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Portrety fazowe trój członowego cyklu reakcji enzymatycznych z represją

1. INTRODUCTION

We would like to continue the analysis of the dynamical system related to 
a three-membered cycle of enzymatic reactions. The system is described by the 
following equations

dx{ _ *3 + kx2 xi kxx
dt 1 + Xj" I + X3” 1 + *," ’
dx~ x, + kx-. x, kx*

(1)dt l + Xj l + x, 1 + ̂ 2
dx2 _ x 2 + hxx x} kx3
dt l-H*," \ + x f  l-t-jCj" ’

where k is the relative rate constant for the backward (x3 -> x2, x2 -> x\, x\ -> *3) 
reactions and m is a parameter whose physical meaning will be discussed 
later. We suppose that both parameters m and k are non-negative. The analysis 
of the system presented in [1] can be applied only at small values of k. In 
the cycle under consideration, the enzymes which catalyse forward reactions 
(*1 -» x2, x2 -> x2 and x2 -> *0 are repressed (inactivated) by reagents x2, x2 
and xi respectively. The enzymes which catalyse backward reactions are
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repressed (inactivated, inhibited) by their substrates. Expressions of the type 
xt /  (l + x™) can describe Michaelis-Menten kinetics (m = 1), reactions catalysed

by allosteric and co-operative enzymes (m = 2, 3) [2, 3], processes regulated by 
the repression of enzymes [4, 5, 6] or processes regulated by membrane signal
ling [7]. At high values of m such expressions can describe inhibiting interac
tions between neurones [8, 9].

2. THE MAIN FORMAL FEATURES OF THE SYSTEM

The equations (1) possess the cyclic symmetry. Each of these equations can 
be obtained from the previous one by cyclic substitution -» x2 -» x3 —> xt . 
The summation of the left and right hand parts of equations (1) leads to the con
clusion that

^■ (^+ x 2 + x3)= 0 , (2)

and to the conservation law:

xl + x2 + xi = 3 C = const (3)

As it follows from (3) the constant 3 C is an integral of motion of the dynamical 
system (1). At the same time, the order of our system can be lowered thanks to 
conservation law. In such a second order system C can be treated as an additional 
parameter. So, the system (1) contains actually two independent dynamical vari
ables and its phase portrait is contained in the plane defined by the equation (3).

The dynamical variables of the system (1) represent concentrations of the 
reagents. This is why we take into consideration for them only non-negative 
initial values. If any of the variables (e.g. *i) becomes equal to zero then

dxl _ x3 + kx2
d t  \ +  X2m ~ K }

and x\ increases or remains equal to zero. So, under non-negative initial condi
tions all of the variables remain non-negative for any time. In other words, the 
system is positively invariant. The positive invariance of the system (1) confines 
its phase space to the equilateral triangle, contained in the plane (3) in the first 
octant of the cartesian coordinate system x\, x\, x\. It would be useful to trans-



form the coordinate system in order to make possible a two-dimensional pres
entation of the phase portrait. We transform coordinates in the following way

The transformation (5) does not change the scale as well as the position 
of the coordinate origin. Now the whole phase portrait is contained in 
the plane y l} y2 in the equilateral triangle with the following apices: 
(0;V6c )  {iC /  J l;-3C  /  S )  and ( -3 C /V 2 /-3 C /Vó) which correspond re

spectively to Xj = 3C, *2 = 3C and xi =3C. The coordinate yi is perpendicular

to the plane of the triangle and has a constant value of J3C .
Of course, equations (1) can be written in variables y it y2, y3 (5). Such 

a transformation results in two quite complex equations for time derivatives of 
y\ and y2. The third equation is very simple:

dt
(6)

