Vector space isomorphisms of non-unital reduced Banach *-algebras

Abstract

Let \mathcal{A} and \mathcal{B} be two non-unital reduced Banach $*$-algebras and $\phi: \mathcal{A} \longrightarrow \mathcal{B}$ be a vector space isomorphism. The two following statement holds: If ϕ is a $*$-isomorphism, then ϕ is isometric (with respect to the C^{*} norms), bipositive and ϕ maps some approximate identity of \mathcal{A} onto an approximate identity of \mathcal{B}. Conversely, any two of the later three properties imply that ϕ is a $*$-isomorphism. Finally, we show that a unital and selfadjoint spectral isometry between semi-simple Hermitian Banach algebras is an $*$-isomorphism.

1. Preliminaries. Our objective under this heading is to describe the basic concepts of reduced Banach $*$-algebras and to try and synthesize some results that are pertinent to the purposes of our paper.

A Banach *-algebra is a Banach algebra over the complex field (with a norm denoted by $\|$.$\|) together with a fixed involution denoted by *$. A Banach $*$-algebra is called Hermitian if and only if the spectrum of each selfadjoint element $h=h^{*}$ in \mathcal{A} is contained in the real line. A $*$-representation of a Banach $*$-algebra \mathcal{A} is an algebra homeomorphism π of \mathcal{A} into the algebra $B(H)$ of all bounded operators on some Hilbert space H. On any Banach $*$-algebra \mathcal{A}, there is a maximum C^{*}-pseudo-norm $\gamma_{\mathcal{A}}$ which satisfies

$$
\begin{equation*}
\gamma_{\mathcal{A}}(a)=\sup \{\|\pi(a)\|: \pi \text { is a } * \text {-representation of } \mathcal{A}\} \tag{1.1}
\end{equation*}
$$

2010 Mathematics Subject Classification. 15A86, 46L05, 47A12, 47B49.
Key words and phrases. Reduced Banach algebras, preserving the spectrum.
which is called the Gefland-Naimark pseudo-norm. The algebra \mathcal{A} is said to be reduced if $\gamma_{\mathcal{A}}$ is a norm. That is, if $\gamma_{\mathcal{A}}$ is well defined and $\{a \in$ $\left.\mathcal{A}: \gamma_{\mathcal{A}}(a)=0\right\}=\{0\}$. The class of reduced $*$-algebras incorporates a wide class of Banach $*$-algebras. Indeed, any Hermitian and semi-simple Banach $*$-algebra is reduced (including C^{*}-algebras as a very special case). An example of a reduced Banach algebra which is not hermitian is the algebra of all complex-valued continuously differentiable mappings on $[0,1]$ with pointwise definition of addition, scalar multiplication, product, and the norm $\|f\|=\|f\|_{\infty}+\left\|f^{\prime}\right\|_{\infty}$, where $\|f\|_{\infty}=\sup _{t \in[0,1]}|f(t)|$. One more interesting example is the group algebra $L^{1}(G)$, for some locally compact group G. It is worth mentioning that $L^{1}(G)$ is Hermitian when G is commutative, but not so in the general case.

In the remainder of this paper, all algebras considered are assumed to be reduced. Therefore, the completion $\hat{\mathcal{A}}$ of \mathcal{A} with respect to the C^{*}-norm $\gamma_{\mathcal{A}}$ is a C^{*}-algebra. At this juncture, we are to denote by \mathcal{A}_{+}the set of positive elements as $\mathcal{A}_{+}=\left\{\sum_{k=1}^{n} a a^{*}: a \in \mathcal{A}, n \in \mathbb{N}\right\}$. Clearly, the following inclusion holds: $\mathcal{A}_{s}:=\left\{h^{2}: h=h^{*} \in \mathcal{A}\right\} \subset \mathcal{A}_{+}$. In general the inclusion is strict, but if \mathcal{A} is Hermitian or a C^{*}-algebra, then $\mathcal{A}_{s}=\mathcal{A}_{+}$.

