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z zachowaniem masy

1. INTRODUCTION

Processes with oscillative kinetics have been the object of interest 
of researchers in ecology, physiology, immunology and other biological 
disciplines for many decades [6 , 7, 13]. It seems to me that one of the simplest 
systems leading to the chemical oscillations is the cycle of a few chemical 
reactions in which the sum of concentration of the reacting substances is 
conserved. But there are very few, if any, analyses of such a kind of cycles 
in the literature. The main reason of such a situation is the widespread 
opinion that oscillations in systems with mass conservation would contradict 
the second law of thermodynamics and they could not represent any real 
system. However, in many cases, such an opinion can be erroneous. Let us 
consider the cycle of reactions shown schematically in Figure 1. Really, if 
solely interconverting substances A, B ,C  and D take part in the reactions, 
then the only possible evolution of the system will be a relaxation from 
initial conditions to the state of stable equilibrium. Any oscillative solution 
of the respective kinetic equations would contradict the second law of 
thermodynamics. However, it is possible that some of the reactions shown in



Figure 1 or all of them are coupled with oxidation of reductors (e.g. NADH, 
NADPH, ascorbic acid) and with reduction of oxidizers (e.g. oxygen). Some 
reactions can be driven by light. If so, then there is a permanent inflow 
of the free energy to the system. In consequence, the concentrations of 
A, B, C and D can oscillate conserving their sum and without the violation 
of the second law of thermodynamics. Of course, in such whole system, 
including cofactors, the sum of the masses of all the reacting substances is 
not more conserved, because of the consumption of cofactors. If, however, the 
turnover of the cycle is low as compared with the rate of cofactor production 
and consumption in other metabolic processes, then there is no need to 
include cofactor concentrations into kinetic equations. They can be treated 
as constant. An example of such a situation is delivered by xanthophyll cycle 
in thylakoid membranes, where the consumption of NADPH and molecular 
oxygen is much smaller than their production in primary photosynthetic 
processes. The sum of violaxanthin, antheraxanthin and zeaxanthin content 
rests constant at all nonsaturating light intensities [3, 14].

A - B

D :C

Fig. 1. The scheme of the cyclic reactions of four interconverting
substances

Schemat cyklu przemian czterech substancji

Reaction cycles with the conservation of mass, like xanthophyll cycle, 
can have only regulative and not metabolic role and as such are rather 
exceptional in metabolic pathways of living cells. I think that this is the 
second reason of the lack of investigations on mass conserving oscillating 
systems. On the other hand, it is quite a usual situation, when an initial 
pool of reacting substances is slowly decreasing and can be treated as 
constant with a satisfactory approximation. As an example of this kind 
of systems can serve cyclic reactions of demethylation and methylation of 
methoxyphenolic compounds in culture of Nocardia and Rhodococcus [4, 10]. 
Veratric acid, when introduced to the culture of these bacteria, is converted 
into vanillic, isovanillic and protocatechuic acid and later it is reproduced 
to the concentration only slightly lower than the initial one. The period 
of oscillations amounts to a few hours. The maximum concentration of 
veratric acid rests almost constant for many periods of oscillations. In this 
case an assumption of the mass conservation seems to be quite natural and 
substantially simplifies the kinetic model.



On the other hand, analyses of cyclic systems are quite popular in 
papers devoted to models of neural nets. In 1970, D u n i n - B a r k o v s k y  
[5] proposed the model of neural oscillator consisting of n ordered neurons 
which form a ring. Each neuron inhibits the excitation of all of the others 
except for the next one. If such a ring of neurons is stimulated by a common 
source the wave of excitation will propagate around the ring. Later, the 
neuron oscillator of this kind has been found in medicinal leech [1 1 ]. General 
properties of rings of coupled biological oscillators have been analysed by 
Co l l i n s  and S t e w a r t  [1 , 2]. In this paper I would like to present the 
simplest cycle of enzymatic reactions whose dynamics is similar to that of 
neuron oscillator.