The dynamical system (1) has an obvious point of equilibrium at

x, = x2 = x, = C (7)

or, in new coordinates

y{=y2=0 ( 8)

which is in the centre of the phase triangle. The approximation of the functions 
in the right of (1) by linear terms of their Taylor’s expansion around the point 
(7) leads to the following linear system:



dxt
~dt
dx2
~dt 
dx j
~dt

k a -{k  + \)b ~(k + l)a + kb a + b xx- C
a + b k a -(k  + l)b -{ k  + \)a + kb x2- C

~(k + \)a + kb a + b k a -(k  + \)b x} - C
(9)

where a = mCm
(l + c m y

the form

and b = -
1 + Cm

. In the new coordinates the system (9) takes

dt
<ty2

L dt J
-J L { (k  + 2)a + (l-k)b}

^ -{{k  + 2)a + (l-k )b }

|{ * a - ( * + i > }

y t
y 2

( 10)

Equations (10) are especially convenient for the linear analysis of stability.
The central equilibrium (7) is a stable focus at the low values of C. The focus 

is unstable ( the necessary condition for the existence of autooscillations), if

tnCm
+ Cm

> £  +  1 
k ( 11)

At k = 0, the relation (11) cannot be satisfied at any finite values of m and C. 
So, the presence of the backward reactions constitutes an additional necessary 
condition for the existence of autooscillations. We should note that the physi
cally meaningful fulfilment of the condition (11) is possible only at

k > —-— a n d m > l .  (12)
m - 1

On the other hand, at infinitely high k that is at irreversible backward reac
tions, relation (11) can be easily satisfied and the central equilibrium can 
become an unstable focus. However, in this case it does not mean the existence 
of autooscillations. At high values of k there are in the system six additional 
equilibrium points. Three of them are saddle points and the other three are sta
ble nodes. In order to find coordinates of these additional equilibrium points one 
would have to solve a system of two polynomial equations of the high degree. It 
is impossible even at m = 2. So, it is impossible to find analytical expressions 
for the equilibria coordinates. Instead, we have found numerical solutions,



which allow us to present a qualitative description of the evolution of the system 
at any values of the parameters k and C.

3. ADDITIONAL EQUILIBRIUM POINTS

Additional equilibrium points appear in the phase space only in the certain 
range of the parameters. Two parameters k and m appear explicitly in the equa
tions (1). The parameter k expresses the rate of backward reactions in relation 
to the rate of forward reactions. The parameter m is related to the stoichiometry 
of interactions of allosteric enzymes with their effectors. Alternatively, this 
parameter can be related to the stoichiometry of interactions of the repressor 
proteins with their corepressors. The evolution of the system depends also on 
the third parameter C which corresponds to the mean concentration of the rea
gents (3) and does not appear explicitly in equations (1). This parameter can be 
introduced into equations by reducing the system (1) to a second order system 
using conservation law (3).

It seems clear that we would not be able to manipulate the parameter m 
in any thinkable experimental system. Instead, we can deal with systems with 
different values of m. In contrast to this, one can easily manipulate the parame
ter C, for example, by adding one of the reagents to the system. We can also 
figure out an experimental system where some changes in the value of k would 
be possible.

Numerical solutions of the system (1) and the analysis of the shape of the 
function xt /  (l + x ™) suggest that system with m> 2 is qualitatively very much

like that with m = 2. We will confine the further discussion of the system (1) to 
the particular case with m = 2. It follows from (11) and (12) that m = 2 is the 
least integer value at which autooscillations are possible.

If we put the right hand part of the first equation of the system (1) equal zero 
and m = 2, we will obtain a square equation for x2. Thanks to this, x2 can be 
expressed analytically as a function of x\ and x3. For any given pair of values of 
k and x\ we can calculate numerically the values of x2 and the right hand side of 
the second equation as a function of xj. Of course, we accept as coordinates of 
an equilibrium point the set xh x2, x2 when the right of the second equation is 
equal to zero at a given value of k. Alternatively, we can directly solve equations 
resulting from putting equal to zero the right hand parts of equations (1) using 
the Newton’s method. In this case, one of the equations (1) is replaced by the 
conservation law (3).