On a Banach $*$-algebra \mathcal{A}, a linear functional $p \in \mathcal{A}^{*}$ (where \mathcal{A}^{*} is the topological dual of \mathcal{A} with respect to the norm $\|\|$.$) is positive if p\left(\mathcal{A}_{+}\right) \subset \mathbb{R}_{+}$ (denoted $p \geq 0$) and a state if $p \geq 0$ and $\|p\|=1$. The set of all states of \mathcal{A} is denoted by $S_{\mathcal{A}}$. A linear mapping $\phi: \mathcal{A} \longrightarrow \mathcal{B}$ between two reduced Banach *-algebras is said to be positive if $\phi\left(\mathcal{A}_{+}\right) \subset \mathcal{B}_{+}$. Recall also that ϕ is called unital if $\phi(1)=1$, and it is said to be a Jordan homomorphism if $\phi\left(a^{2}\right)=$ $\phi(a)^{2}$ for all $a \in \mathcal{A}$. Equivalently, the map ϕ is a Jordan homomorphism if and only if $\phi(a b+b a)=\phi(a) \phi(b)+\phi(b) \phi(a)$ for all a and b in \mathcal{A}. We also recall that the map ϕ is said to be self-adjoint provided that $\phi\left(a^{*}\right)=$ $\phi(a)^{*}$ for all $a \in \mathcal{A}$. Self-adjoint Jordan homomorphisms are called Jordan *-homomorphisms, and by a Jordan $*$-isomorphism, we mean a bijective *-homomorphism.
2. Main results. In [6], Kadisson showed that every Jordan *-isomorphism between two unital C^{*}-algebras is isometric and bipositive and unital. Furthermore, the presence of any combination of two of the latter three properties implies that ϕ is a $*$-isomorphism. These results have been generalized for non-unital C^{*}-algebras in [10]. The first aim of this paper is to show that the same result holds for non-unital reduced Banach $*$-algebras with bounded approximate identities.

Recall that a bounded approximate identify of an Banach $*$-algebra \mathcal{A} with respect to the norm $\|$.$\| is a net \left(e_{\alpha}\right)_{\alpha \in \Lambda}$ in \mathcal{A} such that $\sup _{\alpha} e_{\alpha}<\infty$ and $\lim _{\alpha}\left(\left\|a-a e_{\alpha}\right\|+\left\|a-e_{\alpha} a\right\|\right)=0$, for every $a \in \mathcal{A}$. We state the following:

Theorem 2.1. Let \mathcal{A} and \mathcal{B} be reduced Banach *-algebras having bounded approximate identities relative to the norm $\|\cdot\|$ and $\phi: \mathcal{A} \longrightarrow \mathcal{B}$ be a vector space isomorphism. If ϕ is a Jordan *-isomorphism, then ϕ is isometric (with respect to the C^{*}-norms), bipositive and ϕ maps some approximate identity of \mathcal{A} (relative to the norm $\gamma_{\mathcal{A}}$) onto an approximate identity of \mathcal{B} (relative to the norm $\gamma_{\mathcal{B}}$).

Conversely, the presence of any combination of two of the latter three properties implies that ϕ is a Jordan *-isomorphism.

To prove the main theorem, we need the following lemmas. The first lemma is devoted to the existence of a bounded approximate identity relative to the norm $\gamma_{\mathcal{A}}$ such that its image by an $*$-isomorphism is a bounded approximate identity for \mathcal{B}. It is worth observing that this lemma does not require the existence of a bounded approximate identity relative to the norm $\|$.$\| .$

Lemma 2.2. Let \mathcal{A} and \mathcal{B} be two reduced Banach $*$-algebras. Let $\phi: \mathcal{A} \longrightarrow$ \mathcal{B} be a Jordan *-isomorphism. There exists an approximate identity $\left(u_{j}\right)_{j \in J}$ in \mathcal{A} such that its image $\left(\phi u_{j}\right)_{j \in J}$ is an approximate identity for \mathcal{B}.