2. THE KINETIC MODEL OF CYCLIC REACTIONS WITH MASS 
CONSERVATION LAW

Let us consider the reaction cycle represented by Figure 2a. Kinetic 
interdependences in this cycle are based on the neuron oscillator (Figure 2 b) 
proposed by D u n i n -B  a r k o v s k y  [5]. The neurons 1 , 2 and 3 in the 
scheme in Figure 2b interact in such a way that each of them inhibits the 
preceding neuron (1—»3, 2—«1, 3—»2) and does not inhibit the following 
one. In a similar way in reactions shown in Figure 2a, the high concentration 
of any reagent (z, y or z) inhibits the production of the preceding substance 
and does not inhibit the production of the following one. Both systems have 
a prevailing direction of movement, the clockwise direction in Figures 2a and 
2b. In the case of neuron ring, asymmetry follows from the lack of inhibition 
in the 1 , 2, 3 direction. In chemical system (Figure 2 a) asymmetry follows 
from different expressions for reaction rates in clockwise and anticlockwise 
direction. According to Figure 2a the rate of the z —y y reaction, should 
be proportional to the expression z / ( l  +  zm) and is a monotonous function 
of substrate concentration (z). The opposite reaction y —> x has a rate 
proportional to y/(  1 +  ym). In this case, the reaction rate can reach 
a constant value (m  =  1 ) or can go through the maximum value and decrease 
(m > 1 ) on the growing substrate concentration y.

The changes of concentrations of the substances reacting according to 
the scheme in Figure 2a can be described by the following equations in 
dimensionless variables:

dx z +  ky kx x
~dt ~  1  + ym 1  +  zm l +  zm ’
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Fig. 2. a) The cycle of three interconverting substances. Reaction rates are proportional 
to the expressions at respective arrows; b) three neurons with inhibition. ES denotes the

source of excitation
a) Cykl przemian trzech substancji. Szybkości reakcji są proporcjonalne do wyrażeń 
umieszczonych przy odpowiednich strzałkach; b) trzy neurony z hamowaniem. ES —

źródło impulsów

dy x +  kz ky y
~dt ~  1  + zm ~ 1  + ym ~ 1  +  xm ’ 
dz y +  kx kz z
l i  ~  l + xm ~ 1  + zm ~ 1  + ym ’

( 1 )

where m  is a natural number. The equations (1) can describe the cycle 
of enzymatic reactions where each of the enzymes is repressed by the 
respective reagent, according to the mechanism proposed by J a c o b  and 
Mo nod [9]. If so, then the expression 1 / ( 1  +  zm) at the arrow connecting 
x and y in Figure 2a means that the substance 2  is a corepressor of the 
enzyme which catalyzes reaction x y. The concentration of this enzyme 
is approximately proportional to the expression 1 / ( 1  +  zm) if two following 
conditions are satisfied: 1 ) m  molecules of corepressor are used to produce 
one molecule of active repressor, 2) The rates of synthesis and decay of the 
enzyme is essentially higher than the rate of the reaction catalyzed by the 
enzyme [6 , 8 , 13]. As it is evident from equations (1), it has been assumed 
that all of the parameters characterizing repression are identical for the all 
enzymes. I would like to note that the equations (1) can describe also the 
cycle of reactions catalyzed by allosteric enzymes without referring to the 
regulation of enzyme synthesis. Parameter k is the ratio of rate constants for 
backward and direct reactions. It has been introduced in order to examine 
the significance of the reversibility of the reactions under consideration.



The dynamical system described by equations (1 ) has an obvious point 
of equilibrium with coordinates x = y = z = C, where C  is equal to one 
third of the sum of concentrations of the reagents x ,y  and z. The kind of 
the equilibrium is determined by eigenvalues of the system (1 ), that is by 
the solutions of the equation (2 ):

[dFi/dxj -  XSij] =  0 , (2 )

where F, are functions in the right of equations (1 ), Xj =  :r,y,z, A is an 
eigenvalue and 5,-j is the Cronecker’s symbol. At x = y = z = C, equation 
(2) gives the following solutions for A:

^ 2,3

where

0

3[kb — (k +  l)a] ±  i\/3\(k — l)a  — (k +  2 )6 |

1  m C m
a ~  1  +  Cm ’ -  (1 +  C m ) 2  '

(3)

The eigenvalue Aj =  0 points out to the existence of the integral

x + y + z = 3C (4)

The couple of complex eigenvalues A2  and A3  means that the equilibrium 
under consideration is a focus. Stability of this focus is determined by the 
sign of the real part of A2  and A3 . It appears that the real part of A2  and 
A3  can be positive only at enough high values of C  and k. Neither C  nor 
the dynamical variables can be negative as concentrations. If so, then it 
follows from (3) that real part of the complex eigenvalues is positive when 
the following two conditions are satisfied:

Cm >
k +  1

km — k — 1
and k >

m — 1
(5)

If any of the conditions (5) is not satisfied the singularity under consideration 
is a stable focus. When conditions (5) are satisfied, then the point of 
equilibrium x = y = z = C is an unstable focus. Any deviation from such 
equilibrium will produce oscillations with growing amplitude and we can 
expect that there is a limit cycle corresponding to autooscillations.

