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Horizontal lifts of tensor fields
to the bundle of volume forms

ABSTRACT. Dhooghe in [Dho] has given the definition and basic properties
of a horizontal lift of a vector field to the bundle of volume forms in order
to investigate the Thomas connection from the point of view of projective
connection. In this paper we present a systematic approach to the horizontal
lift of tensor fields to the bundle of volume forms of basic types of tensors
with respect to a symmetric linear connection.

1. Basic definitions. Let M be an oriented manifold and let V be a line
bundle of the volume forms over M (see [Dho], [DVV]). We consider two
charts (U, z%) and (U,z') of M, UNU # 0, and the volume form w € V,
w = v(z)dzt A ... Adz™ = v(Z)dz' A ... AdT", v,0 > 0. The functions
(v,zt,...,2") (resp. (v,z',...,2")) are called the local coordinates of w
in the chart (U, %) (resp. (U,z%)). In our setting the functions #* = z¢(z)
are the orientation-preserving transition functions on M. Then the lifted
functions on V are given as

(1.1) v=T-v, I'=7"(1),
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where 7 = det (8—”_”> is the Jacobian of the map z* = 7*(z). Following [Dho]

OxJ
we introduce a new coordinate system (z°,...,2™) on V, where 2° = Inv.
The transition functions in terms of these coordinates are
' =2"+InZ,
(1.2) i
' =z'(x).

We put J(z) = InZ(x) and J(z) = InZ(z). Since Z-Z = 1, we have

07 87 oud
(1) ort Ozl 0T
and

0F 07 o
(14) dxt 0z Oxi

Note that the Jacobian matrix of the transition function (1.2) has the fol-
lowing form

0T

1 o

(1.5) v
0 oz’

Ozt

Let M be equipped with a linear symmetric connection I'. We have the
following well-known formulas (see e.g. [Sch])

= O™, 0T

ki—WFmrf’@,
(1.6)

;. ozmo, 0T

ki_wrmi""@a

where T', ; and I ; are the coefficients of I' in the coordinates (2%) and (z%),
respectively.

2. The horizontal lift. Note that on V there is a canonical vector field

8%0. Moreover, it is easy to check that a 1-form 7 = da° —I—kadxl is globally
. . k

defined on V and dn = kaudx] A dx*, where Fﬁkl]’ = %I;if. We call 7 the

canonical 1-form on V. The vector field 8%0 and the 1-form 7 define the

canonical tensor field of type (1,1) on V by the formula

(2.1) (1 505 ) () = 1) 5
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Theorem 2.1. ([Dho], [DVV]) Let v = v’ 52; be a vector field on M. Then

9 9
H __ itk i
(22) v = —v F’Lkw + v 61‘1

is a globally defined vector field on V called the horizontal lift of v.
By a direct calculation we get

Lemma 2.1.

0
(2.3) [ w"] = [v,w]" +dn(v™,w")—.
0x0
Lemma 2.2. Suppose that vy, ...v, are local vector fields which are linearly
independent at each point. Then a%o,vfl, .., vl are linearly independent

at each point. In particular, each vector field on V is locally a linear com-
bination of such vector fields.

Now, we are going to consider the horizontal lift of 1-forms. By straight-
forward calculations we get

Theorem 2.2. If w = w;dz’ is a 1-form on M then
(2.4) w = (w; + ka) dz’ + dz°

is a 1-form on V called the horizontal lift of w.

Corollary 2.1.
(1) The horizontal lift of 1-forms is not linear.
(2) The canonical 1-form n is the lift of zero 1-form, that is n = 02
(3) For any 1-form w and and any vector field v we have (w(v))” =
wH (vH), where (w(v))Y denotes the vertical lift of the function

w(v).

Theorem 2.3. The horizontal lift v of a 1-form to V is unique and sat-
isfies

(25 W (01) = @), Wl (ai) 1

Proof. The proof follows directly from Lemma 2.2. [

The proof of the next theorem follows by direct calculations of coordinate
transformations of coefficients of a tensor under consideration.
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Theorem 2.4. Let F' = (sz) be a tensor of type (1,1) on M. Then

1 —F!Tk 4Tk
(26) FH _ 1tk ik

0 F

defines a tensor of the type (1,1) on V. The tensor F is called the hori-
zontal lift of F.

Similarly as in the case of 1-forms we have

Lemma 2.3.

(2.7) (F(o))" = FH (v).