Proof. Since ϕ is a Jordan $*$-isomorphism between two reduced algebras, then it is contractive relative to $\gamma_{\mathcal{A}}$ and $\gamma_{\mathcal{B}}$ (see [8], Proposition 10.1.4). Extend ϕ by continuity to Jordan $*$-isomorphism $\hat{\phi}: \hat{\mathcal{A}} \longrightarrow \hat{\mathcal{B}}$ of ϕ between the two C^{*}-algebras $\hat{\mathcal{A}}$ and $\hat{\mathcal{B}}$. According to [10, Lemma 2.3], there exists an approximate identity $\left(h_{\beta}\right)_{\beta \in \Lambda}$ in $\hat{\mathcal{A}}$ such that $\left(\hat{\phi} h_{\beta}\right)_{\beta \in \Lambda}$ is an approximate identity for $\hat{\mathcal{B}}$. At this level, we proceed as in [8, Proposition 10.1.13]. Since every element in $\hat{\mathcal{A}}$ is a limit of a sequence in \mathcal{A}, then, for all $\beta \in \Lambda$, there exist $n \in \mathbb{N}$ and $e_{n}^{\beta} \in \mathcal{A}$ satisfying $\gamma_{\mathcal{A}}\left(e_{n}^{\beta}-h_{\beta}\right) \leq \frac{1}{n}$. Consequently, we might safely assume that e_{n}^{β} is self-adjoint and $\gamma_{\mathcal{A}}\left(e_{n}^{\beta}\right) \leq 1$.

Now, define $u_{j}=e_{n}^{\beta}$ and $J=\Lambda \times \mathbb{N}$ ordered by defining $j_{1}=\left(\beta_{1}, n_{1}\right) \geq$ $j_{2}=\left(\beta_{2}, n_{2}\right)$ to mean $\beta_{1} \geq \beta_{2}$ and $n_{1} \geq n_{2}$. It is easy to notice that u_{j} is an approximate identity of \mathcal{A}. Similarly, by using the fact that $\hat{\phi}$ is a contraction, the net $\left(\phi u_{j}\right)_{j \in J}$ satisfies $\gamma_{\mathcal{B}}\left(\phi u_{j}-\hat{\phi} h_{\beta}\right) \leq \frac{1}{n}$ and $\gamma_{\mathcal{B}}\left(\phi u_{j}\right) \leq 1$. It follows also that $\left(\phi u_{j}\right)_{j \in J}$ is an approximate identity for \mathcal{B}.

We shall need also the following lemma, [3, Proposition 2.1], which shows that if $\left(e_{\alpha}\right)_{\alpha \in \Lambda}$ is a bounded approximate identity of a normed algebra \mathcal{A}, then it is also a bounded approximate identity for its completion $\hat{\mathcal{A}}$. We give its proof for the sake of completeness.

Lemma 2.3. Let $\left(\mathcal{A}, \gamma_{\mathcal{A}}\right)$ be a normed algebra and denote by $\hat{\mathcal{A}}$ its completion with respect to the norm $\gamma_{\mathcal{A}}$. Then every bounded approximate identity $\left(e_{\alpha}\right)_{\alpha \in \Lambda}$ of \mathcal{A} is also a bounded approximate identity of $\hat{\mathcal{A}}$.

Proof. Let $a \in \hat{\mathcal{A}}$ and $\left(a_{n}\right) \subset \mathcal{A}$ such that $\lim _{n \rightarrow \infty} \gamma_{\mathcal{A}}\left(a_{n}-a\right)=0$. For any $n \in \mathbb{N}$, we have

$$
\begin{aligned}
\gamma_{\mathcal{A}}\left(e_{\alpha} a-a\right) & \leq \gamma_{\mathcal{A}}\left(e_{\alpha} a-e_{\alpha} a_{n}\right)+\gamma_{\mathcal{A}}\left(e_{\alpha} a_{n}-a_{n}\right)+\gamma_{\mathcal{A}}\left(a_{n}-a\right) \\
& \leq \gamma_{\mathcal{A}}\left(e_{\alpha}\right) \gamma_{\mathcal{A}}\left(a-a_{n}\right)+\gamma_{\mathcal{A}}\left(e_{\alpha} a_{n}-a_{n}\right)+\gamma_{\mathcal{A}}\left(a_{n}-a\right)
\end{aligned}
$$

Using the fact that $\lim _{n \rightarrow \infty} \gamma_{\mathcal{A}}\left(a_{n}-a\right)=\lim _{\alpha} \gamma_{\mathcal{A}}\left(e_{\alpha} a_{n}-a_{n}\right)=0$, and the boundedness of $\left(e_{\alpha}\right)$, we can find an integer $n \in \mathbb{N}$ and $\beta \in \Lambda$ such that $\gamma_{\mathcal{A}}\left(e_{\alpha} a-a\right)<\epsilon$, whenever $\alpha \geq \beta$. This shows that $\lim _{\alpha} \gamma_{\mathcal{A}}\left(e_{\alpha} a-a\right)=0$. In a similar way, we can also show that $\lim _{\alpha} \gamma_{\mathcal{A}}\left(a e_{\alpha}-a\right)=0$. This completes the proof.

