## ANNALES

## UNIVERSITATIS MARIAECURIE - SKもODOWSKA <br> LUBLIN - POLONIA

VOL. LVII, 6 SECTIO A 2003

## JAN KUREK and WŁODZIMIERZ M. MIKULSKI

## Liftings of horizontal 1-forms to some vector bundle functors on fibered fibered manifolds

Abstract. Let $F: \mathcal{F}^{2} \mathcal{M} \rightarrow \mathcal{V} \mathcal{B}$ be a vector bundle functor on fibered fibered manifolds. We classify all natural operators

$$
T_{\mathcal{F}^{2} \mathcal{M}-\text { proj } \mid \mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}} \rightsquigarrow T^{(0,0)}\left(F_{\mid \mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}}\right)^{*} .}
$$

transforming $\mathcal{F}^{2} \mathcal{M}$-projectable vector fields on $Y$ to functions on the dual bundle $(F Y)^{*}$ for any ( $m_{1}, m_{2}, n_{1}, n_{2}$ )-dimensional fibered fibered manifold $Y$. Next, under some assumption on $F$ we study natural operators

$$
T_{\mathcal{F}^{2} \mathcal{M}-h o r \mid \mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}^{*}} \rightsquigarrow T^{*}\left(F_{\mid \mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}}\right)^{*}
$$

lifting $\mathcal{F}^{2} \mathcal{M}$-horizontal 1-forms on $Y$ to 1 -forms on $(F Y)^{*}$ for any $Y$ as above. As an application we classify natural operators

$$
T_{\mathcal{F}^{2} \mathcal{M}-h o r \mid \mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}} \rightsquigarrow T^{*}\left(F_{\mid \mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}}\right)^{*}
$$

for a particular vector bundle functor $F$ on fibered fibered manifolds.
0. Introduction. The concept of fibered fibered manifolds was introduced in [16]. Fibered fibered manifolds are fibered surjective submersions between

[^0]fibered manifolds. They appear naturally in differential geometry if we consider transverse natural bundles in the sense of R. Wolak [18]. Product preserving bundle functors on fibered fibered manifolds are studied in [17].

In this paper we consider the following categories over manifolds: the category $\mathcal{M} f$ of manifolds and maps, the category $\mathcal{M} f_{m}$ of $m$-dimensional manifolds and embeddings, the category $\mathcal{F M}$ of fibered manifolds and fibered maps, the category $\mathcal{F} \mathcal{M}_{m, n}$ of fibered manifolds of dimension $(m, n)$ (i.e. with $m$-dimensional bases and $n$-dimensional fibers) and fibered embeddings, the category $\mathcal{F}^{2} \mathcal{M}$ of fibered fibered manifolds and their fibered fibered maps, the category $\mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}$ of fibered fibered manifolds of dimension ( $m_{1}, m_{2}, n_{1}, n_{2}$ ) and fibered fibered embeddings, the category $\mathcal{V B}$ of vector bundles and vector bundle maps.

The notions of bundle functors and natural operators can be found in the fundamental monograph [4].

In [7], given a vector bundle functor $F: \mathcal{M} f \rightarrow \mathcal{V B}$ we classified all natural operators $A: T_{\mid \mathcal{M} f_{m}} \rightsquigarrow T^{(0,0)}\left(F_{\mid \mathcal{M} f_{m}}\right)^{*}$ transforming vector fields $Z$ on $m$-dimensional manifolds $M$ into functions $A(Z):(F M)^{*} \rightarrow \mathbf{R}$ on the dual vector bundle $(F M)^{*}$ and proved that every natural operator $B$ : $T_{\mid \mathcal{M} f_{m}}^{*} \rightsquigarrow T^{*}\left(F_{\mid \mathcal{M} f_{m}}\right)^{*}$ transforming 1-forms $\omega$ from $m$-manifolds $M$ into 1-forms $B(\omega)$ on $(F M)^{*}$ is of the form $B(\omega)=a \omega^{V}+\lambda$ for some uniquely determined canonical map $a:(F M)^{*} \rightarrow \mathbf{R}$ and some canonical 1-form $\lambda$ on $(F M)^{*}$. These results were generalizations of [1],[6].

