑
|~ν|=l

(−λ)k
(
l

~ν

) n∑
j=0

(
n

j

)
q

F
(l)
NWA,λm,j,q

(
kq
mq

)n−j

=
n∑
j=0

(
n

j

)
q

(mq)
n

(mq)n−j
F
(l)
NWA,λm,j,q

∑
|~ν|=l

(−λ)k
(
l

~ν

)
q

(kq)
n−j by(17)

= LHS.

(36)

�

4. Single formulas for Apostol q-power sums. In order to keep the
same notation as in [3], we make a slight change from [12, p. 309]. The
following definitions are special cases of the q-power sums in section 2.

Definition 12. Almost a q-analogue of [12, p. 309], the q-power sum and
the alternate q-power sum (with respect to λ), are defined by

sNWA,λ,m,q(n) ≡
n−1∑
k=0

λk(kq)
m and σNWA,λ,m,q(n) ≡

n−1∑
k=0

(−1)kλk(kq)
m.(37)

Their respective generating functions are

(38)
∞∑
m=0

sNWA,λ,m,q(n)
tm

{m}q!
=
λnEq(nqt)− 1

λEq(t)− 1

and

(39)
∞∑
m=0

σNWA,λ,m,q(n)
tm

{m}q!
=

(−1)n+1λnEq(nqt) + 1

λEq(t) + 1
.

Proof. Let us prove (38). We have

∞∑
m=0

sNWA,λ,m,q(n)
tm

{m}q!
=

∞∑
m=0

n−1∑
k=0

λk
(kqt)

m

{m}q!
by(6)
=

n−1∑
k=0

λk(Eq(t))k = RHS.

�
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We have the following special cases:

(40) sNWA,λ,m,q(1) = σNWA,λ,m,q(1) = δ0,m,

(41) sNWA,λ,m,q(2) = δ0,m + λ, σNWA,λ,m,q(2) = δ0,m − λ.

Theorem 4.1. A q-analogue of [12, p. 310], and extensions of [3, p. 121,
131]:

(42) sNWA,λ,m,q(n) =
λnBNWA,λ,m+1,q(nq)−BNWA,λ,m+1,q

{m+ 1}q
.

(43) σNWA,λ,m,q(n) =
(−1)n+1λnFNWA,λ,m,q(nq)− FNWA,λ,m,q

2

Theorem 4.2. A q-analogue of [12, (18), p. 311],
n∑
k=0

(
n

k

)
q

(iq)
k

i
(jq)

n−kBNWA,λi,k,q
(
jqx
)
sNWA,λj ,n−k,q(i)

=
n∑
k=0

(
n

k

)
q

(jq)
k

j
(iq)

n−kBNWA,λj ,k,q
(
iqx
)
sNWA,λi,n−k,q(j)

=
(iq)

n

i

i−1∑
m=0

λjmBNWA,λi,n,q

(
jqx⊕q

jmq

iq

)

=
(jq)

n

j

j−1∑
m=0

λimBNWA,λj ,n,q

(
iqx⊕q

imq

jq

)
.

(44)

Proof. Define the following function, symmetric in i and j.

fq(t) ≡
tEq(ijqxt)(λ

ijEq(ijqt)− 1)

(λiEq(iqt)− 1)(λjEq(jqt)− 1)

=

(
(iqt)

1Eq(ijqxt)

λiEq(iqt)− 1

)(
λijEq(ijqt)− 1

λjEq(jqt)− 1

)
1

i
.

(45)

By using the formula for a geometric sequence, we can expand fq(t) in
two ways:

fq(t) =

( ∞∑
ν=0

BNWA,λi,ν,q
(
jqx
) (iqt)

ν

{ν}q!

)( ∞∑
m=0

sNWA,λj ,m,q(i)
(jqt)

m

{m}q!

)
1

i

=

(
iq
)1
t

λiEq(iqt)− 1

i−1∑
m=0

λjm

(
Eq

(
jqx⊕q

jmq

iq

)
iqt

)
1

i

=

∞∑
ν=0

(
(iq)

ν

i

i−1∑
m=0

λjmBNWA,λi,ν,q

(
jqx⊕q

jmq

iq

))
tν

{ν}q!
.

(46)
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The theorem follows by equating the coefficients of tν

{ν}q ! and using the
symmetry in i and j of fq(t). �

Corollary 4.3. A q-analogue of [12, (19), p. 311],

BNWA,λ,n,q
(
iqx
)

=
n∑
k=0

(
n

k

)
q

(iq)
k

i
BNWA,λi,k,q (x) sNWA,λ,n−k,q(i)

=
(iq)

n

i

i−1∑
m=0

λmBNWA,λi,n,q

(
x⊕q

mq

iq

)
.