Now we show that every positive mapping ϕ between two reduced Banach *-algebras is bounded with respect to the C^{*}-norms. We begin with the following:

Lemma 2.4. Let \mathcal{A} be a reduced Banach *-algebra with bounded approximate identity $\left\{e_{\alpha}\right\}$ (with respect to the norm $\|\cdot\|$) and $p: \mathcal{A} \longrightarrow \mathbb{C}$ be a linear form. If p is positive, then it is bounded relative to the norm $\gamma_{\mathcal{A}}$ and $\|p\|_{*} \leq \sup _{\alpha} p\left(e_{\alpha} e_{\alpha}^{*}\right)$, (here $\|p\|_{*}$ denotes the norm of p relative to the C^{*}-norm $\gamma_{\mathcal{A}}$).

Proof. Let p be a positive linear form. Firstly, notice that p is continuous with respect to the norm $\|$.$\| and hermitian (i.e. p\left(x^{*}\right)=\overline{p(x)}$ for any $x \in \mathcal{A}$), (see [4, Corollary 27.5]). Without loss of generality, assume that $p \neq 0$, since $p \equiv 0$ is certainly bounded. Suppose first that \mathcal{A} is unital. We distinguish two cases. If p is a state, then from the Gelfand-Naimark-Segal theorem (see [4, Theorem 27.2]), there exists a cyclic $*$-representation π of \mathcal{A} on a Hilbert space H, with cyclic vector ξ of norm 1 in H so that $p(a)=(\pi(a) \xi, \xi)$. It follows from the Cauchy-Schwartz inequality that

$$
\begin{aligned}
|p(a)| & \leq\|\pi(a) \xi\|\|\xi\| \\
& \leq\|\pi(a)\|\|\xi\|^{2}=\|\pi(a)\| .
\end{aligned}
$$

From Equation (1.1), we see that $\|\pi(a)\| \leq \gamma_{\mathcal{A}}(a)$, which implies the boundedness of p with respect to $\gamma_{\mathcal{A}}$ and $\|p\|_{*} \leq 1=p(1)$. If p is positive, let $q=p(1)^{-1} p$. It is obvious that q is a state. Then q is bounded from above, hence p is bounded and $\|p\|_{*} \leq p(1)$. Finally, assume that \mathcal{A} is non-unital. Let $p_{1}(x+\lambda e)=p(x)+\lambda k$ for any $x+\lambda e \in \mathcal{A}_{e}$ where $\mathcal{A}_{e}=\mathcal{A} \oplus \mathbb{C}$ is the the unitization of \mathcal{A} and $k=\sup _{\alpha} p\left(e_{\alpha} e_{\alpha}^{*}\right)$. Since p is continuous with respect of the norm $\|\cdot\|$, then [4, Proposition 21.5] implies that $|p(x)|^{2} \leq k p\left(x x^{*}\right)$, for all $x \in \mathcal{A}$. A similar reasoning as in the proof of [4, Proposition 21.7] shows that p_{1} is a positive linear functional of \mathcal{A}_{e} which coincides with p on \mathcal{A}. Therefore, $\|p\|_{*} \leq\left\|p_{e}\right\|_{*} \leq p_{e}(e)=k$. This completes the proof of boundedness of p.

Lemma 2.5. Let \mathcal{A} and \mathcal{B} be two reduced Banach *-algebras such that \mathcal{A} has a bounded approximate identity relative to the norm $\|$.$\| . Then, every$ positive linear mapping $\phi:\left(\mathcal{A}, \gamma_{\mathcal{A}}\right) \longrightarrow\left(\mathcal{B}, \gamma_{\mathcal{B}}\right)$ is bounded.

