ANNALES

UNIVERSITATIS MARIAECURIE - SKもODOWSKA
 LUBLIN - POLONIA

VOL. LVII, 11

PIOTR WANIURSKI

On zeros of functions in Bergman and Bloch spaces

Abstract

We generalize some necessary conditions for zero sets of A^{p} functions and Bloch functions obtained in [H] and [GNW], respectively.

1. Introduction. Let $A^{p}, 0<p<\infty$, denote the Bergman space of functions f analytic in the unit disc \mathbb{D} satisfying

$$
\|f\|_{p}=\left(\frac{1}{\pi} \iint_{\mathbb{D}}|f(z)|^{p} d x d y\right)^{1 / p}<\infty
$$

A function f analytic in \mathbb{D} is said to be a Bloch function if

$$
\|f\|_{\mathcal{B}}=|f(0)|+\sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)\left|f^{\prime}(z)\right|<\infty .
$$

The space of all Bloch functions will be denoted by \mathcal{B}. The little Bloch space \mathcal{B}_{0} consists of those $f \in \mathcal{B}$ for which

$$
(1-|z|)\left|f^{\prime}(z)\right| \rightarrow 0, \quad \text { as }|z| \rightarrow 1
$$

Key words and phrases. Bloch function, Bergman spaces, zero sequences.

For $0<r<1$, set

$$
M_{\infty}(r, f)=\max _{|z|=r}|f(z)|
$$

and let us define A^{0} as the space of all functions f analytic in \mathbb{D} and such that

$$
M_{\infty}(r, f)=\mathrm{O}\left(\log \frac{1}{1-r}\right), \quad \text { as } r \rightarrow 1
$$

The following strict inclusions are well known:

$$
\mathcal{B}_{0} \subset \mathcal{B} \subset A^{0} \subset \bigcap_{0<p<\infty} A^{p}
$$

If f is an analytic function in $\mathbb{D}, f(0) \neq 0$ and $\left\{z_{k}\right\}_{k=1}^{\infty}$ is the sequence of its zeros repeated according to multiplicity and ordered so that $\left|z_{1}\right| \leq$ $\left|z_{2}\right| \leq\left|z_{3}\right| \ldots$, then $\left\{z_{k}\right\}$ is said to be the sequence of ordered zeros of f.

In 1974 Horowitz $[\mathrm{H}]$ obtained the following necessary condition for ordered zeros of A^{p} functions.

Theorem H. Assume that $f \in A^{p}, 0<p<\infty$, and $\left\{z_{k}\right\}$ is the ordered zero set of f. Then for all $\varepsilon>0$,

$$
\sum_{z_{k} \neq 0}\left(1-\left|z_{k}\right|\right)\left(\log \left(\frac{1}{1-\left|z_{k}\right|}\right)\right)^{-1-\varepsilon}<\infty
$$

An analogous result for the space A^{0} was obtained in [GNW]
Theorem GNW. If $f \in A^{0}$ and $\left\{z_{k}\right\}$ is the ordered zero set of f, then for all $\varepsilon>0$

$$
\sum_{\left|z_{k}\right|>1-\frac{1}{e}}\left(1-\left|z_{k}\right|\right)\left(\log \log \left(\frac{1}{1-\left|z_{k}\right|}\right)\right)^{-1-\varepsilon}<\infty
$$

These theorems are best possible in the sense that $\varepsilon>0$ cannot be omitted. More precisely, Horowitz showed that for each $0<p<\infty$ there is $f \in A^{p}$ such that the series

$$
\sum_{z_{k} \neq 0}\left(1-\left|z_{k}\right|\right)\left(\log \left(\frac{1}{1-\left|z_{k}\right|}\right)\right)^{-1}
$$

diverges.
It was also shown in [GNW] that there is a function $f \in \mathcal{B}_{0}$ for which

$$
\sum_{\left|z_{k}\right|>1-\frac{1}{e}}\left(1-\left|z_{k}\right|\right)\left(\log \log \left(\frac{1}{1-\left|z_{k}\right|}\right)\right)^{-1}=\infty
$$

In this paper we generalize the above stated results and we prove the following theorems.