(47)

Proof. Put j = 1 in (44) and use (41). �

Remark 2. This proves formula (20) again.

Corollary 4.4. A q-analogue of [12, (20), p. 311],

1∑
m=0

λimBNWA,λ2,n,q

(
iqx⊕q

imq

2q

)

=
2

(2q)n

n∑
k=0

(
n

k

)
q

(iq)
k

i
(2q)

n−kBNWA,λi,k,q
(
2qx
)
sNWA,λ2,n−k,q(i)

=
2

(2q)n
(iq)

n

i

i−1∑
m=0

λ2mBNWA,λi,n,q

(
2qx⊕q

2mq

iq

)
.

(48)

Proof. Put j = 2 in (44) and multiply by 2
(2q)n

. �

Moreover, we have

BNWA,λ,n,q (x) =
(2q)

n

2

1∑
m=0

λmBNWA,λ2,n,q

(
x

2q
⊕q

mq

2q

)
.(49)

Proof. Put i = 2 in (47) and replace x by
x

2q
. �

For λ = 1 and x = 0, this reduces to

BNWA,n,q

(
1

2q

)
=

(
2

(2q)n
− 1

)
BNWA,n,q.(50)
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Theorem 4.5. A q-analogue of [12, (22) p. 312]. Assume that i and j are
either both odd, or both even, then we have

n∑
k=0

(
n

k

)
q

(iq)
k(jq)

n−kFNWA,λi,k,q
(
jqx
)
σNWA,λj ,n−k,q(i)

=
n∑
k=0

(
n

k

)
q

(jq)
k(iq)

n−kFNWA,λj ,k,q
(
iqx
)
σNWA,λj ,n−k,q(i)

= (iq)
n
i−1∑
m=0

λjm(−1)mFNWA,λi,n,q

(
jqx⊕q

jmq

iq

)

= (jq)
n
j−1∑
m=0

λim(−1)mFNWA,λj ,n,q

(
iqx⊕q

imq

jq

)
.

(51)

Proof. Define the following symmetric function

fq(t) ≡
Eq(ijqxt)((−1)i+1λijEq(ijqt) + 1)

(λiEq(iqt) + 1)(λjEq(jqt) + 1)

=
1

2

(
2Eq(ijqxt)

λiEq(iqt) + 1

)(
(−1)i+1λijEq(ijqt) + 1

λjEq(jqt) + 1

)
.

(52)

By using the formula for a geometric sequence, we can expand fq(t) in
two ways:

fq(t) =
1

2

( ∞∑
ν=0

FNWA,λi,ν,q
(
jqx
) (iqt)

ν

{ν}q!

)( ∞∑
m=0

σNWA,λj ,m,q(i)
(jqt)

m

{m}q!

)

=
1

λiEq(iqt) + 1

i−1∑
m=0

(−1)mλjmEq

((
jqx⊕q

jmq

iq

)
iqt

)

=
1

2

∞∑
ν=0

(
(iq)

ν
i−1∑
m=0

(−1)mλjmFNWA,λi,ν,q

(
jqx⊕q

jmq

iq

))
tν

{ν}q!
.

(53)

The theorem follows by equating the coefficients of tν

{ν}q ! and using the
symmetry in i and j of fq(t). �

Theorem 4.6. (A q-analogue of [12, (24) p. 313]) For i odd we have

FNWA,λ,n,q
(
iqx
)

=
n∑
k=0

(
n

k

)
q

(iq)
kFNWA,λi,k,q (x)σNWA,λ,n−k,q(i)

= (iq)
n
i−1∑
m=0

(−λ)mFNWA,λi,n,q

(
x⊕q

mq

iq

)
.

(54)
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(A q-analogue of [12, (25) p. 313]) For i even,

1∑
m=0

λim(−1)mFNWA,λ2,n,q

(
iqx⊕q

imq

2q

)

=
1

(2q)n

n∑
k=0

(
n

k

)
q

(iq)
k(2q)

n−kFNWA,λi,k,q
(
2qx
)
σNWA,λ2,n−k,q(i)

=
(iq)

n

(2q)n

i−1∑
m=0

(−1)mλ2mFNWA,λi,n,q

(
2qx⊕q

2mq

iq

)
.

(55)

Proof. Put j = 1 or 2 in (51), and divide by (2q)
n. �

Remark 3. This proves the first part of formula (32) again.