Due to the cyclic symmetry of the system (1), additional equilibria appear 
simultaneously in three points. The system has the only central point of equilib
rium at the values of k and C corresponding to the area below the curve 1 in



Fig.l. At k and C belonging to the curve 1 (Fig.l), the system has three addi
tional points of equilibrium. For k and C from the area lying above the curve 1 
there are six additional points of equilibrium. There are no additional equilibria 
for k < 12.6372 . At k ~ 12.6372 and C = 1.35 there are three and they disap
pear at any change in the value of C.

Fig. 1. Bifurcation diagram constructed by using C and k  as control parameters at m  = 2. (curve 
1 —  saddle-node bifurcation; curve 2  —  Hopf bifurcation; curve 3  —  heteroclinic orbit bifurca

tion). The meaning of areas a, b, c, d  and e is explained in the text 
Diagram bifurkacyjny skonstruowany przy użyciu parametrów kontrolnych C i k  przy m  = 2; 

(krzywa 1 — bifurkacja typu siodło-węzeł; krzywa 2 —  bifurkacja Hopfa; krzywa 3  — bifurkacja 
orbity heteroklinicznej). Znaczenie obszarów a, b, c, d, e wyjaśniono w tekście

Positions of the additional equilibrium points at k = 15 and k = 50 are shown 
in Figure 2 and Figure 3 respectively. Since the linear dimensions of the triangle 
constituting the physically meaningful phase space are proportional to C, we 
have used in Figure 2 and Figure 3 reduced coordinates y>\! C and yi / C. The 
triangle A iA2A3 (Fig.2.) can be divided by its hights into six rectangular trian
gles. Additional equilibrium points appear only in three of these triangles. For 
given k > 12.6372 three additional equilibrium points appear at C = C\. Increas
ing of C results in the splitting of each of these points into a saddle point and 
a stable node. Further increasing of C displaces the saddle points toward the 
centre of the triangle A\A2A3. At the same time stable nodes move toward the



- 3 - 2 - 1 0 1 2 3

Fig. 2. Positions of the additional equilibrium points at m = 2, k = 15 and changing C. There are 
no additional equilibrium points at C > Ciand C > C2 

Położenia dodatkowych punktów równowagi przy m  = 2, k  -  15 i przy zmieniającym się C.
W przypadku C < Ci i C > C2 nie ma dodatkowych punktów równowagi

Fig. 3. Positions of the additional equilibrium points at m  = 2, k  = 50 and changing C. There are 
no additional equilibrium points at C > Ciand C > C2 

Położenia dodatkowych punktów równowagi przy m  = 2, k  = 50 i przy zmieniającym się C.
W przypadku C < Ci i C > C2 nie ma dodatkowych punktów równowagi



closest apices. Next, the saddle points turn to the middle of the closest side of 
the triangle A iA2A3. At still higher C the saddle points turn once more to the 
apices of the triangle A\A2A3. Finally, the saddle points meet stable nodes at 
C = C2 and all additional equilibria vanish at C > C2. In this way, at given 
k > 12.6372 additional equilibrium points trace three closed curves as it shown 
in Figure 2 and Figure 3. At k = 12.6372 each of such curves is degenerated to 
a single point. The higher is the value of k the bigger is the diameter of the 
curves traced by stable nodes and saddle points in coordinates y\ I C, y2 1 C at 
the growing value of C. At very high value of k these equilibrium points move 
almost along the circumferences of rectangular triangles (compare Fig.3). In the 
limit case of infinitely high k, when there are in the system only the backward 
reactions, the coordinates of additional equilibrium points can be obtained ana
lytically. In this case the terms which do not contain k can be omitted in the 
right of (1). At m = 2 the equilibrium can be found as the solution of the equa
tions (13):

* fa-*2X l-*2*3)=° (13)
xl+x2 + x3 = 3 C

different from the solution x x = x 2 =  x 3 = C , which are:

3CTV9C2- 8  3C±V9C2- 8  3C±V9C2- 8  , ,/n
*  = --------2-----------------------4--------’ *>= -------- 4-------- ° 4)

where upper signs correspond to the saddle point and lower signs correspond to 
the stable node. The other two pairs of equilibrium points can be obtained from 
(14) by circular substitutions xt -» x2 -» x3 —» x ,. In this case, three additional

equilibria appear at C = V8/9 on the heights of the triangle A,A2A} between

the centre and apices of this triangle in a distance of 1/-J3 from the centre. At 
increasing value of C, the stable nodes move towards the apices and saddle 
points move toward the centre of the triangle. At C = 1, the saddle points coin
cide with the centre of the triangle. Simultaneously, at the same value of C the 
central equilibrium changes its character from stable to unstable focus. On fur
ther increasing of C, the stable nodes tend to attain the apices of the triangle and 
saddle points are moving toward the middles of its sides.



4. AN EXEMPLARY SYSTEM WITH m  = 2 AND * = 15

Let us to follow changes in the phase portrait of the system (1) which take 
place at the increasing value of parameter C.

As it follows from (11), for

C <-Jz7l =1.069 (15)

the central equilibrium point is a stable focus. Moreover, this is the only equilib
rium of the system. So, all of the phase trajectories approach to this point, that 
is, to the state defined by relations (7) and (8) (see Fig. 4). At C = J s7 7 , the 
Hopf bifurcation takes place in the central focus. The bifurcation differs some
what from a standard Hopf bifurcation [10, 11] because the limit cycle is not 
a circle, but has a shape of a smooth triangle with apices directed to the middles 
of the edges of the triangle confining the phase space (Fig. 5). When C reaches 
the value C = 1.0803, then three additional equilibria appear outside the limit 
cycle. Each of these points splits at the higher C into a stable node and saddle 
point. In spite of this, there are possible stable autooscillations provided the 
initial conditions are in the vicinity of the centre. The rest of the phase space is
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- 2 - 1 0 1 2 3

Fig. 4. Phase portait o f the system (1), when there is one stable focus (here C = 1, * = 15, m  = 2
—  area a in Fig. 1)

Portret fazowy układu (1), gdy w układzie występuje ognisko stabilne (tu C = 1, * = 15, m  = 2 —
obszar a na Rye. 1)
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Fig. 5. Phase portrait of the system (1), when there is one unstable focus. Phase trajectories tend 
to the limit cycle (here C = 1.079, k  = 15, m  = 2 —  area e in Fig. 1)

Portret fazowy układu (1), gdy jedynym punktem równowagi jest ognisko niestabilne. Trajektorie 
fazowe układu dążą do cyklu granicznego (tu C = 1.079, k =  15, m  = 2 — obszar e  na Rye. 1)

Fig. 6. Phase portrait of the system (1) in the presence of one unstable focus, three saddle points 
and three stable nodes. Depending on initial conditions, trajectories can tend to the limit cycle or 

to one of three stable nodes (here C  = 1.15, * = 15, m  =2 —  area c  in Fig. 1)
Portret fazowy układu (1), gdy w układzie występuje ognisko niestabilne, trzy punkty siodłowe 

i trzy węzły stabilne. W zależności od warunków początkowych trajektorie układu dążą do cyklu 
granicznego lub do jednego z trzech węzłów (tu C = 1.15, A: = 15, m  =2 — obszar c  na Rye. 1)



Fig.7. Phase portrait of the system (1), when the limit cycle changes into a heteroclinic orbit (here 
C = 1.211, k  = 15, m  = 2 — the point belonging to the curve 3  in Fig. 1)

Portret fazowy układu (1) w momencie, gdy cykl graniczny przechodzi w orbitę heterokliniczną 
(tu C = 1.211, k  = 15, m  = 2  —  punkt należący do krzywej 3 na Rye. 1)