Theorem 1. Let h be a nonincreasing function in $\left[r_{0}, 1\right)$ for some $0<r_{0}<$ 1 , such that $\lim _{r \rightarrow 1^{-}} h(r)=0$ and

$$
\begin{equation*}
\int_{r_{0}}^{1}-h^{\prime}(r) \log \frac{1}{1-r} d r<\infty \tag{1}
\end{equation*}
$$

If $f \in A^{p}$ with $f(0) \neq 0$, and z_{1}, z_{2}, \ldots are ordered zeros of f then

$$
\sum_{\left|z_{k}\right|>r_{0}}\left(1-\left|z_{k}\right|\right) h\left(\left|z_{k}\right|\right)<\infty .
$$

Theorem 3. Let h be a nonincreasing function in $\left[r_{0}, 1\right.$) for some $1-\frac{1}{e}<$ $r_{0}<1$, such that $\lim _{r \rightarrow 1^{-}} h(r)=0$ and

$$
\int_{r_{0}}^{1}-h^{\prime}(r) \log \log \frac{1}{1-r} d r<\infty .
$$

If $f \in A^{0}$ with $f(0) \neq 0$, and z_{1}, z_{2}, \ldots are ordered zeros of f then

$$
\sum_{\left|z_{k}\right|>r_{0}}\left(1-\left|z_{k}\right|\right) h\left(\left|z_{k}\right|\right)<\infty .
$$

2. Necessary conditions for $\boldsymbol{A}^{\boldsymbol{p}}$ zero sets. For a function f analytic in \mathbb{D}, let $n(r, f)$ denote the number of zeros of f in the $\operatorname{disc}\{|z| \leq r<1\}$, where each zero is counted according to its multiplicity. We also set

$$
N(r, f)=\int_{0}^{r} \frac{n(t, f)-n(0, f)}{t} d t+n(0, f) \log r, \quad 0<r<1
$$

Note that if $f(0) \neq 0$, then

$$
\begin{equation*}
N(r, f)=\sum_{\left|z_{k}\right| \leq r} \log \frac{r}{\left|z_{k}\right|} \tag{2}
\end{equation*}
$$

Indeed, for $0<r<1$ integration by parts gives

$$
\begin{aligned}
N(r, f) & =\int_{0}^{r} \frac{n(t, f)-n(0, f)}{t} d t+n(0, f) \log r \\
& =[(n(t, f)-n(0, f)) \log t]_{0}^{r}-\int_{0}^{r} \log t d n(t, f)+n(0, f) \log r \\
& =n(r, f) \log r-\sum_{\left|z_{k}\right| \leq r} \log \left|z_{k}\right|=\sum_{\left|z_{k}\right| \leq r} \log \frac{r}{\left|z_{k}\right|} .
\end{aligned}
$$

With this notation the Jensen formula for analytic functions can be written in the following form

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|f\left(r e^{i \theta}\right)\right| d \theta=\log |f(0)|+N(r, f) \tag{3}
\end{equation*}
$$

For simplicity, if the function f is fixed we will write $n(r)$ and $N(r)$ instead of $n(r, f)$ and $N(r, f)$, respectively.

