
ANNALES
UN IVERS ITAT I S MAR IAE CUR IE – SKŁODOWSKA

LUBL IN – POLON IA

VOL. LVII, 7 SECTIO A 2003

ANDRZEJ MIERNOWSKI and WITOLD MOZGAWA

Horizontal lifts of tensor fields

to the bundle of volume forms

Abstract. Dhooghe in [Dho] has given the definition and basic properties
of a horizontal lift of a vector field to the bundle of volume forms in order

to investigate the Thomas connection from the point of view of projective

connection. In this paper we present a systematic approach to the horizontal
lift of tensor fields to the bundle of volume forms of basic types of tensors

with respect to a symmetric linear connection.

1. Basic definitions. Let M be an oriented manifold and let V be a line
bundle of the volume forms over M (see [Dho], [DVV]). We consider two
charts (U, xi) and (Ū , x̄i) of M , U ∩ Ū 6= ∅, and the volume form ω ∈ V,
ω = v(x)dx1 ∧ . . . ∧ dxn = v(x̄)dx̄1 ∧ . . . ∧ dx̄n, v, v̄ > 0. The functions
(v, x1, . . . , xn) (resp. (v, x̄1, . . . , x̄n)) are called the local coordinates of ω
in the chart (U, xi) (resp. (Ū , x̄i)). In our setting the functions x̄i = x̄i(x)
are the orientation-preserving transition functions on M . Then the lifted
functions on V are given as

(1.1) v̄ = Ī · v, x̄i = x̄i(x),

2000 Mathematics Subject Classification. 58A32, 53A55.
Key words and phrases. Bundle of volume forms, symmetric connection, horizontal

lift.



70 A. Miernowski and W. Mozgawa

where Ī = det
(

∂x̄i

∂xj

)
is the Jacobian of the map x̄i = x̄i(x). Following [Dho]

we introduce a new coordinate system (x0, . . . , xn) on V, where x0 = ln v.
The transition functions in terms of these coordinates are

(1.2)

{
x̄0 = x0 + ln Ī,

x̄i = x̄i(x).

We put J̄ (x) = ln Ī(x) and J (x̄) = ln I(x̄). Since I · Ī = 1, we have

(1.3)
∂J
∂x̄i

= − ∂J̄
∂xj

∂xj

∂x̄i

and

(1.4)
∂J̄
∂xi

= − ∂J
∂x̄j

∂x̄j

∂xi
.

Note that the Jacobian matrix of the transition function (1.2) has the fol-
lowing form

(1.5)

 1
∂J̄
∂xi

0
∂x̄j

∂xi

 .

Let M be equipped with a linear symmetric connection Γ. We have the
following well-known formulas (see e.g. [Sch])

Γ̄i
ki =

∂xm

∂x̄k
Γi

mi +
∂J
∂x̄i

,

(1.6)

Γi
ki =

∂x̄m

∂xk
Γ̄i

mi +
∂J̄
∂xi

,

where Γi
kj and Γ̄i

kj are the coefficients of Γ in the coordinates (xi) and (x̄i),
respectively.

2. The horizontal lift. Note that on V there is a canonical vector field
∂

∂x0 . Moreover, it is easy to check that a 1-form η = dx0 +Γk
ikdxi is globally

defined on V and dη = Γk
ik|jdxj ∧ dxi, where Γk

ik|j = ∂Γk
ik

∂xj . We call η the
canonical 1-form on V. The vector field ∂

∂x0 and the 1-form η define the
canonical tensor field of type (1, 1) on V by the formula

(2.1)
(

η ⊗ ∂

∂x0

)
(w) = η(w)

∂

∂x0
.
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Theorem 2.1. ([Dho], [DVV]) Let v = vi ∂
∂xi be a vector field on M . Then

(2.2) vH = −viΓk
ik

∂

∂x0
+ vi ∂

∂xi

is a globally defined vector field on V called the horizontal lift of v.

By a direct calculation we get

Lemma 2.1.

(2.3)
[
vH , wH

]
= [v, w]H + dη(vH , wH)

∂

∂x0
.

Lemma 2.2. Suppose that v1, . . . vn are local vector fields which are linearly
independent at each point. Then ∂

∂x0 , vH
1 , . . . , vH

n are linearly independent
at each point. In particular, each vector field on V is locally a linear com-
bination of such vector fields.

Now, we are going to consider the horizontal lift of 1-forms. By straight-
forward calculations we get

Theorem 2.2. If ω = ωidxi is a 1-form on M then

(2.4) ωH =
(
ωi + Γk

ik

)
dxi + dx0

is a 1-form on V called the horizontal lift of ω.

Corollary 2.1.

(1) The horizontal lift of 1-forms is not linear.
(2) The canonical 1-form η is the lift of zero 1-form, that is η = 0H

(3) For any 1-form ω and and any vector field v we have (ω(v))V =
ωH

(
vH

)
, where (ω(v))V denotes the vertical lift of the function

ω(v).

Theorem 2.3. The horizontal lift ωH of a 1-form to V is unique and sat-
isfies

(2.5) ωH
(
vH

)
= (ω(v))V

, ωH

(
∂

∂x0

)
= 1.

Proof. The proof follows directly from Lemma 2.2. �

The proof of the next theorem follows by direct calculations of coordinate
transformations of coefficients of a tensor under consideration.
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Theorem 2.4. Let F =
(
F i

j

)
be a tensor of type (1, 1) on M . Then

(2.6) FH =

 1 −F t
i Γk

tk + Γk
ik

0 F i
j


defines a tensor of the type (1, 1) on V. The tensor FH is called the hori-
zontal lift of F .