In [8], we studied similar problems for a vector bundle functor $F$ : $\mathcal{F M} \rightarrow \mathcal{V B}$ on fibered manifolds instead of on manifolds. For natural numbers $m$ and $n$ we classified all natural operators $A: T_{\text {proj| } \mathcal{F} \mathcal{M}_{m, n}} \rightsquigarrow$ $T^{(0,0)}\left(F_{\mid \mathcal{F} \mathcal{M}_{m, n}}\right)^{*}$ transforming projectable vector fields $Z$ on ( $m, n$ )-dimensional fibered manifolds $Y$ into functions $A(Z):(F Y)^{*} \rightarrow \mathbf{R}$ on the dual vector bundle $(F Y)^{*}$ and proved (under some assumption on $F$ ) that every natural operator $B: T_{h o r \mid \mathcal{F} \mathcal{M}_{m, n}} \rightsquigarrow T^{*}\left(F_{\mid} \mathcal{F}_{m, n}\right)^{*}$ transforming horizontal 1-forms $\omega$ from ( $m, n$ )-dimensional fibered manifolds $Y$ into 1-forms $B(\omega)$ on $(F Y)^{*}$ is of the form $B(\omega)=a \omega^{V}+\lambda$ for some uniquely determined canonical map $a:(F Y)^{*} \rightarrow \mathbf{R}$ and some canonical 1-form $\lambda$ on $(F Y)^{*}$.

In the present paper we study similar problems for a vector bundle functor $F: \mathcal{F}^{2} \mathcal{M} \rightarrow \mathcal{V B}$ on fibered fibered manifolds instead of on manifolds or on fibered manifolds. For natural numbers $m_{1}, m_{2}, n_{1}$ and $n_{2}$ we classify all
 transforming $\mathcal{F}^{2} \mathcal{M}$-projectable vector fields $Z$ on $\left(m_{1}, m_{2}, n_{1}, n_{2}\right)$-dimensional fibered fibered manifolds $Y$ into functions $A(Z):(F Y)^{*} \rightarrow \mathbf{R}$ on the dual vector bundle $(F Y)^{*}$ and prove (under an assumption on $F$ ) that every natural operator

$$
B: T_{\mathcal{F}^{2} \mathcal{M}-h o r \mid \mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}^{*}} \rightsquigarrow T^{*}\left(F_{\mid} \mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}\right)^{*}
$$

transforming $\mathcal{F}^{2} \mathcal{M}$-horizontal 1-forms $\omega$ from $\left(m_{1}, m_{2}, n_{1}, n_{2}\right)$-dimensional fibered fibered manifolds $Y$ into a 1-form $B(\omega)$ on $(F Y)^{*}$ is of the form $B(\omega)=a \omega^{V}+\lambda$ for some uniquely determined canonical map $a:(F Y)^{*} \rightarrow$ $\mathbf{R}$ and some canonical 1-form $\lambda$ on $(F Y)^{*}$. As an application we classify all natural operators $T_{\mathcal{F}^{2} \mathcal{M}-h o r \mid \mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}^{*}} \rightsquigarrow T^{*}\left(F_{\mid \mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}}\right)^{*}$ for a particular vector bundle functor $F$ on fibered fibered manifolds.

Natural operators lifting functions, vector fields and 1-form to some bundle functors were used practically in all papers in which problem of prolongations of geometric structures was studied, e.g. [19]. That is why such natural operators have been classified, see [1], [3]-[14], etc.

From now on the usual coordinates on $\mathbf{R}^{m_{1}, m_{2}, n_{1}, n_{2}}=\mathbf{R}^{m_{1}} \times \mathbf{R}^{m_{2}} \times$ $\mathbf{R}^{n_{1}} \times \mathbf{R}^{n_{2}}$ will be denoted by $x^{1}, \ldots, x^{m_{1}}, y^{1}, \ldots, y^{m_{2}}, w^{1}, \ldots, w^{n_{1}}, v^{1}, \ldots, v^{n_{2}}$.

All manifolds are assumed to be finite dimensional and smooth, i.e. of class $\mathcal{C}^{\infty}$. Maps between manifolds are assumed to be smooth.