We need the following lemma due to Shapiro and Shields [SS].
Lemma SS. Let $f \in A^{p}, f(0) \neq 0$. Then

$$
\begin{aligned}
& n(r)=\mathrm{O}\left(\frac{1}{1-r} \log \frac{1}{1-r}\right), \quad \text { as } r \rightarrow 1 \\
& N(r)=\mathrm{O}\left(\log \frac{1}{1-r}\right), \quad \text { as } r \rightarrow 1
\end{aligned}
$$

Now we are ready to prove the first result stated in the introduction.
Proof of Theorem 1. For $0 \leq r<1$ define

$$
\varphi(r)=\sum_{\left|z_{n}\right| \leq r}\left(1-\left|z_{n}\right|\right)
$$

and note that by (2)

$$
\begin{aligned}
N(r) & =\sum_{\left|z_{n}\right| \leq r} \log \frac{r}{\left|z_{n}\right|}=\sum_{\left|z_{n}\right| \leq r} \log \frac{1}{\left|z_{n}\right|}+\sum_{\left|z_{n}\right| \leq r} \log (1-(1-r)) \\
& \geq \varphi(r)-C(1-r) n(r)
\end{aligned}
$$

for a positive constant C, where the last inequality follows from the equality $\lim _{x \rightarrow 0^{+}} \frac{\log (1-x)}{x}=-1$ and $f(0) \neq 0$.

Thus using Lemma SS we obtain

$$
\begin{equation*}
\varphi(r) \leq N(r)+C(1-r) n(r) \leq C \log \frac{1}{1-r} \tag{4}
\end{equation*}
$$

Now note that our assumptions on h insure

$$
\begin{equation*}
\lim _{r \rightarrow 1^{-}} h(r) \log \frac{1}{1-r}=0 \tag{5}
\end{equation*}
$$

Indeed,

$$
\begin{aligned}
h(r) \log \frac{1}{1-r} & =\left(h(r)-h\left(1^{-}\right)\right) \log \frac{1}{1-r}=\log \frac{1}{1-r} \int_{r}^{1}-h^{\prime}(t) d t \\
& \leq \int_{r}^{1}-h^{\prime}(t) \log \frac{1}{1-t} d t \rightarrow 0, \text { as } r \rightarrow 1
\end{aligned}
$$

Integrating by parts and appealing to (4) and (5) give

$$
\begin{aligned}
\sum_{\left|z_{k}\right| \geq r_{0}}\left(1-\left|z_{k}\right|\right) h\left(\left|z_{k}\right|\right) & =\int_{r_{0}}^{1} h(r) d \varphi(r)=[h(r) \varphi(r)]_{r_{0}}^{1}+\int_{r_{0}}^{1}-h^{\prime}(r) \varphi(r) d r \\
& \leq \lim _{r \rightarrow 1^{-}} C h(r) \log \frac{1}{1-r}+\int_{r_{0}}^{1}-h^{\prime}(r) \log \frac{1}{1-r} d r \\
& =\int_{r_{0}}^{1}-h^{\prime}(r) \log \frac{1}{1-r} d r<\infty
\end{aligned}
$$

It is worth noting here that Theorem H is included in the above theorem because $h(r)=\left(\log \frac{1}{1-r}\right)^{-1-\varepsilon}, \varepsilon>0$, satisfies the hypotheses of Theorem 1. Also a necessary condition for A^{p} zero sets given in [W] can be deduced from Theorem 1. To see this define $\log _{1} x=\log x$, $\log _{n} x=\log \left(\log _{n-1} x\right)$, for $n=2,3 \ldots$ and sufficiently large x. For a given positive integer n let x_{n} denote the solution of the equation $\log _{n-1} x=0$.

For $1-\frac{1}{x_{n}}<r<1$ we set

$$
h(r)=\left(\prod_{i=1}^{n-1} \log _{i} \frac{1}{1-r}\right)^{-1}\left(\log _{n} \frac{1}{1-r}\right)^{-1-\varepsilon}
$$

