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On zeros of functions in Bergman

and Bloch spaces

Abstract. We generalize some necessary conditions for zero sets of Ap

functions and Bloch functions obtained in [H] and [GNW], respectively.

1. Introduction. Let Ap , 0 < p < ∞, denote the Bergman space of
functions f analytic in the unit disc D satisfying

‖f‖p =
(

1
π

∫∫
D
|f(z)|p dx dy

)1/p

< ∞ .

A function f analytic in D is said to be a Bloch function if

‖f‖B = |f(0)|+ sup
z∈D

(1− |z|2)|f ′(z)| < ∞ .

The space of all Bloch functions will be denoted by B . The little Bloch
space B0 consists of those f ∈ B for which

(1− |z|)|f ′(z)| → 0, as |z| → 1.
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For 0 < r < 1, set
M∞(r, f) = max

|z|=r
|f(z)|.

and let us define A0 as the space of all functions f analytic in D and such
that

M∞(r, f) = O
(

log
1

1− r

)
, as r → 1.

The following strict inclusions are well known:

B0 ⊂ B ⊂ A0 ⊂
⋂

0<p<∞
Ap.

If f is an analytic function in D, f(0) 6= 0 and {zk}∞k=1 is the sequence
of its zeros repeated according to multiplicity and ordered so that |z1| ≤
|z2| ≤ |z3| . . . , then {zk} is said to be the sequence of ordered zeros of f .

In 1974 Horowitz [H] obtained the following necessary condition for or-
dered zeros of Ap functions.

Theorem H. Assume that f ∈ Ap, 0 < p < ∞, and {zk} is the ordered
zero set of f . Then for all ε > 0,∑

zk 6=0

(1− |zk|)
(

log
(

1
1− |zk|

))−1−ε

< ∞ .

An analogous result for the space A0 was obtained in [GNW]

Theorem GNW. If f ∈ A0 and {zk} is the ordered zero set of f , then for
all ε > 0 ∑

|zk|>1− 1
e

(1− |zk|)
(

log log
(

1
1− |zk|

))−1−ε

< ∞ .

These theorems are best possible in the sense that ε > 0 cannot be
omitted. More precisely, Horowitz showed that for each 0 < p < ∞ there is
f ∈ Ap such that the series∑

zk 6=0

(1− |zk|)
(

log
(

1
1− |zk|

))−1

diverges.
It was also shown in [GNW] that there is a function f ∈ B0 for which∑

|zk|>1− 1
e

(1− |zk|)
(

log log
(

1
1− |zk|

))−1

= ∞ .

In this paper we generalize the above stated results and we prove the fol-
lowing theorems.
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Theorem 1. Let h be a nonincreasing function in [r0, 1) for some 0 < r0 <
1, such that lim

r→1−
h(r) = 0 and

(1)
∫ 1

r0

−h′(r) log
1

1− r
dr < ∞ .

If f ∈ Ap with f(0) 6= 0, and z1, z2, . . . are ordered zeros of f then∑
|zk|>r0

(1− |zk|)h(|zk|) < ∞ .

Theorem 3. Let h be a nonincreasing function in [r0, 1) for some 1− 1
e <

r0 < 1, such that lim
r→1−

h(r) = 0 and∫ 1

r0

−h′(r) log log
1

1− r
dr < ∞ .

If f ∈ A0 with f(0) 6= 0, and z1, z2, . . . are ordered zeros of f then∑
|zk|>r0

(1− |zk|)h(|zk|) < ∞ .

2. Necessary conditions for Ap zero sets. For a function f analytic
in D, let n(r, f) denote the number of zeros of f in the disc {|z| ≤ r < 1},
where each zero is counted according to its multiplicity. We also set

N(r, f) =
∫ r

0

n(t, f)− n(0, f)
t

dt + n(0, f) log r, 0 < r < 1.

Note that if f(0) 6= 0, then

(2) N(r, f) =
∑
|zk|≤r

log
r

|zk|
.

Indeed, for 0 < r < 1 integration by parts gives

N(r, f) =
∫ r

0

n(t, f)− n(0, f)
t

dt + n(0, f) log r

= [(n(t, f)− n(0, f)) log t]r0 −
∫ r

0

log t dn(t, f) + n(0, f) log r

= n(r, f) log r −
∑
|zk|≤r

log |zk| =
∑
|zk|≤r

log
r

|zk|
.
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With this notation the Jensen formula for analytic functions can be writ-
ten in the following form

(3)
1
2π

∫ 2π

0

log |f(reiθ)| dθ = log |f(0)|+ N(r, f) .

For simplicity, if the function f is fixed we will write n(r) and N(r)
instead of n(r, f) and N(r, f), respectively.