Due to the mass conservation (4) all of phase trajectories belong to the 
plane defined by equation (4). Even more, each trajectory must belong to the 
triangle portion of this plane corresponding to positive values of x, y and z,



since concentrations cannot be negative. In order to present phase portrait 
of the system in one plane I transform dynamical variables according to the 
relations (6 ):

£ =  {-y  +  z)/V2 ; x =  (2rj/y/E)+C]
r] = (2x -  y -  z)y/6; V = — (£/ v̂ 2 ) — {t}/\ / 6 ) +  C ; (6 )
C = (x +  y +  z ) /\ /3  =  C \/3; z =  (£/-\/2) -  (77/V 6) +  C .

The axes £ and 77 are parallel to the plane containing phase trajectories. 
The axis (  is perpendicular to this plane. As it follows from (4) and (6 ), 
the coordinate £ has a constant value equal to Cy/ 3 and determines the 
distance of the phase trajectory plane from the origin of coordinates. Let us 
consider an example with m = 3. Then, according to (5), k should be higher 
than 0.5. I put k =  1. Under accepted values of m and k, the bifurcation 
value of C is equal to 2 1 / 3  =  1.26. Figure 3 presents numerical solution 
and phase portrait of the system (1 ) for C =  2. It is clear from Figure 3 
that the limit cycle does really exist. Numerical solutions of equations (1) 
for m  =  3, k =  2  and different values of C  show that the higher is C the 
bigger is the oscillation amplitude and the more close to the edges of the 
accessible triangle is the limit cycle.

Solutions presented in Figure 3 allow us to predict qualitatively the 
behaviour of some systems without mass conservation which are similar to 
one described by equations (1). Let us consider, for example, the system 
described by the following equations:

dx z + y X X

dt 1  +  y3 1 + X 3 1  +  z3

dy X  + z y y
dt 1  +  z3 1  +  y3 1 + 13
dz y + x z z
dt 1 +  X 3 1  +  z3 1  + y3

(7)

In this system there is an outflow of the substance from the pool of x ,y  
and z to some other pathways. If the outflow is slow enough (ki «  1), 
then at C > 2 1 / 3  oscillations with diminishing amplitude take place in the 
system. The oscillation amplitude decreases because of the decreasing sum 
of concentrations of x, y and z, which is, in turn, caused by the outflow 
{ -k iy  in the equation for dy/dt). On decreasing the value of C below



Fig. 3. a) Dependence x(t) obtained as a numerical solution of equations (1 ) at m =  3, 
k =  1 and C  =  2; b) phase portrait of the system (1) with the same values of m, k and C 
a) Zależność x(t) otrzymana z numerycznego rozwiązania równań (1) dla m =  3, k =  1 

i C  =  3; b) portret fazowy układu (1) dla tych samych wartości m, k i C



21/3, the damping of oscillations appears in the system. The smaller is 
C  the bigger is logarithmic decrement of damping. In phase space, the 
triangle containing trajectory becomes smaller and smaller and approaches 
the origin of coordinates. The systems of such a kind are quite common 
in experiments, when we add to the bacterial culture a substance and we 
observe its extinction.

In vivo, we rather expect to find cycles of reactions where the pool of 
reacting substances is a balance between inflow and outflow. One of the 
simplest system of this kind can be described by equations (8 ):

dx
dt
dy
dt
dz
dt

z + y X X

1  +  y3 1 +  X 3 1  +  z3

x +  z y y
1  + z3

1CO+i—H 1 +  X 3

y + x z z
1  +  X3 1  +  z3 1  +  y3

(8)

where /  is a constant inflow of x. It follows from (8 ) that

^ { x  + y + z) = f  - k xy .

Hence, in equilibrium, y = f / k \ .  If /  is small in comparison with other 
items in equations (8 ) and k\ <<  1 , we will obtain a system with C of 
the order of f / k \ .  This time, however, the value of C oscillates because the 
inflow is constant and outflow is proportional to the oscillating value of y. 
The phase trajectory should be similar to that presented in Figure 3b but 
dimensions of the accessible triangle and its distance from the coordinates 
origin should oscillate with the same frequency as y. In spite of the fact that 
the system represented by equations (8 ) is explicitly open, the oscillations 
are not caused by the in- and outflow of substances but they are due to the 
internal dynamics of cyclic reactions.