Then the function h is nonincreasing in $\left(r_{n}, 1\right)$, where $1-\frac{1}{x_{n}}<r_{n}<1$, and

$$
\begin{aligned}
& h^{\prime}(r) \\
& =-\frac{\prod_{i=2}^{n} \log _{i} \frac{1}{1-r}+\prod_{i=3}^{n} \log _{i} \frac{1}{1-r}+\ldots+\prod_{i=n-1}^{n} \log _{i} \frac{1}{1-r}+\log _{n} \frac{1}{1-r}+1+\varepsilon}{(1-r)\left(\prod_{i=1}^{n-1} \log _{i} \frac{1}{1-r}\right)^{2}\left(\log _{n} \frac{1}{1-r}\right)^{2+\varepsilon}} .
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
& \int_{r_{n}}^{1}-h^{\prime}(r) \log \frac{1}{1-r} d r \\
& =\int_{r_{n}}^{1} \frac{\prod_{i=2}^{n} \log _{i} \frac{1}{1-r}+\cdots+\prod_{i=n-1}^{n} \log _{i} \frac{1}{1-r}+\log _{n} \frac{1}{1-r}+1+\varepsilon}{(1-r)\left(\prod_{i=1}^{n-1} \log _{i} \frac{1}{1-r}\right)^{2}\left(\log _{n} \frac{1}{1-r}\right)^{2+\varepsilon}} \log \frac{1}{1-r} d r \\
& <\int_{r_{n}}^{1} \frac{n \prod_{i=1}^{n} \log _{i} \frac{1}{1-r}}{(1-r)\left(\prod_{i=1}^{n-1} \log _{i} \frac{1}{1-r}\right)^{2}\left(\log _{n} \frac{1}{1-r}\right)^{2+\varepsilon} d r} \\
& =\int_{r_{n}}^{1} \frac{n}{(1-r) \prod_{i=1}^{n-1} \log _{i} \frac{1}{1-r}\left(\log _{n} \frac{1}{1-r}\right)^{1+\varepsilon}} d r<\infty .
\end{aligned}
$$

Consequently, if $\left\{z_{n}\right\}$ are ordered zeros of $f \in A^{p}$ then

$$
\sum_{\left|z_{k}\right|>r_{n}} \frac{1-\left|z_{k}\right|}{\log \left(\frac{1}{1-\left|z_{k}\right|}\right) \ldots \log _{n-1}\left(\frac{1}{1-\left|z_{k}\right|}\right)\left(\log _{n}\left(\frac{1}{1-\left|z_{k}\right|}\right)\right)^{1+\varepsilon}}<\infty .
$$

The next theorem shows that the assumption (1) is essential.
Theorem 2. Let $h \in C^{1}$ be a nonincreasing function in $\left[r_{0}, 1\right)$ for some $0<r_{0}<1$, such that $\lim _{r \rightarrow 1^{-}} h(r)=0$ and

$$
\int_{r_{0}}^{1}-h^{\prime}(r) \log \frac{1}{1-r} d r=\infty .
$$

Then there exists a function $f \in A^{p}, f(0) \neq 0$, whose zeros z_{1}, z_{2}, \ldots satisfy

$$
\sum_{\left|z_{k}\right|>r_{0}}\left(1-\left|z_{k}\right|\right) h\left(\left|z_{k}\right|\right)=\infty .
$$

Proof. Let $\mu>1, \beta>2, \beta \in \mathbb{N}$. We set

$$
f(z)=\prod_{k=1}^{\infty}\left(1-\mu z^{\beta^{k}}\right), \quad z \in \mathbb{D} .
$$

Horowitz $[\mathrm{H}]$ showed that $f \in A^{p}$ for some μ and β.
We first show that the zeros $\left\{z_{k}\right\}$ of the function f satisfy the condition

$$
\varphi(r)=\sum_{\left|z_{k}\right| \leq r}\left(1-\left|z_{k}\right|\right) \geq C \log \frac{1}{1-r} .
$$