1. Fibered fibered manifolds. The concept of fibered fibered manifolds was introduced in [16]. A fibered fibered manifold is a fibered surjective submersion $\pi: Y \rightarrow X$ between fibered manifolds, i.e. a surjective submersion which sends fibers into fibers such that the restricted and corestricted maps are submersions. (We will write $Y$ instead of $\pi$ if $\pi$ is clear.) If $\bar{\pi}: \bar{Y} \rightarrow \bar{X}$ is another fibered fibered manifold, a morphism $\pi \rightarrow \bar{\pi}$ is a fibered map $f: Y \rightarrow \bar{Y}$ such that there is a fibered map $f_{o}: X \rightarrow \bar{X}$ with $\bar{\pi} \circ f=f_{o} \circ \pi$. Thus all fibered fibered manifolds form a category which will be denoted by $\mathcal{F}^{2} \mathcal{M}$. This category is over manifolds, local and admissible in the sense of [4].

Fibered fibered manifolds appear naturally in differential geometry. To see this, we consider a fibered manifold $p: X \rightarrow M$. Then $X$ has the foliated structure $\mathcal{F}$ by fibres. Its normal bundle $Y=\mathcal{N}(X, \mathcal{F})=T X / T \mathcal{F}$ has the induced foliation, [18]. This foliation is by the fibered manifold $[T p]: Y \rightarrow T M$, the quotient map of the differential $T p: T X \rightarrow T M$. Clearly, the projection $\pi: Y \rightarrow X$ of the normal bundle is a fibered fibered manifold. Considering other transverse natural bundles in the sense of [18] instead of $\mathcal{N}(X, \mathcal{F})$, we can produce many fibered fibered manifolds.

A fibered fibered manifold $\pi: Y \rightarrow X$ has dimension $\left(m_{1}, m_{2}, n_{1}, n_{2}\right)$ if fibered manifold $Y$ has dimension $\left(m_{1}+n_{1}, m_{2}+n_{2}\right)$ and fibered manifold $X$ has dimension $\left(m_{1}, m_{2}\right)$. All fibered fibered manifolds of dimension ( $m_{1}, m_{2}, n_{1}, n_{2}$ ) and their local isomorphisms form a subcategory $\mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}} \subset \mathcal{F}^{2} \mathcal{M}$. Every $\mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}$-object is locally isomorphic to $\mathbf{R}^{m_{1}} \times \mathbf{R}^{m_{2}} \times \mathbf{R}^{n_{1}} \times \mathbf{R}^{n_{2}} \rightarrow \mathbf{R}^{m_{1}} \times \mathbf{R}^{m_{2}}$, the projection, where $\mathbf{R}^{m_{1}} \times \mathbf{R}^{m_{2}} \times \mathbf{R}^{n_{1}} \times \mathbf{R}^{n_{2}}\left(\right.$ or $\mathbf{R}^{m_{1}} \times \mathbf{R}^{m_{2}}$ ) is over $\mathbf{R}^{m_{1}} \times \mathbf{R}^{n_{1}}\left(\right.$ or $\left.\mathbf{R}^{m_{1}}\right)$.
2. A classification of natural operators $\boldsymbol{T}_{\mathcal{F}^{2} \mathcal{M}-p r o j \mid} \mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}} \rightsquigarrow$ $\boldsymbol{T}^{(0,0)}\left(\boldsymbol{F}_{\mid \mathcal{F} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}}\right)^{*}$. Let $F: \mathcal{F}^{2} \mathcal{M} \rightarrow \mathcal{V B}$ be a vector bundle functor. Let $m_{1}, m_{2}, n_{1}, n_{2} \in \mathbf{N}$. In this section we classify natural operators $A: T_{\mathcal{F}^{2} \mathcal{M}-p r o j \mid \mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}} \rightsquigarrow T^{(0,0)}\left(F_{\mid \mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}}\right)^{*}$ transforming $\mathcal{F}^{2} \mathcal{M}$-projectable vector fields $Z$ on ( $m_{1}, m_{2}, n_{1}, n_{2}$ )-dimensional fibered fibered manifolds $Y$ into functions $A(Z):(F Y)^{*} \rightarrow \mathbf{R}$ on the dual vector bundle $(F Y)^{*}$.

We recall (see [16]) that a $\mathcal{F}^{2} \mathcal{M}$-projectable vector field on a fibered fibered manifold $\pi: Y \rightarrow X$ is a projectable vector field $Z$ on fibered manifold $Y$ such that there exists a $\pi$-related (with $Z$ ) projectable vector field $Z_{o}$ on fibered manifold $X$. If $Z$ is $\mathcal{F}^{2} \mathcal{M}$-projectable then its flow is formed by local $\mathcal{F}^{2} \mathcal{M}$-isomorphisms.