5. Apostol q-power sums, mixed formulas. We now turn to mixed
formulas, which contain polynomials of both kinds.

Theorem 5.1. A q-analogue of [12, (26) p. 313]. If i is even then

n∑
k=0

(
n

k

)
q

(iq)
k

i
(jq)

n−kBNWA,λi,k,q
(
jqx
)
σNWA,λj ,n−k,q(i)

= −{n}q
2

n−1∑
k=0

(
n− 1

k

)
q

(jq)
k(iq)

n−k−1

× FNWA,λj ,k,q
(
iqx
)
sNWA,λi,n−k−1,q(j)

=
(iq)

n

i

i−1∑
m=0

(−1)mλjmBNWA,λi,n,q

(
jqx⊕q

jmq

iq

)

= −{n}q
2

(jq)
n−1

j−1∑
m=0

λimFNWA,λj ,n−1,q

(
iqx⊕q

imq

jq

)
.

(56)

Proof. Define the following function

fq(t) ≡
tEq(ijqxt)((−1)i+1λijEq(ijqt) + 1)

(λiEq(iqt)− 1)(λjEq(jqt) + 1)

=

(
(iqt)

1Eq(ijqxt)

λiEq(iqt)− 1

)(
(−1)i+1λijEq(ijqt) + 1

λjEq(jqt) + 1

)
1

i
.

(57)
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By using the formula for a geometric sequence, we can expand fq(t) in
two ways:

fq(t) =

( ∞∑
ν=0

BNWA,λi,ν,q
(
jqx
) (iqt)

ν

{ν}q!

)( ∞∑
m=0

σNWA,λj ,m,q(i)
(jqt)

m

{m}q!

)
1

i

=

(
iq
)1
t

λiEq(iqt)− 1

i−1∑
m=0

(−1)mλjmEq

((
jqx⊕q

jmq

iq

)
iqt

)
1

i

=

∞∑
ν=0

(
(iq)

ν

i

i−1∑
m=0

(−1)mλjmBNWA,λi,ν,q

(
jqx⊕q

jmq

iq

))
tν

{ν}q!
.

(58)

By equating the coefficients of tν

{ν}q ! , we obtain rows 1 and 3 of formula (56).
On the other hand, we can rewrite fq(t) in the following way:

fq(t) = − t
2

2Eq(ijqxt)(λ
ijEq(ijqt)− 1)

(λiEq(iqt)− 1)(λjEq(jqt) + 1)

= − t
2

(
2Eq(ijqxt)

λjEq(jqt) + 1

)(
λijEq(ijqt)− 1

λiEq(iqt)− 1

)
.

(59)

By using the formula for a geometric sequence, we can expand (59) in
two ways:

fq(t) = − t
2

( ∞∑
ν=0

FNWA,λj ,ν,q
(
iqx
)(jqt)

ν

{ν}q!

)( ∞∑
m=0

sNWA,λi,m,q(j)
(iqt)

m

{m}q!

)

= − t
2

j−1∑
m=0

λim
2

λjEq(jqt) + 1
Eq

((
iqx⊕q

imq

jq

)
jqt

)

= − t
2

∞∑
ν=0

(
(jq)

ν
j−1∑
m=0

λimFNWA,λj ,ν,q

(
iqx⊕q

imq

jq

))
tν

{ν}q!
.

(60)

By equating the coefficients of tν

{ν}q ! , we obtain rows 2 and 4 of formula (56).
�

Corollary 5.2. A q-analogue of [12, (28) p. 313]. If i is even, then

FNWA,λ,n−1,q
(
iqx
)

= − 2

{n}q

n∑
k=0

(
n

k

)
q

(iq)
k

i
BNWA,λi,k,q (x)σNWA,λ,n−k,q(i)

= −2(iq)
n

i{n}q

i−1∑
m=0

(−λ)mBNWA,λi,n,q

(
x⊕q

mq

iq

)
.

(61)

Proof. Put j = 1 in formula (56) and multiply by − 2
{n}q . �
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Corollary 5.3. A q-analogue of [12, (29) p. 313].

FNWA,λ,n−1,q (x)

= − 2

{n}q

n∑
k=0

(
n

k

)
q

(2q)
k

2
BNWA,λi,k,q

(
x

2q

)
σNWA,λ,n−k,q(2)

= −(2q)
n

{n}q

1∑
m=0

(−λ)mBNWA,λ2,n,q

(
x

2q
⊕q

mq

2q

)
.