The zeros of f lie on the circles $|z|=\left(\frac{1}{\mu}\right)^{\frac{1}{\beta^{\imath}}}, i=1,2, \ldots$ Hence

$$
\begin{aligned}
& \left|z_{k}\right|=\left(\frac{1}{\mu}\right)^{\frac{1}{\beta}}=r_{1} \quad \text { for } 1 \leq k \leq \beta \\
& \left|z_{k}\right|=\left(\frac{1}{\mu}\right)^{\frac{1}{\beta^{2}}}=r_{2} \quad \text { for } \beta+1 \leq k \leq \beta+\beta^{2},
\end{aligned}
$$

and

$$
\begin{equation*}
\left|z_{k}\right|=\left(\frac{1}{\mu}\right)^{\frac{1}{\beta^{n}}}=r_{n} \quad \text { for } N_{n-1}<k \leq N_{n}, \tag{6}
\end{equation*}
$$

where

$$
N_{n}=\beta+\beta^{2}+\cdots+\beta^{n}=\frac{\beta\left(\beta^{n}-1\right)}{\beta-1}, \quad n=1,2, \ldots
$$

Thus we have

$$
\begin{aligned}
\sum_{\left|z_{k}\right| \leq r_{n}} \log \frac{1}{\left|z_{k}\right|} & =\beta \log \frac{1}{r_{1}}+\beta^{2} \log \frac{1}{r_{2}}+\cdots+\beta^{n} \log \frac{1}{r_{n}} \\
& =\beta \log \mu^{1 / \beta}+\beta^{2} \log \mu^{1 / \beta^{2}}+\cdots+\beta^{n} \log \mu^{1 / \beta^{n}}=n \log \mu
\end{aligned}
$$

Since for $x \in\left[r_{1}, 1\right)$

$$
C \log \frac{1}{x}<1-x
$$

with a positive constant C, we get

$$
\varphi\left(r_{n}\right)=\sum_{\left|z_{k}\right| \leq r_{n}}\left(1-\left|z_{k}\right|\right) \geq C n \log \mu .
$$

It follows from (6) that

$$
\frac{1}{1-r_{n}}<\frac{\beta^{n}}{C \log \mu}, \quad n=1,2, \ldots,
$$

and consequently,

$$
n>\frac{1}{\log \beta} \log \frac{1}{1-r_{n}}+\log (C \log \mu)
$$

This implies

$$
\varphi\left(r_{n}\right) \geq C \log \frac{1}{1-r_{n}}, \quad n=1,2, \ldots
$$

If $r_{n}<r<r_{n+1}$, then

$$
\varphi(r) \geq \varphi\left(r_{n}\right)>C n \log \mu>C(n+1)>C \log \frac{1}{1-r_{n+1}}>C \log \frac{1}{1-r}
$$

Putting $r^{*}=\max \left[r_{0}, r_{1}\right]$ and integrating by parts gives

$$
\begin{aligned}
\sum_{\left|z_{k}\right| \geq r^{*}}\left(1-\left|z_{k}\right|\right) h\left(\left|z_{k}\right|\right) & =\int_{r^{*}}^{1} h(r) d \varphi(r) \geq-h\left(r^{*}\right) \varphi\left(r^{*}\right)+\int_{r^{*}}^{1}-h^{\prime}(r) \varphi(r) d r \\
& \geq-h\left(r^{*}\right) \varphi\left(r^{*}\right)+C \int_{r^{*}}^{1}-h^{\prime}(r) \log \frac{1}{1-r} d r=\infty
\end{aligned}
$$

Applying Theorem 2 to the function

$$
h(r)=\left(\prod_{i=1}^{n} \log _{i} \frac{1}{1-r}\right)^{-1},
$$

we obtain Remark 1 in [W].

3. Zeros of \boldsymbol{A}^{0} functions.

Proof of Theorem 3. It follows from the definition of the space A^{0} and from the Jensen formula (3) that zeros of $f \in A^{0}$ satisfy

$$
\begin{equation*}
N(r)=\mathrm{O}\left(\log \log \frac{1}{1-r}\right), \quad r \rightarrow 1 \tag{7}
\end{equation*}
$$

This in turn implies

$$
n(r)=\mathrm{O}\left(\frac{1}{1-r} \log \log \frac{1}{1-r}\right) \quad \text { and } \quad \varphi(r)=\mathrm{O}\left(\frac{1}{1-r} \log \log \frac{1}{1-r}\right) .
$$