Lemma 2.4. If F and G are any tensors of type (1,1) on M then
(2.8) (Fo@)"=FHoqgH,

From Lemma 2.2 we have

Theorem 2.5. The horizontal lift F to V of a tensor F of type (1,1) is
unique and satisfies

(2.8) FH (") = (F)™,  FH <8xo> = 55"

Corollary 2.2.
1) (IM)H = IV7
2) (~In)" =~y + 20 3%,
3) (-F)" == (P") +21@ 5l

In the next theorem we suppose that the connection I is locally volume
preserving which means that locally there exists a volume form w which is
parallel with respect to I'. In this case there exist local coordinate systems
such that ', = 0 (see [Dh1], [Dh2], [Sch]).

Note that in this case we have

(2.9) [0, wf] = [v,w]".
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Theorem 2.6. Let F' be a tensor field of type (1,1) on M. Suppose that T
18 a symmetric locally volume preserving linear connection. Then

(2.10) Np =0 <= Npu =0,
where N (resp. Npnu ) denotes the Nijenhuis tensor of F (resp. FT).
Proof. Observe that Npa (UH, 8%0) = 0. Moreover,
Npu (o™, w™) = (Np(v,w))"
(2.11) + (dn (F@)", F(w)™) —dn (v, w™)

—dn (UH,F(w)H) —dn (F(U)H,yH)) (920'
But according to our assumptions we have dn =0. 0O
Corollary 2.3.
1) If F is an almost complex structure on M, that is F'o F = —1Iyy,

then FH o FH = —I, + 2n ® 2.
2) IfFOF:IM thenFHoFH :Iy.
3) If F3+ F =0 then (F¥) + FH = 2n @ 2.
4) If F3 — F =0 then (F)° — F1 = .
Now we are going to describe the horizontal lift of a Riemannian metric.
Theorem 2.7. Let g = (g;5) be a tensor of type (0,2) on M. Then
1 INA
(2.12) g =
Th g + ka:r‘?k
is globally defined (0,2)-tensor on V. The tensor gt is called the horizontal
lift of g.
Proof. It is enough to check the transformation rule. [

Theorem 2.8. The tensor g is unique on V and satisfies
H
1) ¢ (v, w™) = (g(v,w))”,

Proof. Conditions 1), 2), 3) follow from definitions and the uniqueness
follows from Lemma 2.2. [

For the tensors of type (2,0) we have
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Theorem 2.9. Let h = (h'7) be a tensor of type (2,0) on M. Then

o1 . hITETE,  —hiTh,
2.13 Rt =
—hijl“;?k hii

is globally defined (2,0)-tensor on V. The tensor h'l is called the horizontal
lift of h.

Theorem 2.10. The tensor h'! is the unique (2,0)-tensor on V such that

1) hH (W o) = (h(w,¢))",
2) k' (n,n) =0,
3) BH (wf,n) =" (n,wf) =0.

Theorem 2.11. Let g be a Riemannian metric on M. Then g™ is a Rie-
mannian metric on V and

i, D
(2.14) (9) _(9 ) +8x0®ax0

Proof. Due to Theorem 2.8 we know that ¢’ is nonsingular and positively
defined. By multiplication one can check directly that (g )_1 ogh =gfo

(¢") =1y O

We shall consider now the horizontal lift of the tensors of type (0,p) and
(p,0). Checking the transformation rule we have the following two theorems.

Theorem 2.12. Let F' = (f"%) be a tensor of type (p,0) on M. Then
FH = (poroz2-a) o, € {0,1,...n}, where

hOO...O — lezgzprtl 1‘\752 Ftp

11t17 12t " " iptp7

0...i5...0 _ _ pi1. dp...ipTl1 te—1 tet1 tp
h - f T, T, T T,
hO...ik...im...O —
_ fil...ik...im...ip]:\z‘:l t'k—l t4k+1 ?m—l §m+1 t'p
1t " T tg—1tk—17 tkt1lk4+1 T T T tm—1tm—1" fmt1tm41 T T iply?

hiliz...ip — (_1)pfi1i2...ip

is a tensor of type (p,0) on V.



Horizontal lifts of tensor fields to the bundle... 75

Theorem 2.13. Let G = (gs,i,...i,) be a tensor on M of type (0,p). Then

GH =

(hocloq.“ap)? wher@

_ t1 to t
Riviy...iy = Givio..ip + Fim iaty " itha
is a tensor of type (0,p)on V.
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