3. SIGNIFICANCE OF THE REVERSIBILITY OF REACTIONS

Oscillating chemical systems are postulated to be far from thermodyna­
mical equilibrium. It is also often postulated that some reactions go on in 
one direction. Such an assumption usually simplifies calculations. The sys­
tem under consideration must be essentialy remote from thermodynamical 
equilibrium because reactions described by equations (1 ) do not satisfy the



principle of detailed equlibrium. In spite of this, we have to assume that 
reactions can go on in both directions beeing catalyzed by two different en­
zymes. The possibility of interconversions in both directions is a necessary 
condition for the existence of oscillative solutions. The word “reversibility” 
means here that reactions in both directions can have place. If clockwise 
reactions in the scheme of Figure 2a were irreversible, then we should put 
in equations (1) k =  0. At k =  0, the real part of eigenvalues A2 , 3

3
Re(X2,3) -  - 2 ( 1  +  Cm)

and is negative at any value of C. So, the equilibrium x =  y =  z = C  is 
then a stable focus and only damped oscillations are possible in the system. 
In this way, we demonstrate that reversibility of reactions constitutes the 
necessary condition for the existence of autooscillative regime in the cycle 
of three interconverting substances like that represented by Figure 2a and 
equations (1). As it states inequality (5), autooscillations are possible only on 
condition that the ratio of rate constants for backward and direct reactions 
is higher than l / ( m — 1 ).

However, the instability of focus x = y =  z = C not always means the 
existence of autooscillations. At high enough values of k, a few new points 
of equilibria appear in the system. At least, some of them are stable. As 
it follows from (5) oscillations are possible at m  =  2 , C =  2  and k > 1 . 
Numerical solutions of respective equations show that at k =  14 we can 
still obtain oscillations, but at k — 15 there is only aperiodic relaxation 
to approximate values of x =  4.796, y =  1 and z =  0.204. The cyclic 
permutation x —>■ y —> z —> x will give us two other points of stable 
equilibrium. Additional singularities do not belong to any of symmetry axes 
of the triangle containing phase portrait of the system and it is difficult or 
even impossible to find their coordinates in analytical form. For given values 
of parameters m, k and C, stable equilibria can be found by solutions of 
differential equations. But the system can also have some points of unstable 
equilibrium which cannot be identified in this way. In order to give at least 
an approximate shape of the phase portrait of the system at high values of 
k, I will describe the limit case with m — 2 and infinitely high k. The infinite 
value of k corresponds to the case, when only anticlockwise reactions take 
place in the system shown in Figure 2a. In this case, there are no oscillations 
in the system. The unstable focus at x = y = z = C  is then surrounded by 
three stable nodes and three saddle points. So, we have to do with a trigger 
system having three points of stable equilibrium. Additional singularities 
appear at C = 2y/2/3, when the central point of equilibrium is still stable.



The equilibrium points of such a system are shown in coordinates £, rj (6 ) 
in Figure 4. For high finite values of k, general picture of the system should 
be similar to that in Figure 4. However, the points of stable equilibria ( 3, 5 
and 7 in Figure 4 ) should be displaced by a certain small angle in respect 
to those shown in Figure 4. I cannot say anything about the localization of 
unstable equilibria.

Fig. 4. Points of equilibria for anticlockwise reactions of the cycle shown in Figure 2 a 
(equations (1 ) with infinitely high k). Points 2 , 4 and 6  are saddle points while points 3, 
5 sind 7 are stable nodes; a) C is slightly smaller than 1; point 1 is then a stable focus;

b) C  higher than 1; point 1 is then an unstable focus 
Punkty równowagi dla wstecznych reakcji cyklu z Ryc. 2 a. (układ dynamiczny ( 1 ) przy k 
dążącym do nieskończoności). Punkty 2, 3 i 6  są punktami siodłowymi. Punkty 3, 5 i 7 
są węzłami trwałymi; a) C  nieznacznie mniejsze od 1 — punkt 1 jest ogniskiem trwałym; 

b) C większe od 1 — punkt 1 jest ogniskiem nietrwałym

4. RELAXATION OSCILLATIONS AT HIGH VALUES OF M

If m  is big enough, then relaxation oscillations can take place in the 
system represented by Figure 2 a and equations (1). In a limit case, when m 
becomes infinitely high, expressions of the type 1 / ( 1  +  x™) can be simplified 
as follows:

1/(1 + i-71) — >■ /(* i) =  <
1

0.5
0

for
for
for

0  < X{ < 1  

X \  =  1 
Xi > 1

(9)

where i t- =  x, y, z.
Insertion of the^pproximatiori>(9) into equations (1 ) makes of them a set 

of linear equations. The equations, however, change their particular shape 
each time any dynamical variable crosses the value 1. Let us suppose, for



example, that x < 1 , y > 1  and z < 1. Then, at k =  1, the equations (1), 
with accounting (9), take a form:

dx/dt  =  —2x ;
dy/dt =  x + z -  y; (1 0 )
dz/dt  =  y +  x — z .