Example 1. Let $v \in F_{0}\left(\mathbf{R}^{1,0,0,0}\right)$. Consider a $\mathcal{F}^{2} \mathcal{M}$-projectable vector field $Z$ on an ( $m_{1}, m_{2}, n_{1}, n_{2}$ )-dimensional fibered fibered manifold $\pi: Y \rightarrow X$. We define $A^{v}(Z):(F Y)^{*} \rightarrow \mathbf{R}, A^{v}(Z)_{\eta}=\left\langle\eta, F\left(\Phi_{y}^{Z}\right)(v)\right\rangle, \eta \in\left(F_{y} Y\right)^{*}$, $y \in Y_{x}, x \in X$. Here $\Phi_{y}^{Z}:(\epsilon, \epsilon) \rightarrow Y, \Phi_{y}^{Z}(t)=\operatorname{Exp}(t Z)_{y}, t \in(-\epsilon, \epsilon), \epsilon>0$. We consider $\Phi_{y}^{X}$ as fibered fibered map $\mathbf{R}^{1,0,0,0} \rightarrow Y$. The correspondence $A^{v}: T_{\mathcal{F}^{2} \mathcal{M}-\text { proj } \mid \mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}} \rightsquigarrow T^{(0,0)}\left(F_{\mid \mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}}\right)^{*}$ is a natural operator.

Proposition 1. Let $v_{1}, \ldots, v_{L} \in F_{0} \mathbf{R}^{1,0,0,0}$ be a basis. Every natural op-
 form

$$
A=H\left(A^{v_{1}}, \ldots, A^{v_{L}}\right)
$$

for some uniquely determined smooth map $H \in \mathcal{C}^{\infty}\left(\mathbf{R}^{L}\right)$.
Proof. Let $v_{1}^{*}, \ldots, v_{L}^{*} \in\left(F_{0} \mathbf{R}^{1,0,0,0}\right)^{*}$ be the dual basis. Let $q=x^{1}$ : $\mathbf{R}^{m_{1}, m_{2}, n_{1}, n_{2}} \rightarrow \mathbf{R}$ be the projection onto the first factor. It is a fibered fibered map $\mathbf{R}^{m_{1}, m_{2}, n_{1}, n_{2}} \rightarrow \mathbf{R}^{1,0,0,0}$. For $A$ as above we define $H: \mathbf{R}^{L} \rightarrow$ R,

$$
H\left(t_{1}, \ldots, t_{L}\right)=A\left(\frac{\partial}{\partial x^{1}}\right)_{\left(F_{0} q\right)^{*}\left(\sum_{s=1}^{L} t_{s} v_{s}^{*}\right)}
$$

We prove that $A=H\left(A^{v_{1}}, \ldots, A^{v_{L}}\right)$. Since any $\mathcal{F}^{2} \mathcal{M}$-projectable vector field $Z$ on an $\mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}$-object $Y$ such that its underlying projectable vector field has non-vanishing underlying vector field is locally $\frac{\partial}{\partial x^{1}}$ in some local fibered fibered coordinates on $Y$, it is sufficient to show that $A\left(\frac{\partial}{\partial x^{1}}\right)_{\eta}=H\left(A^{v_{1}}\left(\frac{\partial}{\partial x^{1}}\right)_{\eta}, \ldots, A^{v_{L}}\left(\frac{\partial}{\partial x^{1}}\right)_{\eta}\right)$ for any $\eta \in\left(F_{0} \mathbf{R}^{m_{1}, m_{2}, n_{1}, n_{2}}\right)^{*}$. By the invariance of $A$ and $A^{v_{s}}$ with respect to $\mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}$-morphisms $\left(x^{1}, \frac{1}{t} x^{2}, \ldots, \frac{1}{t} x^{m}, \frac{1}{t} y^{1}, \ldots, \frac{1}{t} y^{m_{2}}, \frac{1}{t} w^{1}, \ldots, \frac{1}{t} w^{n_{1}}, \frac{1}{t} v^{1}, \ldots, \frac{1}{t} v^{n_{2}}\right): \mathbf{R}^{m_{1}, m_{2}, n_{1}, n_{2}}$ $\rightarrow \mathbf{R}^{m_{1}, m_{2}, n_{1}, n_{2}}$ for $t \neq 0$ and next putting $t \rightarrow 0$, we can assume that
$\eta=\left(F_{0} q\right)^{*}\left(\sum_{s=1}^{L} t_{s} v_{s}^{*}\right)$. Now, it remains to observe that $A^{v_{s}}\left(\frac{\partial}{\partial x^{1}}\right)_{\eta}=t_{s}$ for $s=1, \ldots, L$.