Proof. Let $a \in \mathcal{A}$ with $a=a^{*}$. By [9, Proposition 1.5.4], we have

$$
\gamma_{\mathcal{B}}(\phi(a))=\sup _{p \in S_{\hat{\mathcal{B}}}}|p \circ \phi(a)| .
$$

By Lemma 2.4, $p \circ \phi$ is a bounded and positive linear functional, for any $p \in S_{\hat{\mathcal{B}}}$. Accordingly

$$
|p \circ \phi(a)| \leq\|p \circ \phi\|_{*} \gamma_{\mathcal{A}}(a) \leq \sup _{\alpha} p \circ \phi\left(e_{\alpha} e_{\alpha}^{*}\right) \gamma_{\mathcal{A}}(a) .
$$

By keeping in mind that every $p \in S_{\hat{\mathcal{B}}}$ is continuous with respect to $\gamma_{\mathcal{B}}$ and $\|p\|_{*}=1$, we obtain

$$
\left|p \circ \phi\left(e_{\alpha} e_{\alpha}^{*}\right)\right| \leq\|p\|_{*} \gamma_{\mathcal{B}}\left(\phi\left(e_{\alpha} e_{\alpha}^{*}\right)\right)=\gamma_{\mathcal{B}}\left(\phi\left(e_{\alpha} e_{\alpha}^{*}\right)\right) .
$$

$\operatorname{Put} \theta=\sup _{\alpha} \gamma_{\mathcal{A}}\left(\phi\left(e_{\alpha} e_{\alpha}^{*}\right)\right)$ which is a constant independent of p. Hence, the above inequality implies that

$$
\gamma_{\mathcal{B}}(\phi(a)) \leq \theta \gamma_{\mathcal{A}}(a), \text { for any self-adjoint element in } \mathcal{A}
$$

Therefore, ϕ is continuous with respect to the C^{*}-norms on the set of selfadjoint elements. Since every element $a \in \mathcal{A}$ is a linear combination of two self-adjoint elements, the continuity of the involution and the positivity of ϕ implies that ϕ is continuous. The proof is thus complete.

Now, we give the proof of Theorem 2.1.
Proof of Theorem 2.1. Suppose ϕ is a Jordan $*$-isomorphism. By Lemma 2.2, ϕ maps some approximate identity of \mathcal{A} onto an approximate identity for \mathcal{B}. Since ϕ and ϕ^{-1} are contractive, then $\gamma_{\mathcal{B}}(\phi a)=\gamma_{\mathcal{A}}(a), \forall a \in \mathcal{A}$. Hence, ϕ is isometric. The extension $\hat{\phi}$ of ϕ is also a $*$-isomorphism between the two C^{*}-algebras $\hat{\mathcal{A}}$ and $\hat{\mathcal{B}}$. Thus, Theorem 3.1 of [10] may be applied to show that ϕ is bipositive.

To prove the converse, we have three cases:
Case 1: Assume that ϕ is bipositive and maps some approximate identity of \mathcal{A} onto an approximate identity of \mathcal{B}. By Lemma $2.5, \phi$ is bounded. Extend ϕ by continuity to a bounded vector space isomorphism $\hat{\phi}: \hat{\mathcal{A}} \longrightarrow \hat{\mathcal{B}}$ where $\hat{\mathcal{A}}$ and $\hat{\mathcal{B}}$ are the completions with respect to the C^{*}-norms of \mathcal{A} and \mathcal{B} respectively. The set $\hat{\mathcal{A}}^{+}$of positive elements in a C^{*}-algebra such as $\hat{\mathcal{A}}$ is closed and $\hat{\mathcal{A}}_{+}=\hat{\mathcal{A}}_{s}$. Hence by continuity $\hat{\phi}$ is bipositive. Now, Lemma 2.3 entails that $\hat{\phi}$ is a bipositive vector space isomorphism which maps some approximate identity of $\hat{\mathcal{A}}$ onto an approximate identity of $\hat{\mathcal{B}}$. According to [10, Theorem 3.1], we infer that $\hat{\phi}$, and hence ϕ, is a Jordan $*$-isomorphism.

Case 2: If ϕ is bipositive and isometric. Extend ϕ by continuity to a bijective isometry $\hat{\phi}: \hat{\mathcal{A}} \longrightarrow \hat{\mathcal{B}}$. A similar reasoning as in the first case entails that $\hat{\mathcal{A}}$ is also bipositive. Again, by [10, Theorem 3.1], ϕ is a Jordan *-isomorphism.
Case 3: If ϕ is isometric and maps an approximate identity of \mathcal{A} into an approximate identity of \mathcal{B}. Then, similarly the extension $\hat{\phi}$ of ϕ is isometric and maps an approximate identity of $\hat{\mathcal{A}}$ into an approximate identity of $\hat{\mathcal{B}}$. It yields that ϕ is a Jordan $*$-isomorphism. This concludes the proof of the theorem.

