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1. INTRODUCTION

Shortly after the discovery of high Tc superconducting (HTS) oxides [1] 
with transition temperatures Tc around 100 K much exceeding the most 
optimistic estimation of Tc resulting from electron-phonon interaction [2] 
the hot discussion started about the applicability of BCS theory [3] and 
electron-phonon (EP) mechanism [4]. At the beginning of HTS era the 
electron-phonon mechanism has been completely dismissed mainly on the 
theoretical grounds. The subsequent experimental discoveries have shown 
that electron-phonon interaction, though perhaps not responsible alone for 
the superconductivity in these materials, does play an important role and 
should not be abandoned completely.

The issue of competing retarted electron-phonon and usually assumed 
nonretarded Coulomb interactions is valid also for materials with low and 
even more with elevated transition temperatures. The serious studies of the 
interplay between them started early on with work of E l i a s h b e r g  [5], 
A n d e r s o n  and Mo r e l  [6] and others [7].

The parent compounds of superconducting oxides are antiferromagnetic 
insulators with Neel ordering temperature Tpj as high as 250 K in LaCuC>4 .



By doping with Sr or Ba T/v decreases to zero. The neutron scattering studies 
show the persistence of sizeable antiferromagnetic correlations deep in the 
metallic state [8]. This points out that short range Coulomb interactions are 
important in the description of (at least) normal state properties of HTS, 
making the materials strongly correlated systems.

It is the purpose of this paper to derive Eliashberg type [10, 12, 13] 
equations valid for the strongly correlated superconductor with electron- 
-phonon interaction. To this end we assume the validity of Mi g d a l  [11] 
theorem which means that we assume relatively weak electron-phonon inte
raction. The strong correlations described by the Hubbard model will be tre
ated via slave[hoson method. The derived equations are strongly anisotropic 
and lead to the possibility of various types of symmetries of order parame
ter. The relative stability of various symmetries does depend on the carrier 
concentration and other parameters. Recently there appeared a number of 
studies [14-25] related to the presented here. Their conclusion can be gene
rally summarised as showing the importance of electron-phonon interaction 
in proper description of various aspects of correlated superconductors.

Starting with the single band Hubbard Hamiltonian

Ht = ę  t t f c i c ia -  MEt(TC+Cl<T +  u E,n,t nt;  = H0 + U (1 )
i j c

we can introduce the interaction with lattice vibrations by observing that 
at nonzero temperature the actual positions {Ri} of ions differ from the 
equilibrium ones {$■}. Accordingly the hopping parameters t f f  = tdet(Ri~  
R j )  = t ( R ?  -  R J — U i + U j )  do depend on the displacements ut- from 
equilibrium positions. Expanding t f j{ up to linear order in (u, -  U j )  and 
denoting =  f(.R° -  R°) we get

Ho =  Y , u , c i c „ - » Y . c Z c« -+  E  T t„ < C iC i°
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Here T*s =  gfifeSis -
We supplement the above Hamiltonian with another piece describing the 

lattice
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Here P, is the lattice momentum, M  denotes ion mass, X^-dynamical 
matrix. The quantised version of lattice Hamiltonian may be written in the 
form

qv
Writing the displacement operator u f in terms of phonon-creation and 

annihilation operators a+„, aqu we get

^  qu ij<7
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e°(q) is the a -th  component of the phonon-polarisation vector, u denotes 
the phonon branch.

Thus the complete Hamiltonian describing electrons, phonons and 
electron-phonon interaction in presence of correlations consists of terms (2), 
(3) and (4) supplemented with the Hubbard term U. Now the point is that 
for large U values the states corresponding to doubly occupied sites are 
pushed to high energies. In the limit U = oo they are unimportant at all 
and we expect the sites to be singly occupied or empty. Thus in general the 
condition quantifying this limit is n,- =  Y a  Cf^Cio ^  1.

The idea of slave bosons is to represent the physical electron in the 
U = oo limit by the fictitious fermion, described by the operators C,^(C,v) 
and an auxiliary boson bf(bi). The condition of no double occupancy of a 
site can now be expressed in formally exact form

Qi = T , ć tĆur + btbi = l .  (6)
a

To keep track of the constraint one usually introduces a set of Langrange 
multipliers A, and adds to the Hamiltonian a term Y i  K{Qi — 1), neglecting 
at the same time the term proportional to U.



The model can thus be written as

H = £  tl3C t A ^ b j  ~ M +  £  A,- ( £  C+CtCT +  6+6, -  1) +
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In the following we shall use mean field type of approximation to treat 
the strong correlations and their influence on the electron and phonon 
spectra.

2. MEAN FIELD TREATMENT

In this approach one assumes A,- = A and treats boson operators as 
c-numbers with

(6,) =  (6+) = r 1/2 (8)

Minimalisation of the energy E  =  (H ) with respect to r and A leads to the 
equations

r =  1 - ^ £ ( Ć £ Ą < .> ;  (9a)
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Expectation values in (9) can be easily obtained from corresponding pro
pagators by means of their spectral representation. To do this we use ha
miltonian (7) with boson operators replaced as in (8). Explicitly we have in 
Fourier space

B  = E K - c + ^ F ł  +  ^ I  r - 1) +
k a
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Q is the parameter describing the relative change of t{j with small changes 
of distance between W  and R°; and a is lattice constant. Note that MJ =1 J k q v
—M ^ .  In the following we shall assume that electrons couple to longitudinal 
phonons only and neglect the subscript v. There are two changes to the 
spectrum of electrons in the mean field approximation for slave bosons. 
First is the band narrowing described by r 2 and its shift described by A. 
The spectrum of noninteracting fermions in the mean field is given by 
(r2££ -  \x +  A) instead of -  n) of original electrons (i.e. for U =  0). 
For the half filled band n = 1 the system is localised (r =  0).