- 4 - 3 - 2 - 1 0  1 2 3 4

Fig. 8. Phase portrait of the system (1) when there is no limit cycle. The phase trajectories tend to 
the stable nodes (here C = 1.5, k  = 15, m  = 2 — area d  in Fig. 1)

Portret fazowy układu (1), gdy nie ma cyklu granicznego. Trajektorie fazowe układu dążą do 
jednego ze stabilnych węzłów (tu C = 1.5, k  = 15, m  =2 — obszar d  na Rye. 1)



divided into three areas of attraction of the three stable nodes (Fig. 6). At 
C ~ 1.211 the limit cycle touches the saddle points and changes itself into het
eroclinic orbit [10] passing through all three saddle points (Fig. 7). For C be
longing to the interval (1.211, 1.92) there are no stable oscillations. The whole 
phase space is divided into three attraction areas of the three stable nodes 
(Fig. 8). At C = 1.92, a heteroclinic orbit appears again (Fig. 9). It has evidently 
bigger diameter than that shown in Figure 7. At slightly higher C, the saddle 
points are separated from the closed orbit which becomes again a limit 
cycle. In the range of C « (1.211, 1.92) almost all phase trajectories approach 
the limit cycle. However, there are small areas in the vicinity of the triangle 
apices from where phase trajectories approach one of the stable nodes (Fig. 10). 
At C ~ 2.0101 the saddle points and stable nodes join one another and disap
pear. At C >  2.0101 we have again only one equilibrium point — the central 
unstable focus. In this case, any phase trajectory comes to the limit cycle, inde
pendently on the initial conditions (Fig. 11).

- 9 - 4 - 3  -2 -1 0 1 2 3 4 5

Fig. 9. Phase portrait of the system (1), when a heteroclinic orbit appears again (here C = 1.92, 
k  = 1.5, m  = 2 —  the point belonging to the curve 3  in Fig. 1)

Portret fazowy układu (1) w chwili, gdy ponownie pojawia się orbita heterokliniczna 
( t u C=  1.192, k =  15, m  = 2 —  punkt należący do krzywej 3  na Rye. 1)



Fig. 10. Phase portrait of the system (1) in the presence of one unstable focus, three saddle points 
and three stable nodes. Depending on initial conditions, trajectories can tend to the limit cycle or 

to one of three stable nodes (here C = 1.95, k  = 15, m  = 2 —  area c  in Fig. 1)
Portret fazowy układu (1), gdy w układzie występuje ognisko niestabilne, trzy punkty sidłowe 

i trzy węzły stabilne. W zależności od warunków początkowych trajektorie układu dążą do cyklu 
granicznego lub do jednego z trzech węzłów (tu C = 1.95, k  = 15, m  = 2 — obszar c  na Rye. 1)

Fig. 11. Phase portrait o f the system (1), when there is one unstable focus. Phase trajectories tend 
to the limit cycle (here C = 3, k  = 15, m  = 2 —  are e  in Fig. 1)

Portret fazowy układu (1), gdy jedynym punktem równowagi jest ognisko niestabilne. Trajektorie 
fazowe układu dążą do cyklu granicznego (tu C = 3, k  = 15, m  = 2 —  obszar e  na Rye. 1)



5. GENERAL VIEW OF THE PHASE SPACE AT m  = 2

In order to summarise the properties of the dynamical system (1), let us return 
to Figure 1. which presents the plane of the parameters k and C (k> 0, C > 0). 
The C, k plane is divided into five areas by three curves. At values of C and k 
lying on the curve 1, the system has four points of equilibrium — a focus in the 
centre of the triangle containing phase space and three double points beyond the 
centre. This curve has been determined numerically, but its vertical asymptote 
c  = J¥71  can be obtained from (10). The system has seven points of equilib
rium above the curve 1, that is, in areas b, c and d, and one equilibrium below 
this curve in areas a and e. The curve 3 corresponds to those values of k and C 
at which there is a closed heteroclinic orbit passing through three saddle points. 
This curve has also been constructed on the basis of numerical solutions. The 
curve 2 corresponds to those values of C and k, at which destabilisation of the 
central focus or Hopf bifurcation takes place in the system. The curve 2 is a plot 
of the relation:

C2 + 1
2- l ’

(16)

which can be derived from (11). The curves 2 and 3 have a common vertical 
asymptote C = 1, because at k —»°° the saddle points coincide with the centre 
of the phase space exactly at the same value of C = 1, when destabilisation takes 
place.