As can be seen from (10), the mass conservation law (4) is still valid. 
Solution of the system (10) consists of monotonous functions of time, which 
can attain their highest and lowest values only at limits of the interval, 
where equations (10) are valid. The limits of such intervals are determined 
by the moments, when any of variables x ,y  or z crosses the value 1. Let us 
accept, for example, that at t =  0, x =  1, y > 1 and z < 1. It is easy to 
check, taking into account (1) and (9), that at such conditions dx/dt < 0 and 
except for the very initial moment the equations (1 0 ) describe our system. 
The solution of (10) in form:

x — exp(—2 1)
y — Aexp(—2t) +  1.5C (11)
z =  — ( 1  +  A) ex p (- 2 f) +  1.5C

where A is an integration constant, satisfies the accepted initial conditions 
and conservation law (4). The reactions will be properly described by (10) 
and (1 1 ) until the variable z reaches the value of 1 , that is, till the moment 
t\ defined by the following relation:

exp(—2 *0 =  3,C ~ 2., or h  =  0.5In 2(* +  ^  . (1 2 )
; 2(1 + A) 3 C - 2  K ’

Later, we will have z > 1  and as previously x < 1  and y > 1  and instead of
(10) the system will be described by equations (13):

dx/dt  =  — x ;
dy/dt =  - y ;  (13)
dz/dt = y +  x .

As initial conditions for equations (13) I accept the values given by functions
(11) at t = t\ (12). Then, equations (13) have a solution:

3 C - 2
2(1 + A)

ex p (-f) ;



(14)

z = ( 1  -  3C) exp(-£) +  3C .

The moment £ =  0 in formulae (14) coincides with £ =  £i in formulae 
(11). The equations (13) and their solution (14) are valid till the variable y

and z > 1 and then we will be able, using (9), to give equations (1) the

It is easy to see that equations (16) can be obtained from equations (10) 
by a circular substitution according to the scheme: x —> y —> z —> x. Of 
course, initial conditions for equations (16) are given by functions (14) at 
£ =  £ 2  which is defined by (15). Let us now suppose that the point with 
coordinates xo, yo, zq obtained from (1 1 ) at £ =  0  belongs to the limit cycle. 
Then the point X2 ,y 2 ,Z2 , obtained from (14) at £ =  £2 , will also belong to 
the same limit cycle. Moreover, the circular substitution I have mentioned 
above will be valid not only for equations (1 0 ) and (16) but also for their 
initial conditions. So, the following relations should be satisfied:

The first of the above equalities is a tautology (1=1). The two other lead to 
the same expression for the integration constant A:

becomes equal to 1. This moment of time (£2) is determined by relation:

or (15)
, . A{3C -  2) +  3C(1 +  A)
£2 = In --------- — ---- —----------

When the variable y becomes smaller than 1, then we will have x < i .y  < 1

shape:

dx/dt = z + y -  x 
dy/dt =  — 2  y 
dz/dt = y + x — z .

(16)

£0 =  2/2 5

yo = 22 ; (17)
Z q  — ®2 •

A =
9C 2 -  1 2 C +  2  +  [3(27C4 -  36C3 +  16C -  4) ] 1 / 2 

4(3C -  1)
(18)



At a given value of C, the formula (18) allows us to calculate A and then 
calculate coordinates of three points belonging to the limit cycle.