(62)

Proof. Put i = 2 in formula (61), and replace x by x
2q

. �

Corollary 5.4. A q-analogue of [12, (31) p. 314]. If i is even, then

1∑
m=0

λimFNWA,λ2,n−1,q

(
iqx⊕q

imq

2q

)

= − 2

{n}q(2q)n−1
n∑
k=0

(
n

k

)
q

(iq)
k

i
(2q)

n−kBNWA,λi,k,q
(
2qx
)
σNWA,λ2,n−k,q(i)

=
1

(2q)n−1

n−1∑
k=0

(
n− 1

k

)
q

(2q)
k(iq)

n−k−1FNWA,λ2,k,q
(
iqx
)
sNWA,λi,n−k−1,q(2)

= − 2

{n}q(2q)n−1
(iq)

n

i

i−1∑
m=0

(−1)mλ2mBNWA,λi,n,q

(
2qx⊕q

2mq

iq

)
.

(63)

Proof. Put j = 2 in formula (56) and multiply by − 2
{n}q(2q)n−1 . �

Corollary 5.5. A q-analogue of [12, (32) p. 314].

1∑
m=0

(−1)m+1λmBNWA,λ,n,q

(
x⊕q

2mq

2q

)

=
{n}q(2q)n−1

(2q)n

1∑
m=0

λmFNWA,λ,n−1,q

(
x⊕q

2mq

2q

)
.

(64)

Proof. Put i = 2 in formula (63), replace x and λ2 by
x

2q
and λ, and

multiply by {n}q(2q)
n−1

(2q)n
. �
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Corollary 5.6. A q-analogue of [12, (33) p. 314].
1∑

m=0

(−1)mλjmBNWA,λ2,n,q

(
jqx⊕q

jmq

2q

)

= − {n}q
(2q)n

n−1∑
k=0

(
n− 1

k

)
q

(jq)
k(2q)

n−k−1FNWA,λj ,k,q
(
2qx
)
sNWA,λ2,n−k−1,q(j)

= − {n}q
(2q)n

(jq)
n−1

j−1∑
m=0

λ2mFNWA,λj ,n−1,q

(
2qx⊕q

2mq

jq

)
.

Proof. Put i = 2 in formula (56) and multiply by 2
(2q)n

. �

6. Discussion. As was indicated in [5], we have considered q-analogues of
the currently most popular Appell polynomials, together with correspond-
ing power sums. The beautiful symmetry of the formulas comes from the
ring structure of the q-Appell polynomials. We have not considered JHC
q-Appell polynomials, since we are looking for maximal symmetry in the
formulas. The q-Taylor formulas have not been used in the proofs, since the
generating functions were mostly used. In a further paper [6], we will find
similar expansion formulas for q-Appell polynomials of arbitrary order.
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2012.
[4] Ernst, T., On certain generalized q-Appell polynomial expansions, Ann. Univ. Mariae

Curie-Skłodowska Sect. A 68, No. 2 (2015), 27–50.
[5] Ernst, T., A solid foundation for q-Appell polynomials, Adv. Dyn. Syst. Appl. 10

(2015), 27–35.
[6] Ernst, T., Expansion formulas for Apostol type q-Appell polynomials, and their special

cases, submitted.
[7] Luo, Q.-M., Srivastava, H. M., Some generalizations of the Apostol–Bernoulli and

Apostol–Euler polynomials, J. Math. Anal. Appl. 308, No. 1 (2005), 290–302.
[8] Luo, Q-M., Srivastava, H. M., Some relationships between the Apostol–Bernoulli and

Apostol–Euler polynomials, Comput. Math. Appl. 51, No. 3–4 (2006), 631–642.
[9] Luo, Q.-M., Apostol–Euler polynomials of higher order and Gaussian hypergeometric

functions, Taiwanese J. Math. 10, No. 4 (2006), 917–925.
[10] Luo, Q.-M., The multiplication formulas for the Apostol–Bernoulli and Apostol–Euler

polynomials of higher order, Integral Transforms Spec. Funct. 20, No. 5–6 (2009),
377–391.

[11] Milne-Thomson, L. M., The Calculus of Finite Differences, Macmillan and Co., Ltd.,
London, 1951.

[12] Wang, Weiping, Wang, Wenwen, Some results on power sums and Apostol-type poly-
nomials, Integral Transforms Spec. Funct. 21, No. 3–4 (2010), 307–318.



18 T. Ernst

Thomas Ernst
Department of Mathematics
Uppsala University
P.O. Box 480, SE-751 06 Uppsala
Sweden
e-mail: thomas@math.uu.se

Received September 16, 2015