We have in Figure 1 the area a which is confined by coordinate axes and 
the curves 1 and 2. For the parameter values from this area the system evolutes 
towards the only equilibrium (stable focus) at *i = *2 = *3 = C oryi =yi = 0.

In the area b lying between the cures 1 and 2, (above the curve 1), there exist 
seven points of equilibrium: stable focus in the centre and three stable nodes and 
three saddle points beyond the centre. In dependence on the initial conditions, 
evolution of the system leads to the state *i = = *3 = C or to one of three
stable nodes. Autooscillations are impossible in the area a as well as in the area 
b. We cannot expect autooscillations also in the area d. In this case the evolution 
of the system leads to one of three stable nodes (compare Fig. 8). In the area 
c autooscillations are possible providing that initial conditions are not too far 
from the centre of the space phase triangle. In the latter case the system evolutes 
towards one of the stable nodes.

In contrast to this, the autooscillations are inevitable in the area e, since there 
is only one equilibrium — the unstable focus in the centre. Any orbit starting 
from the vicinity of the centre goes away from this point. On the other hand any



trajectory neither can escape the triangle nor cross itself and there must exist 
a limit cycle. The necessary Poincare’-Bendixon’s criterion [10] for the exist
ence of the closed orbit is satisfied in the areas c, d  and e and is not satisfied in 
the areas a and b.

The lack of analytical expressions for the coordinates of non-central equilib
rium points makes impossible to follow in details all bifurcations occurring in 
the system. In spite of this, we hope that the qualitative description based on 
numerical solutions would be instructive for understanding what is going on in 
systems like the one presented by equations (1).
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STRESZCZENIE

W artykule dokonano analizy jakościowej dotyczącej dynamiki nieliniowego układu trzech 
równań, utworzonego w zamkniętym cyklu trzech substancji przekształcających się w siebie kolej
no w wyniku reakcji enzymatycznych. Nieliniowe człony występujące w równaniach są typu 
1 / (1 + x f ) .  Dynamikę układu rozważano w zależności od wartości trzech parametrów: m  — liczby 
naturalnej określającej stopień represji syntezy enzymów, k  — względnego współczynnika 
prędkości reakcji wstecznych w stosunku do reakcji w przód; C —  średniego stężenia substancji 
występujących w układzie.

Za pomocą rachunków analitycznych i numerycznych znaleziono w układzie tym trzy różne 
typy bifurkacji: bifurkację Hopfa, bifurkację typu siodło-węzeł oraz bifurkację orbity heterokli- 
nicznej. Bifurkacja Hopfa prowadzi do pojawienia się w układzie rozwiązań periodycznych. Bi-



furkacja typu siodło-węzeł odpowiada pojawieniu się w układzie trzech dodatkowych punktów 
równowagi, z których każdy rozdwaja się na siodło i węzeł stabilny. Natomiast bifurkacja orbity 
heteroklinicznej odpowiada zanikowi lub pojawieniu się rozwiązań oscylacyjnych w wyniku 
„zderzenia” cyklu granicznego z punktami siodłowymi. Na rycinach przedstawiono przykładowe 
portrety fazowe dynamiki układu, w przypadku gdy m = 2 i k = 15 w zależności od wartości pozo
stałego parametru C.

Analiza układu prezentowana w tym artykule może zostać zastosowana do wyjaśnienia i zro
zumienia niektórych zjawisk o charakterze oscylacyjnym, zachodzących w żywych organizmach 
bądź przy ich udziale.