As an application of Theorem 2.1, we characterize spectral isometries $\left({ }^{1}\right)$ between semi-simple hermitian Banach $*$-algebras. Before presenting our result, we recall the famous Ford's square root lemma which will be crucial for our purpose.

Lemma 2.6 ([2, 5]). Let \mathcal{A} be a Banach *-algebra with $a \in \mathcal{A}$, $a=a^{*}$ and $r(a)<1$. Then, there exists a unique $x \in \mathcal{A}$ with $2 x-x^{2}=a, r(x)<1$ and $x=x^{*}$.

Theorem 2.7. Let \mathcal{A} and \mathcal{B} be two hermitian semi-simple Banach *-algebras and $\phi: \mathcal{A} \longrightarrow \mathcal{B}$ be a surjective and unital spectral isometry. If ϕ is self-adjoint, then it is a Jordan *-isomorphism.

Proof. Let us first prove that ϕ is a vector space isomorphism. It is enough to show that ϕ is injective. Let $x \in \mathcal{A}$ be such that $\phi(x)=0$. For $y \in \mathcal{A}$, we obtain $r_{\mathcal{A}}(x+y)=r_{\mathcal{B}}(\phi(x+y))=r_{\mathcal{B}}(\phi(y))=r_{\mathcal{A}}(y)$. Hence, by [1, Theorem 5.3.1], x belongs to the radical of \mathcal{A} which is zero. Thus $x=0$ and ϕ is injective. Now, we show that ϕ is bipositive, that is $\phi\left(\mathcal{A}_{+}\right)=\mathcal{B}_{+}$. Let $a \in \mathcal{A}$ be such that $\|a\|<1$. By the spectral mapping theorem, we know that $\sigma\left(1-a a^{*}\right) \subset \mathbb{R}^{+}$. In addition, since \mathcal{A} is semi-simple, this fact yields $\left\|1-a a^{*}\right\|<1$. Since ϕ is a unital spectral isometry, we have $r_{\mathcal{B}}\left(\phi\left(a a^{*}\right)-1\right)<1$. By the square root lemma there exists $x \in \mathcal{A}$ satisfying $x=x^{*}$ and $(1-x)^{2}=\phi\left(a a^{*}\right)$. In this manner, we have showed that $\phi\left(\mathcal{A}_{+}\right) \subset \mathcal{B}_{+}$. Since ϕ^{-1} is also a unital spectral isometry, by symmetry we obtain $\phi^{-1}\left(\mathcal{B}_{+}\right) \subset \mathcal{A}_{+}$or $\mathcal{B}_{+} \subset \phi\left(\mathcal{A}_{+}\right)$, which implies that $\phi\left(\mathcal{A}^{+}\right)=\mathcal{B}^{+}$. Hence, ϕ is unital and bipositive vector space isomorphism. Therefore, by Theorem 2.1 we conclude that ϕ is a Jordan $*$-isomorphism.

Remark 2.8. It is well known that every C^{*}-algebra is a Hermitian semisimple Banach algebras. This makes the above theorem as an improvement of [7, Proposition 2].

Now we prove the following:

[^0]Corollary 2.9. Let \mathcal{A} and \mathcal{B} be Hermitian Banach $*$-algebras and $\phi: \mathcal{A} \longrightarrow$ \mathcal{B} be a self-adjoint and unital bijective spectral isometry. Then, ϕ induce a Jordan *-isomorphism $\tilde{\phi}: \mathcal{A} / R(\mathcal{A}) \longrightarrow \mathcal{B} / R(\mathcal{B})$ where $R(\mathcal{A})$ and $R(\mathcal{B})$ denote the Jacobson radical of \mathcal{A} and \mathcal{B}, respectively.