We need the following lemma due to Shapiro and Shields [SS].

Lemma SS. Let f ∈ Ap, f(0) 6= 0. Then

n(r) = O
(

1
1− r

log
1

1− r

)
, as r → 1,

N(r) = O
(

log
1

1− r

)
, as r → 1 .

Now we are ready to prove the first result stated in the introduction.

Proof of Theorem 1. For 0 ≤ r < 1 define

ϕ(r) =
∑
|zn|≤r

(1− |zn|) ,

and note that by (2)

N(r) =
∑
|zn|≤r

log
r

|zn|
=
∑
|zn|≤r

log
1
|zn|

+
∑
|zn|≤r

log(1− (1− r))

≥ ϕ(r)− C(1− r)n(r) ,

for a positive constant C, where the last inequality follows from the equality

lim
x→0+

log(1− x)
x

= −1 and f(0) 6= 0.

Thus using Lemma SS we obtain

(4) ϕ(r) ≤ N(r) + C(1− r)n(r) ≤ C log
1

1− r
.

Now note that our assumptions on h insure

(5) lim
r→1−

h(r) log
1

1− r
= 0 .
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Indeed,

h(r) log
1

1− r
= (h(r)− h(1−)) log

1
1− r

= log
1

1− r

∫ 1

r

−h′(t)dt

≤
∫ 1

r

−h′(t) log
1

1− t
dt → 0, as r → 1 .

Integrating by parts and appealing to (4) and (5) give

∑
|zk|≥r0

(1− |zk|)h(|zk|) =
∫ 1

r0

h(r)dϕ(r) = [h(r)ϕ(r)]1r0
+
∫ 1

r0

−h′(r)ϕ(r)dr

≤ lim
r→1−

Ch(r) log
1

1− r
+
∫ 1

r0

−h′(r) log
1

1− r
dr

=
∫ 1

r0

−h′(r) log
1

1− r
dr < ∞ . �

It is worth noting here that Theorem H is included in the above the-

orem because h(r) =
(

log
1

1− r

)−1−ε

, ε > 0, satisfies the hypothe-

ses of Theorem 1. Also a necessary condition for Ap zero sets given in
[W] can be deduced from Theorem 1. To see this define log1 x = log x,
logn x = log(logn−1 x), for n = 2, 3 . . . and sufficiently large x. For a given
positive integer n let xn denote the solution of the equation logn−1 x = 0.

For 1− 1
xn

< r < 1 we set

h(r) =

(
n−1∏
i=1

logi

1
1− r

)−1(
logn

1
1− r

)−1−ε

.

Then the function h is nonincreasing in (rn, 1), where 1 − 1
xn

< rn < 1,
and

h′(r)

=−
∏n

i=2 logi
1

1−r +
∏n

i=3 logi
1

1−r +. . .+
∏n

i=n−1 logi
1

1−r +logn
1

1−r +1+ε

(1− r)
(∏n−1

i=1 logi
1

1−r

)2 (
logn

1
1−r

)2+ε .

Moreover,
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∫ 1

rn

−h′(r) log
1

1− r
dr

=
∫ 1

rn

∏n
i=2 logi

1
1−r +· · ·+

∏n
i=n−1 logi

1
1−r + logn

1
1−r +1 +ε

(1− r)
(∏n−1

i=1 logi
1

1−r

)2 (
logn

1
1−r

)2+ε log
1

1− r
dr

<

∫ 1

rn

n
∏n

i=1 logi
1

1−r

(1− r)
(∏n−1

i=1 logi
1

1−r

)2 (
logn

1
1−r

)2+ε dr

=
∫ 1

rn

n

(1− r)
∏n−1

i=1 logi
1

1−r

(
logn

1
1−r

)1+ε dr < ∞ .

Consequently, if {zn} are ordered zeros of f ∈ Ap then

∑
|zk|>rn

1− |zk|

log
(

1
1−|zk|

)
. . . logn−1

(
1

1−|zk|

)(
logn

(
1

1−|zk|

))1+ε < ∞ .

The next theorem shows that the assumption (1) is essential.

Theorem 2. Let h ∈ C1 be a nonincreasing function in [r0, 1) for some
0 < r0 < 1, such that lim

r→1−
h(r) = 0 and∫ 1

r0

−h′(r) log
1

1− r
dr = ∞.

Then there exists a function f ∈ Ap, f(0) 6= 0, whose zeros z1, z2, . . .
satisfy ∑

|zk|>r0

(1− |zk|)h(|zk|) = ∞ .

Proof. Let µ > 1, β > 2, β ∈ N. We set

f(z) =
∞∏

k=1

(1− µzβk

), z ∈ D .