It would be useful to demonstrate how this formalism works in one 
exemplary case. Let us put C = 2. Then one obtains from (18) A =  1.8358. 
The insertion of this value and t =  0 into (1 1 ) gives x0 =  1 , y0 = 4.8358 and 
zq =  0.1642. From (1 2 ) we obtain t\ =  0.1746. At this moment, equations 
(10) and (11) are replaced by equations (13) and (14). Introducing into (1 1 ) 
the value of A and t = t\ we obtain coordinates of another point belonging 
to the limit cycle: X\ =  0.7053, 2/1 =  4.2947 and z\ = 1 . The same values 
of xi,  i/i and z\ can be obtained from (14) at t =  0. The equations (13) 
and (14) are valid till t =  t2 =  1.4574. The letter figure follows from (15). 
Insertion of t = t2 in (14) results in coordinates of one more point belonging 
to the limit cycle: X2 =  0.1642, 2/2 =  1 and z2 =  4.8358. Having applied 
transformation (6 ) to these three points one obtains their coordinates in the 
plane £, 77, which can be respectively denoted as (£o> Vo), (£ii Vi) and ( £ 2 1  %)• 
The rest of the characteristic points of the limit cycle can be obtained from 
(£0 , Vo) and (£1 , T)i) after rotation the coordinates £, T) by 120 or 240 degree. 
In particular, the point (£2 ,^ 2 ) can be obtained from the point {£o,Vo) 
after rotation the coordinates by 120 degrees. It can be demonstrated that 
functions (11) as well as those of (14) give linear dependences between 
ar, 2/ and z. Respective dependences between £ and 77 must be also linear. 
So, the obtained characteristic points of the limit cycle can be joined by 
straight lines. The limit cycle arising from this procedure and corresponding 
to relaxation oscillations is shown in Figure 5b. For comparison, Figure 5a 
presents another limit cycle obtained from computer solution of equations 
(1 ) at m =  1 0  which is the value substantially higher than the minimum 
m  =  2, but still far from infinity. The period of relaxation oscillations is 
equal to 3(ti +  t2).

It seems to me that this kind of relaxation oscillations can be realized 
in neuron oscillators, like the one shown in Figure 2b, where threshhold 
phenomena play an important role. However, in this case, dynamic varia­
bles should be interpreted as the probability (or frequency) of the spike 
generation by neurons 1, 2 and 3 in Figure 2b.

4. CONCLUSIONS

The presented analysis of equations (1) and related equations (7, 8 , 10, 
13 and 16) allows to formulate tentatively minimum criteria, which are to be 
satisfied by a mass conserving system in order to produce chemical oscilla-



Fig. 5. The limit cycle of the dynamical system (1) at h =  1 and C =  2; a) computer 
solution for m =  1 0 ; b) relaxation oscillations at infinitely high m (analytical solution) 

Cykl graniczny układu dynamicznego (1 ) dla k =  1 i C =  2 ; a) rozwiązanie numeryczne 
dla m =  1 0 ; b) oscylacje relaksacyjne dla bardzo dużych m — rozwiązanie analityczne

tions. The system should contain at least three interconverting substances. 
In a system consisting of two reagents, for any singularity, one eigenvalue 
must be equal to 0  (because of mass conservation) and another will be a 
solution of a linear algebraic equation. Consequently, this second eigenvalue 
cannot be complex. So, in such a system, there are no equilibria of the focus 
type and oscillations are impossible. By the way, at least three forms of 
protein should take part in oscilllations of enzymatic activity in vitro [1 2 ].

The nonlinearity of kinetics should be sufficiently strong. In the case of 
the cycle of three reagents, the parameter m  (1 ) has to be higher than 1  

(see (5)).
Each of three reactions constituting a cycle should be reversible. More 

precisely this criterion has been formulated in relation (5).
Autooscillations can appear if the sum of the concentrations of reagents 

is sufficiently high (see (5)).
It also follows from the above consideration that the stream of substances 

is not a necessary condition of autooscillations. Even more, the case presen­
ted by equations (8 ) demonstrates that oscillations in a stream of reagents 
can be caused by the internal kinetics of the cyclic reactions and not by 
the stream of substances. Most probably, the stream of reagents can evoke 
oscillations in cyclic systems with multiple equilibria, like that presented in 
Figure 4. This question has yet to be investigated.



Finally, it is necessary to note that autooscillations are a dissipative 
phenomenon and, especially in mass conserving systems, the source of free 
energy has to be specified in each particular case. It seems to me that 
the source of free energy is a crucial problem for any explanation of the 
enzymatic activity oscillations in vitro.
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STRESZCZENIE

W niniejszym artykule przeanalizowana została możliwość pojawienia się oscylacji 
samowzbudnych w zamkniętym cyklu przemian trzech reagentów. Sformułowane zostały 
warunki konieczne wystąpienia reżimu autooscylacyjnego w takim układzie. Równania ki­
netyczne powinny charakteryzować się dostatecznie silną nieliniowością, a przemiany do­
wolnej pary z trzech reagentów muszą zachodzić w obie strony. Zademonstrowana została 
możliwość oscylacji relaksacyjnych przy bardzo silnej nieliniowości równań kinetycznych.