Proof. Let us first prove that $\phi(R(\mathcal{A}))=R(\mathcal{B})$. To this end, we make use of the characterization of the radical given by [1, Theorem 5.3.1]. Take $a \in R(\mathcal{A})$ and $y \in \mathcal{B}$ such that $r_{\mathcal{A}}(y)=0$. Choose $x \in \mathcal{A}$ with $\phi(x)=y$. By hypothesis $r_{\mathcal{A}}(x)=r_{\mathcal{B}}(y)=0$. Together, these yield

$$
r_{\mathcal{B}}(\phi(a)+y)=r_{\mathcal{B}}(\phi(a+x))=r_{\mathcal{A}}(a+x)=0
$$

So that $\phi(a) \in R(\mathcal{B})$. Therefore $\phi(R(\mathcal{A})) \subset R(\mathcal{B})$. In the same way, we can show that $\phi^{-1}(R(\mathcal{B})) \subset R(\mathcal{A})$ or equivalently $\left.R(\mathcal{B})\right) \subset \phi(R(\mathcal{A}))$. Thus, we have showed that $\phi(R(\mathcal{A}))=R(\mathcal{B})$. However, here the $*$-radical, which is the intersection of the kernels of all $*$-representations of \mathcal{A}, coincides with the radical by [4, Corollary 33.13]. Hence by [4, Proposition 32.9], we have $\mathcal{A}_{1}=\mathcal{A} / R(\mathcal{A})$ and $\mathcal{B}_{1}=\mathcal{B} / R(\mathcal{B})$ are two unital semi-simple Hermitian Banach algebras. Again, by [1, Theorem 3.1.5], we have $\sigma_{\mathcal{A}}(a)=\sigma_{\mathcal{A}_{1}}(\bar{a})$ for the coset \bar{a} of $a \in \mathcal{A}$ in \mathcal{A}_{1} and $\sigma_{\mathcal{B}}(b)=\sigma_{\mathcal{B}_{1}}(\bar{b})$ for all $b \in \mathcal{B}$. Now since, $\phi(R(\mathcal{A}))=R(\mathcal{B})$ the mapping $\widetilde{\phi}: \mathcal{A}_{1} \longrightarrow \mathcal{B}_{1}$ given by $\widetilde{\phi}(\bar{a})=\overline{T(a)}$ for every $\bar{a} \in \mathcal{A}_{1}$ is well defined. It is also clear that $\tilde{\phi}$ is a bijective selfadjoint unital spectral isometry. Theorem 2.7 implies that $\tilde{\phi}$ is a Jordan *-isomorphism.

References

[1] Aupetit, B., Spectrum-preserving linear mappings between Banach algebras or Jordan-Banach algebras, J. Lond. Math. Soc. 62 (2000), 917-924.
[2] Bonsall, F. F., Stirling, D. S. G., Square roots in Banach *-algebras, Glasg. Math. J. 13 (1972), 74-74.
[3] Dixon, P. G., Approximate identities in normed algebras, Proc. Lond. Math. Soc. 26 (3) (1973), 485-496.
[4] Doran R. S., Belfi, V. A., Characterizations of C^{*}-algebras. The Gelfand-Naimark Theorems, Marcel Dekker, New York, 1986.
[5] Ford, J. W. M., A square root lemma for Banach (*)-algebras, J. Lond. Math. Soc. 42 (1) (1967), 521-522.
[6] Kadisson, R. V., Isometries of operator algebras, Ann. of Math. 54 (2) (1951), 325338.
[7] Martin, M., Towards a non-selfadjoint version of Kadison's theorem, Ann. Math. Inform. 32 (2005), 87-94.
[8] Palmer, T. W., Banach Algebras and the General Theory of *-Algebras. *-Algebras, Vol. II, Cambridge University Press, Cambridge, 2001.
[9] Sakai, S., C^{*}-algebras and W^{*}-algebras, Springer-Verlag, New York-Berlin, 1971.
[10] Ylinen, K., Vector space isomorphisms of C^{*}-algebras, Studia Math. 46 (1973), 3134.

Rachid ElHarti
Department of Mathematics
Faculty of Applied Sciences
Umm Al-qura University
21955 Makkah
Saudi Arabia
Department of Mathematics
and Computer Sciences
Faculty of Sciences and Techniques
University Hassan I, BP 577. Settat
Morocco (Permanent address)
e-mail: relharti@gmail.com

Mohamed Mabrouk
Department of Mathematics
Faculty of Applied Sciences
Umm Al-qura University
21955 Makkah
Saudi Arabia

Department of Mathematics
Faculty of Sciences of Gabès
University of Gabès, Cité Erriadh 6072 Zrig, Gabès
Tunisia (Permanent address)
e-mail: msmabrouk@uqu.edu.sa

Received September 6, 2014

[^0]: ${ }^{1}$ Spectral isometry means that $r_{\mathcal{A}}(a)=r_{\mathcal{B}}(T a), \forall a \in \mathcal{A}$