Similarly as in the case of 1-forms we have

Lemma 2.3.

(2.7) (F (v))H = FH
(
vH

)
.

Lemma 2.4. If F and G are any tensors of type (1, 1) on M then

(2.8) (F ◦G)H = FH ◦GH .

From Lemma 2.2 we have

Theorem 2.5. The horizontal lift FH to V of a tensor F of type (1, 1) is
unique and satisfies

(2.8) FH
(
vH

)
= (F (v))H

, FH

(
∂

∂x0

)
=

∂

∂x0
.

Corollary 2.2.

1) (IM )H = IV ,

2) (−IM )H = −IV + 2η ⊗ ∂
∂x0 ,

3) (−F )H = −
(
FH

)
+ 2η ⊗ ∂

∂x0

In the next theorem we suppose that the connection Γ is locally volume
preserving which means that locally there exists a volume form ω which is
parallel with respect to Γ. In this case there exist local coordinate systems
such that Γk

ik = 0 (see [Dh1], [Dh2], [Sch]).
Note that in this case we have

(2.9)
[
vH , wH

]
= [v, w]H .
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Theorem 2.6. Let F be a tensor field of type (1, 1) on M . Suppose that Γ
is a symmetric locally volume preserving linear connection. Then

(2.10) NF = 0 ⇐⇒ NF H = 0,

where NF (resp. NF H ) denotes the Nijenhuis tensor of F (resp. FH).

Proof. Observe that NF H

(
vH , ∂

∂x0

)
= 0. Moreover,

(2.11)

NF H

(
vH , wH

)
= (NF (v, w))H

+
(
dη

(
F (v)H , F (w)H

)
− dη

(
vH , wH

)
− dη

(
vH , F (w)H

)
− dη

(
F (v)H , yH

)) ∂

∂x0
.

But according to our assumptions we have dη = 0. �

Corollary 2.3.
1) If F is an almost complex structure on M , that is F ◦ F = −IM ,

then FH ◦ FH = −IV + 2η ⊗ ∂
∂x0 .

2) If F ◦ F = IM then FH ◦ FH = IV .
3) If F 3 + F = 0 then

(
FH

)3 + FH = 2η ⊗ ∂
∂x0 .

4) If F 3 − F = 0 then
(
FH

)3 − FH = 0.

Now we are going to describe the horizontal lift of a Riemannian metric.

Theorem 2.7. Let g = (gij) be a tensor of type (0, 2) on M . Then

(2.12) gH =

 1 Γk
ik

Γk
ik gij + Γk

ikΓk
jk


is globally defined (0, 2)-tensor on V. The tensor gH is called the horizontal
lift of g.

Proof. It is enough to check the transformation rule. �

Theorem 2.8. The tensor gH is unique on V and satisfies

1) gH
(
vH , wH

)
= (g(v, w))H ,

2) gH
(

∂
∂x0 , ∂

∂x0

)
= 1,

3) gH
(

∂
∂x0 , vH

)
= 0.

Proof. Conditions 1), 2), 3) follow from definitions and the uniqueness
follows from Lemma 2.2. �

For the tensors of type (2, 0) we have
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Theorem 2.9. Let h =
(
hij

)
be a tensor of type (2, 0) on M . Then

(2.13) hH =

hijΓk
ikΓt

jt −hijΓk
jk

−hijΓk
jk hij


is globally defined (2, 0)-tensor on V. The tensor hH is called the horizontal
lift of h.

Theorem 2.10. The tensor hH is the unique (2, 0)-tensor on V such that

1) hH
(
ωH , ϕH

)
= (h(ω, ϕ))V ,

2) hH(η, η) = 0,
3) hH

(
ωH , η

)
= hH

(
η, ωH

)
= 0.

Theorem 2.11. Let g be a Riemannian metric on M . Then gH is a Rie-
mannian metric on V and

(2.14)
(
gH

)−1
=

(
g−1

)H
+

∂

∂x0
⊗ ∂

∂x0

Proof. Due to Theorem 2.8 we know that gH is nonsingular and positively
defined. By multiplication one can check directly that

(
gH

)−1 ◦ gH = gH ◦(
gH

)−1 = IV . �

We shall consider now the horizontal lift of the tensors of type (0, p) and
(p, 0). Checking the transformation rule we have the following two theorems.

Theorem 2.12. Let F =
(
f i1i2...ip

)
be a tensor of type (p, 0) on M . Then

FH = (hα1α2...αp), αi ∈ {0, 1, . . . n}, where

h00...0 = f i1i2...ipΓt1
i1t1

Γt2
i2t2

. . .Γtp

iptp
,

h0...ik...0 = −f i1...ik...ipΓt1
i1t1

. . .Γtk−1
ik−1tk−1

Γtk+1
ik+1tk+1

. . .Γtp

iptp
,

h0...ik...im...0 =

= f i1...ik...im...ipΓt1
i1t1

. . .Γtk−1
ik−1tk−1

Γtk+1
ik+1tk+1

. . .Γtm−1
im−1tm−1

Γtm+1
im+1tm+1

. . .Γtp

iptp
,

...

hi1i2...ip = (−1)pf i1i2...ip

is a tensor of type (p, 0) on V.
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Theorem 2.13. Let G = (gi1i2...ip
) be a tensor on M of type (0, p). Then

GH = (hα1α2...αp), where

h00...0 = 1,

h0...i...0 = Γk
ik,

h0...i...j...0 = Γt
itΓ

k
jk,

...

hi1i2...ip = gi1i2...ip + Γt1
i1t1

Γt2
i2t2

. . .Γtp

iptp
,

is a tensor of type (0, p)on V.
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