To properly describe the superconducting state in the system at hand 
one has to work in site representation. The important point is that in consi
dered U = oo limit the double occupation of a given site is strictly forbidden. 
This means inter alia that correlation functions (c,fCj4.) describing supercon
ducting pairs vanish exactly for i =  j ,  i.e. the on-site pairing is forbidden. 
On the other hand the correlations of the type (c^cl(T) measure the average 
number of carriers at site i, and are allowed to enter into formula. This im
portant fact has first been noted by Z i e l i ń s k i  and coworkers [14, 18] and 
leads, as we shall see, to severe changes in the form of Eliashberg equations.

To derive Eliashberg equations we use the matrix formulation of the 
theory [12, 13]. One defines frequency dependent matrix Green’s function 
in site representation

~ v «  cti\ch » -  «  ct\Ca »u, J
and writes the equation of motion for it. Following standard procedure [12] 
we obtain

^{[u;fo  +  (fi -  A)r3] 6,i -  r2t«f3 -  Mn(u>)}Gij{u) = 6ijf0 . (13)
l

Here f0 1 0 
0 1

0 1 
1 0 h

i o
0 -1 are Pauli

matrices and Mu denotes the matrix self-energy, which in the present case 
is given by (from now on we omit the sign ~  on fermion operators)
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Beyond mean-field approximation for slave bosons there are also other con
tributions from two and three particle scattering events: fermion-phonon, 
fermion-boson and mixed fermion-phonon-slave boson.

Making use of spectral representation and approximating the resulting 
correlation functions in the formula for via correlators which can
be calculated from electron and phonon Green’s functions we get a self- 
consistent equations for self-energy. The next important step on the way of 
derivation of Eliashberg equations is Fourier transformation. The important 
issue is the following. The normal part of self-energy is proportional to the 
correlator (Cy-fC^) and all possible values of i1, j '  are allowed. Contrary to 
that the anomalous part depends on < Cy-fCy^ > and only values i' ^  j '  are 
allowed. The point is that for i' =  j '  the correlator describes the amplitude 
for two electrons with opposite spins to be placed on the same site (on-site 
pair). In the U =  oo limit, we are considering here, this is forbidden and 
only values of i' ^  j '  are allowed. This together with the experimental in
formation on the short correlation length justifies the assumption that i ' , j '  
are nearest neighbours sites. From the theoretical point of view we have 
a possibility to study the properties of the system in dependence on the 
spatial extent of the pairs.

The Fourier transform of M,j is denoted by E^(w). To proceed, we 
expand matrix self-energy Ejt(u>) as

Śfc(w) =  w[l -  Zk(u)]t0 +  <t>k{u)ri +  x*(w)f3 (15)

and write down the equations for various parts of it. We get the real 
frequency axis Eliashberg equations in the form

u[l -  Z^u)]
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where we denoted Dp(u>i) =  [uiZfr(u>i)]2 -  [</>£, (u^)]2 -  [r2ep -  /J, + \  + 
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Equations (16) form a set of generalised Eliashberg equations. Note the 
modifications of these equations in comparison to standard ones [13]. 
Due to strong correlations not only the electron band energies have been 
modified (band narrowing r 2 and band shift A) but also two different kernels 
K^,(u>) and K^ , (u )  appear. This very important fact (first discovered by 
Z i e l i ń s k i  and cowerkers [18]) makes Eliashberg equations anisotropic and 
has a strong influence on the structure of the theory. In the correlated system 
the mass renormalisation due to electron-phonon interaction is different from 
the pairing parameter. The first is calculated from the kernel while
the second from As a result the anisotropy of the superconducting
order parameter does not follow the anisotropy of the interaction but is in 
fact much more complicated as can be inferred from comparison of (17) and 
(18). Both parameters will enter the McMillan [13] type of the expression 
for the transition temperature.

The equation for Xfc(w) is usually neglected. In the theory valid for 
strongly corelated superconductors with short coherence length it has to 
be taken into account as it leads to nontrivial modification of the relation 
between chemical potential /x and carrier concentration n. The factor j (k)  
entering the formula (18) is connected with the structure of the pairing field. 
It has the same k dependence as the band energies e(k) for pair electrons 
located at nearest neighbour sites. One of the interesting problems will be 
a systematic study of the dependence of superconducting properties of the 
system on spatial extent of pairs.



The study of these and other consequences of generalised Eliashberg 
equations will be presented elsewhere [25].

In conclusion we have presented the derivation of the Eliashberg 
equations for the system with strong electron-electron and electron-phonon 
interactions. The results show the importance of the correlations which make 
the superconducting order parameter very anisotropic.
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STRESZCZENIE

W artykule przedstawiono wyprowadzenie uogólnionych równań Eliashberga opisu
jących własności silnie skorelowanych nadprzewodników. Do opisu korelacji zastosowano 
technikę bozonów pomocniczych w granicy nieskończenie silnego odpychania na węźle. 
Uzyskane równania są anizotropowe. Własności stanu normalnego określone są za pomocą 
standardowego jądra całkowego, natomiast jądro całkowe równania opisującego nadprze
wodnikowy parametr porządku jest silnie zmodyfikowane. Prowadzi to do konieczności 
odróżniania parametrów sprzężenia elektron-fonon w stanie normalnym i nadprzewodzą
cym. Oba parametry wejdą do wzorów na temperaturę przejścia układu w stan nadprze
wodnictwa.


