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Abstract. The Ramsey number R(G,H) for a pair of graphs G and H is
defined as the smallest integer n such that, for any graph F on n vertices,
either F contains G or F contains H as a subgraph, where F denotes the com-
plement of F . We study Ramsey numbers for some subgraphs of generalized
wheels versus cycles and paths and determine these numbers for some cases.
We extend many known results studied in [5, 14, 18, 19, 20]. In particular we
count the numbers R(K1 + Ln, Pm) and R(K1 + Ln, Cm) for some integers
m, n, where Ln is a linear forest of order n with at least one edge.

1. Introduction. We consider a simple graph G = (V (G), E(G)). Let Pi

denote a path consisting of i vertices and let kPi denote k disjoint copies of
Pi. By Cm we denote a cycle of order m. For two vertex disjoint graphs G
and F by G ∪ F we denote the vertex disjoint union of G and F . By G we
denote the complement of the graph G.

The graph K1 +mK2 is called a fan, denoted by Fm. For integer m ≥ 3
the graph K1 + Cm is called a wheel, and denoted by W1,m or equivalently
by Wm, where the single vertex of K1 is called the hub and all vertices of
Cm are called the rims of the wheel. Moreover, for integer t ≥ 1 and m ≥ 3
we define a generalized wheel Wt,m as Kt + Cm. Let Ln be a linear forest
of order n with at least one edge.
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The Ramsey number R(G,H) for a pair of graphs G and H is defined as
the smallest integer n such that, for any graph F on n vertices, either F
contains G or F contains H as a subgraph, where F denotes the complement
of F .

The chromatic number χ(G) of a graph G is the smallest number of
colours needed to colour the vertices of G so that no two adjacent vertices
have the same colour.

A connected graph H is G-good if R(G,H) = (χ(G)− 1)(|V (H)| − 1) +
s(G), where s(G) is the surplus of H defined as the minimum cardinality of
colour classes over all chromatic colourings of V (G).

Recently many results have been obtained for Ramsey numbers of cy-
cles versus fans and wheels. For instance Burr and Erdős [2] showed that
R(C3,Wn) = 2n+1 for n ≥ 5, Radziszowski and Xia [11] gave a method for
counting the Ramsey numbers R(C3, G), where G is either a path, a cycle
or a wheel. Surahmat et al. [15, 16, 17] showed that R(Cn,Wm) = 2n − 1
for even m and n ≥ 5m/2 − 1 and R(Cn,Wm) = 3n − 2 for odd m and
n > (5m − 9)/2. Zhang et al. [19] determined R(Cn,Wm) = 3n − 2 for
m odd, n ≥ m and n ≤ 20. More recent results are presented later in
Theorems 2.7, 2.8, 2.9, 2.17, 2.18 and 2.19.

The aim of this paper is to improve some results by reducing the lower
bound for n. Also we will establish Ramsey numbers for some new graphs
versus paths or cycles.

2. Theorems. The following lower bound on Ramsey numbers is well
known in graph Ramsey theory.

Theorem 2.1 (Burr [1]). Let G be a connected graph and H be a graph with
|V (G)| ≥ s(H), where s(H) is the surplus of H. Let χ(H) be the chromatic
number of H.
Then R(G,H) ≥ (|V (G)| − 1)(χ(H)− 1) + s(H).

Theorem 2.2 (Faudree et al. [6]).

R(Cm, Pn) =


2n− 1, 3 ≤ m ≤ n, m odd,
n− 1 + m

2 , 4 ≤ m ≤ n, m even,
max{m− 1 + bn2 c, 2n− 1}, 2 ≤ n ≤ m, m odd,
m− 1 + bn2 c, 2 ≤ n ≤ m, m even.

Theorem 2.3 (Lin et al. [9]). Let a tree Tn be G-good graph, where s(G) =
1. Then Tn is (K1 +G)-good graph.

Note that by the first line of Theorem 2.2 we get that Pn is Cm-good for
odd m, where 3 ≤ m ≤ n.

Considering the third line, we have 2n− 1 ≥ m− 1 + n−1
2 with m ≥ n ≥

2
3m−

1
3 for n odd and we have 2n− 1 ≥ m− 1+ n

2 with m ≥ n ≥ 2
3m for n

even. So Pn is Cm-good for odd m, where 3 ≤ m ≤ d3n2 e. By Theorem 2.2
we can see the following property.
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Corollary 2.4. Let m be odd integer and 3 ≤ m ≤ d3n2 e. Then Pn is
Cm-good, and R(Pn, Cm) = 2n− 1.

By Corollary 2.4 and Theorem 2.3 we have immediately the next theorem.

Theorem 2.5. Let m be odd integer and 3 ≤ m ≤ d3n2 e. Then R(Pn,W1,m)
= 3n− 2.

Similarly, by iterative application of Theorem 2.3, we get the result for
paths versus generalized wheels as presented below.