Now the claim follows by the same method as in the proof of Theorem 1.
Theorem 3 is best possible in the following sense.
Theorem 4. Let $h \in C^{1}$ be a nonincreasing function in $\left[r_{0}, 1\right)$ for some $0<r_{0}<1$, such that $\lim _{r \rightarrow 1^{-}} h(r)=0$ and

$$
\int_{r_{0}}^{1}-h^{\prime}(r) \log \log \frac{1}{1-r} d r=\infty .
$$

Then there exists a function $f \in \mathcal{B}_{0}, f(0) \neq 0$, whose zeros z_{1}, z_{2}, \ldots satisfy

$$
\sum_{\left|z_{k}\right|>r_{0}}\left(1-\left|z_{k}\right|\right) h\left(\left|z_{k}\right|\right)=\infty
$$

Proof. It was shown in [GNW] that there exists a function $f \in \mathcal{B}_{0}$ satisfying the inequality

$$
N(r, f) \geq \beta \log \log \frac{1}{1-r}, \quad r_{0}<r<1
$$

for a positive constant β and $r_{0} \in(0,1)$.
Integrating by parts twice we get

$$
\begin{aligned}
\sum_{\left|z_{n}\right| \geq r_{0}}\left(1-\left|z_{n}\right|\right) h\left(\left|z_{n}\right|\right) & =\int_{r_{0}}^{1}(1-r) h(r) d n(r) \\
& \geq \mathrm{O}(1)+\int_{r_{0}}^{1}\left(h(r)-(1-r) h^{\prime}(r)\right) n(r) d r \\
& \geq \mathrm{O}(1)+\int_{r_{0}}^{1} r h(r) \frac{n(r)}{r} d r \\
& =\mathrm{O}(1)+\int_{r_{0}}^{1} r h(r) d N(r) \\
& \geq \mathrm{O}(1)+\int_{r_{0}}^{1}\left(-h(r)-r h^{\prime}(r)\right) N(r) d r \\
& =\mathrm{O}(1)+\int_{r_{0}}^{1}-h(r) N(r) d r+\int_{r_{0}}^{1}-r h^{\prime}(r) N(r) d r
\end{aligned}
$$

Since f is a Bloch function, $f \in A^{0}$, and by (7)

$$
N(r)=\mathrm{O}\left(\log \log \frac{1}{1-r}\right), \quad r \rightarrow 1
$$

This implies

$$
\int_{r_{0}}^{1} h(r) N(r) d r<\infty
$$

Hence

$$
\begin{aligned}
\sum_{\left|z_{n}\right| \geq r_{0}}\left(1-\left|z_{n}\right|\right) h\left(\left|z_{n}\right|\right) & \geq \mathrm{O}(1)+\int_{r_{0}}^{1}-r_{0} h^{\prime}(r) N(r) d r \\
& \geq \mathrm{O}(1)+\beta r_{0} \int_{r_{0}}^{1}-h^{\prime}(r) \log \log \frac{1}{1-r} d r=\infty
\end{aligned}
$$

References

[GNW] Girela, D., M. Nowak and P. Waniurski, On the zeros of Bloch functions, Math. Proc. Cambridge Philos. Soc. 139 (2000), 117-128.
[H] Horowitz, Ch., Zeros of functions in the Bergman spaces, Duke Math. J. 41 (1974), 693-710.
[SS] Shapiro, H.S., A.L. Shields, On the zeros of functions with finite Dirichlet integral and some related function spaces, Math. Z. 80 (1962), 217-229.
[W] Waniurski, P., On zeros of Bloch functions and related spaces of analytic functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A, 54 (2000), 149-158.

Instytut Matematyki UMCS
pl. M. Curie-Skłodowskiej 1
20-031 Lublin, Poland
e-mail: peter@golem.umcs.lublin.pl
Received May 8, 2003