Horowitz [H] showed that f ∈ Ap for some µ and β.
We first show that the zeros {zk} of the function f satisfy the condition

ϕ(r) =
∑
|zk|≤r

(1− |zk|) ≥ C log
1

1− r
.
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The zeros of f lie on the circles |z| =
(

1
µ

) 1
βi

, i = 1, 2, . . . . Hence

|zk| =
(

1
µ

) 1
β

= r1 for 1 ≤ k ≤ β ,

|zk| =
(

1
µ

) 1
β2

= r2 for β + 1 ≤ k ≤ β + β2 ,

and

(6) |zk| =
(

1
µ

) 1
βn

= rn for Nn−1 < k ≤ Nn ,

where

Nn = β + β2 + · · ·+ βn =
β(βn − 1)

β − 1
, n = 1, 2, . . . .

Thus we have∑
|zk|≤rn

log
1
|zk|

= β log
1
r1

+ β2 log
1
r2

+ · · ·+ βn log
1
rn

= β log µ1/β + β2 log µ1/β2
+ · · ·+ βn log µ1/βn

= n log µ .

Since for x ∈ [r1, 1)

C log
1
x

< 1− x ,

with a positive constant C, we get

ϕ(rn) =
∑

|zk|≤rn

(1− |zk|) ≥ Cn log µ .

It follows from (6) that

1
1− rn

<
βn

C log µ
, n = 1, 2, . . . ,

and consequently,

n >
1

log β
log

1
1− rn

+ log(C log µ) .

This implies

ϕ(rn) ≥ C log
1

1− rn
, n = 1, 2, . . . .
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If rn < r < rn+1, then

ϕ(r) ≥ ϕ(rn) > Cn log µ > C(n + 1) > C log
1

1− rn+1
> C log

1
1− r

.

Putting r∗ = max[r0, r1] and integrating by parts gives

∑
|zk|≥r∗

(1− |zk|)h(|zk|) =
∫ 1

r∗
h(r)dϕ(r) ≥ −h(r∗)ϕ(r∗) +

∫ 1

r∗
−h′(r)ϕ(r)dr

≥ −h(r∗)ϕ(r∗) + C

∫ 1

r∗
−h′(r) log

1
1− r

dr = ∞ . �

Applying Theorem 2 to the function

h(r) =

(
n∏

i=1

logi

1
1− r

)−1

,

we obtain Remark 1 in [W].

3. Zeros of A0 functions.

Proof of Theorem 3. It follows from the definition of the space A0 and
from the Jensen formula (3) that zeros of f ∈ A0 satisfy

(7) N(r) = O
(

log log
1

1− r

)
, r → 1 .

This in turn implies

n(r) = O
(

1
1− r

log log
1

1− r

)
and ϕ(r) = O

(
1

1− r
log log

1
1− r

)
.

Now the claim follows by the same method as in the proof of Theorem 1. �

Theorem 3 is best possible in the following sense.

Theorem 4. Let h ∈ C1 be a nonincreasing function in [r0, 1) for some
0 < r0 < 1, such that lim

r→1−
h(r) = 0 and∫ 1

r0

−h′(r) log log
1

1− r
dr = ∞ .

Then there exists a function f ∈ B0, f(0) 6= 0, whose zeros z1, z2, . . .
satisfy
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∑
|zk|>r0

(1− |zk|)h(|zk|) = ∞ .

Proof. It was shown in [GNW] that there exists a function f ∈ B0 satisfying
the inequality

N(r, f) ≥ β log log
1

1− r
, r0 < r < 1 ,

for a positive constant β and r0 ∈ (0, 1).
Integrating by parts twice we get∑

|zn|≥r0

(1− |zn|)h(|zn|) =
∫ 1

r0

(1− r)h(r)dn(r)

≥ O(1) +
∫ 1

r0

(h(r)− (1− r)h′(r))n(r) dr

≥ O(1) +
∫ 1

r0

rh(r)
n(r)

r
dr

= O(1) +
∫ 1

r0

rh(r) dN(r)

≥ O(1) +
∫ 1

r0

(−h(r)− rh′(r))N(r) dr

= O(1) +
∫ 1

r0

−h(r)N(r) dr +
∫ 1

r0

−rh′(r)N(r) dr .

Since f is a Bloch function, f ∈ A0, and by (7)

N(r) = O
(

log log
1

1− r

)
, r → 1 .

This implies ∫ 1

r0

h(r)N(r) dr < ∞ .

Hence∑
|zn|≥r0

(1− |zn|)h(|zn|) ≥ O(1) +
∫ 1

r0

−r0h
′(r)N(r) dr

≥ O(1) + βr0

∫ 1

r0

−h′(r) log log
1

1− r
dr = ∞ . �
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