Theorem 2.6. Let t ≥ 1 and let m be odd integer and 3 ≤ m ≤ d3n2 e. Then
R(Pn,Wt,m) = (t+ 2)(n− 1) + 1.

Similarly, we can use the following theorems proved by Chen et al. [5],
Surahmat et al. [13] and Zhang [18]. First, we present the result, where m
is an even integer.

Theorem 2.7 (Chen et al. [5]). Let m be an even integer and n ≥ m−1 ≥ 3.
Then R(Pn,W1,m) = 2n− 1.

Salman and Broersma obtained R(Pn,W1,m) for m odd.

Theorem 2.8 (Salman and Broersma [13]). Let n ≥ 4 be an integer and let
m ≥ 3 be an odd integer with 3 ≤ m ≤ 2n− 1. Then R(Pn,W1,m) = 3n− 2.

Zhang expanded the results to the following.

Theorem 2.9 (Zhang [18]). Let n ≥ 4 be an integer and let m be an odd
integer with n+ 2 ≤ m ≤ 2n. Then R(Pn,W1,m) = 3n− 2.

Note that χ(K1 +W1,m) = χ(K2 + Cm) = 5. So by Theorems 2.8, 2.9
and 2.3 we get the following results.

Theorem 2.10. Let m be an odd integer where 3 ≤ m ≤ 2n. Then
R(Pn,K2 + Cm) = R(Pn,K1 +W1,m) = 4n− 3.

Similarly, for paths and more generalized wheels we have the following
theorem.

Theorem 2.11. Let t ≥ 1 be an integer and let m be an odd integer, where
3 ≤ m ≤ 2n. Then

R(Pn,Kt + Cm) = R(Pn,Wt,m) = (t+ 2)(n− 1) + 1.

Moreover, the following result is known.

Theorem 2.12 (see Radziszowski [10]). R(Pn,K2 + Cm) = 3n − 2 for m
even and n ≥ m− 2.

Thus by Theorem 2.3 we generalize Theorem 2.12 as follows.

Theorem 2.13. Let t ≥ 2. Then R(Pn,Kt + Cm) = (t+ 1)(n− 1) + 1 for
m even and n ≥ m− 2.
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Now we present Ramsey numbers for paths Pm versus K1 + Ln. Note
that K1 + Ln is a subgraph of Wn =W1,n.

Theorem 2.14. Let n,m be integers and let m ≥ n− 1 ≥ 3 for n even and
m ≥ n ≥ 3 for n odd. Then R(Pm,K1 + Ln) = 2m− 1.

Proof. Note that s(Pm) = bm2 c and χ(Pm) = 2. So if n+1 ≥ s(Pm) = bm2 c
by Theorem 2.1 with H = Pm and G = K1 + Ln we get:

R(Pm,K1 + Ln) ≥ (χ(Pm)− 1)(|V (K1 + Ln)| − 1) + s(Pm) = n+ bm
2
c

and we have the lower bound

R(Pm,K1 + Ln) ≥
{
n+ bm2 c, m odd,
n+ m

2 , m even

in this case.
Note that s(K1 +Ln) = 1 and χ(K1 +Ln) = 3. So by Theorem 2.1 with

H = K1 + Ln and G = Pm we get

R(Pm,K1 + Ln) ≥ (χ(K1 + Ln)− 1)(|V (Pm)| − 1) + s(K1 + Ln) = 2m− 1.

Note that n + bm2 c > 2m − 1, when n + m−1
2 > 2m − 1 for odd m and

n+ m
2 > 2m− 1 for even m. So it holds for m < 2

3n+ 1
3 with m odd, and

for m < 2
3n+ 2

3 with m even.
So we can write

R(Pm,K1 + Ln) ≥ max
{
n+ bm

2
c, 2m− 1

}
and

R(Pm,K1 + Ln) ≥


n+ bm2 c, m < 2

3n+ 1
3 , m odd,

2m− 1, m ≥ 2
3n+ 1

3 , m odd,
n+ m

2 , m < 2
3n+ 2

3 , m even,
2m− 1, m ≥ 2

3m+ 2
3 , m even.

Now the upper bound we obtain by the consideration given below. First
we can see that K1 + Ln is a subgraph of W1,n, so R(Pm,K1 + Ln) ≤
R(W1,n, Pm), for n even.

Then we note that R(Pm,K1+Ln) ≤ 2m−1 for m ≥ n−1 ≥ 3 and n even.
For n odd we can see that K1 + Ln is a subgraph of K1 + Cn+1 = W1,n+1

so we know that R(Pm,K1 + Ln) ≤ 2m − 1 for m ≥ n + 1 − 1 ≥ 3, so
m ≥ n ≥ 3. �

The following result is contained in [12] and [7], and a new simpler proof
of it in [8]:

Theorem 2.15. Let m,n be integers and n ≥ m ≥ 3.

R(Cm, Cn)=

2n− 1, m odd and (m,n) 6= (3, 3),
n− 1 + m

2 , m and n even and (m,n) 6=(4, 4),
max{n− 1+m

2 , 2m− 1}, m even and n odd.



The Ramsey numbers for some subgraphs of generalized wheels... 5

Recently Shi obtained the Ramsey numbers of fans versus cycles.

Theorem 2.16 (Shi [14]). R(Cn, Fm) = 2n− 1 for n > 3m.

For Ramsey numbers of cycles versus wheels obtained in turn the follow-
ing results.

Theorem 2.17 (Chen et al. [3]). R(Cm,W1,n) = 3m−2 for odd n ≥ 3 with
m ≥ n, m 6= 3.

Theorem 2.18 (Chen et al. [4], Shi [14]). R(Cm,W1,n) = 2m− 1 for even
n ≥ 4 and 2m ≥ 3n+ 2.

Theorem 2.19 (Zhang et al. [20]). R(Cm,W1,n) = 2n + 1 for m odd,
n ≥ 3(m− 1)/2 and (m,n) 6= (3, 3), (3, 4).

Now we present the Ramsey number for K1 + Ln versus a cycle Cm of
order m for some integers m and n.

Theorem 2.20. Let m ≥ 3 be an integer.

R(Cm,K1 + Ln) = 2m− 1 for m ≥


3
2n+ 1, n even,

3
2n+ 5

2 , n odd.

Moreover, R(Cm,K1 + Ln) = 2n + 1 for m odd, m ≤ 2n
3 + 1, (m,n) 6=

(3, 3), (3, 4).

Proof. By Theorem 2.1 for the case H = Cm and G = K1 +Ln we get the
following lower bounds.

For m odd and s(Cm) = 1 we have

R(Cm,K1 + Ln) ≥ (χ(Cm)− 1)(|V (K1 + Ln)| − 1) + s(Cm) = 2n+ 1.

For m even if n+ 1 ≥ m
2 we have

R(Cm,K1 + Ln) ≥ (χ(Cm)− 1)(|V (K1 + Ln)| − 1) + s(Cm) = n+
m

2
.

So

R(Cm,K1 + Ln) ≥
{

2n+ 1, m odd,
n+ m

2 , m even and n+ 1 ≥ m
2 .

By Theorem 2.1 with H = K1+Ln and G = Cm we count the lower bound.
Recall that s(K1 + Ln) = 1 and χ(K1 + Ln) = 3. Thus

R(Cm,K1 + Ln) ≥ (χ(K1 + Ln)− 1)(|V (Cm)| − 1) + s(K1 + Ln)

= 2m− 1.

So

R(Cm,K1 + Ln) ≥
{

max{2m− 1, 2n+ 1}, m odd,
max{n+ m

2 , 2m− 1}, m even and n+ 1 ≥ m
2 .
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Finally, by two above cases we get the following lower bounds

R(Cm,K1 + Ln) ≥


2n+ 1, m < n+ 1, m odd,
2m− 1, m ≥ n+ 1, m odd,
n+ m

2 , m < 2n
3 + 2

3 , m even,
2m− 1, m ≥ 2n

3 + 2
3 , m even.

Thus we get the lower bound. Now the upper bound we obtain by the
consideration given below.

We can see that K1 + Ln is subgraph of W1,n, so R(Cm,K1 + Ln) ≤
R(Cm,W1,n), n even.

By Theorem 2.18, we know that R(Cm,K1+Ln) ≤ 2m−1 for m ≥ 3
2n+1

and n even.
For n odd we can see that K1 + Ln is subgraph of W1,n+1 so we know

that R(Cm,K1 + Ln) ≤ 2m− 1 for m ≥ 3
2n+ 5

2 .
Now consider m odd for m ≤ 2n

3 + 1 with (m,n) 6= (3, 3), (3, 4). By
Theorem 2.19 we get R(K1 + Ln, Cm) ≤ 2n + 1. By Theorem 2.1 we have
that R(K1+Ln, Cm) ≥ 2n+1 for m ≤ n+1. Thus R(K1+Ln, Cm) = 2n+1
for odd m, m ≤ 2n

3 + 1, (m,n) 6= (3, 3), (3, 4). �

Now we present the Ramsey numbers for some generalized fans K1+kP3

versus a cycle. The graph is a special case of K1+Ln. Thus by Theorem 2.20
we get some generalization of Shi’s result (see Theorem 2.16).

Corollary 2.21.

R(Cm,K1 + kP3) = 2m− 1 for m ≥
{ 9

2k + 1, k even,
9
2k +

5
2 , k odd.

Moreover, R(Cm,K1+kP3) = 6k+1 for m odd, m ≤ 2k+1, (m, k) 6= (3, 1).

Open problem. Let

ε =

{
1, n odd,
0, n even.

One can study R(Cm,K1 + Ln) for even m, m ≤ b(3n+ 1)/2c+ ε and odd
m, 2n

3 + 1 < m ≤ b(3n+ 1)/2c+ ε.
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