The uniqueness of $H$ is clear as $\left(A^{v_{s}}\left(\frac{\partial}{\partial x^{1}}\right)\right)_{s=1}^{L}$ is a surjection onto $\mathbf{R}^{L}$.

We have functors $i_{\alpha}: \mathcal{M} f \rightarrow \mathcal{F} \mathcal{M}, i_{1}(M)=\left(\operatorname{id}_{M}: M \rightarrow M\right), i_{2}(M)=$ $(M \rightarrow p t), i_{\alpha}(f)=f: i_{\alpha}(M) \rightarrow i_{\alpha}(N), \alpha=1,2, M \in o b j(\mathcal{M} f), f:$ $M \rightarrow N$ is a map, $p t$ is one point manifold. We have also a functor $j:$ $\mathcal{M} f \rightarrow \mathcal{F}^{2} \mathcal{M}, j(M)=\left(\mathrm{id}_{M}: i_{1}(M) \rightarrow i_{2}(M)\right), j(f)=f: j(M) \rightarrow j(N)$, $M \in \operatorname{obj}(\mathcal{M} f), f: M \rightarrow N$ a map.

Thus we have a vector bundle functor $F \circ j: \mathcal{M} f \rightarrow \mathcal{V} \mathcal{B}$. So, by [2], we can choose a basis $v_{1}, \ldots, v_{L} \in F_{0} \mathbf{R}^{1,0,0,0}=(F \circ j)_{0} \mathbf{R}$ such that $v_{s}$ is homogeneous of weight $n_{s} \in \mathbf{N} \cup\{0\}$, i.e. $F(\tau \mathrm{id})\left(v_{s}\right)=\tau^{n_{s}} v_{s}$ for any $\tau \in \mathbf{R}$.
$\left.{ }^{*}\right)$ By a permutation we assume that $v_{1}, \ldots, v_{k_{1}}$ are of weight $0, v_{k_{1}+1}, \ldots$, $v_{k_{2}}$ are of weight 1 , etc.

Then $A^{v_{1}}(Z), \ldots, A^{v_{k_{1}}}(Z)$ do not depend on $Z$, i.e. $A^{v_{1}}, \ldots, A^{v_{k_{1}}}$ are natural functions on $(F Y)^{*}$. Moreover $A^{v_{k_{1}+1}}(Z), \ldots, A^{v_{k_{2}}}(Z)$ depend linearly on $Z$, i.e. $A^{v_{k_{1}+1}}, \ldots, A^{v_{k_{2}}}$ are linear operators.

Corollary 1. Every natural (canonical) function $G$ on $\left(F_{\mid \mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}}\right)^{*}$ is of the form

$$
G=K\left(A^{v_{1}}, \ldots, A^{v_{k_{1}}}\right)
$$

for some uniquely determined $K \in \mathcal{C}^{\infty}\left(\mathbf{R}^{k_{1}}\right)$. If $F \circ j$ has the point property, i.e. $F \circ j(p t)=p t$, then $G=$ const.

Corollary 2. Let $A$ : $T_{\mathcal{F}^{2} \mathcal{M}-p r o j \mid \mathcal{F} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}} \rightsquigarrow} T^{(0,0)}\left(F_{\mid \mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}}\right)^{*}$ be a natural linear operator. Then

$$
A=\sum_{s=k_{1}+1}^{k_{2}} K_{s}\left(A^{v_{1}}, \ldots, A^{v_{k_{1}}}\right) A^{v_{s}}
$$

for some uniquely determined $K_{s} \in \mathcal{C}^{\infty}\left(\mathbf{R}^{k_{1}}\right)$.
Proof. The corollaries are consequences of Proposition 1 and the homogeneous function theorem, [4].
3. A decomposition proposition. Let $F$ and $v_{1}, \ldots, v_{L}$ be as in Section 1 with the assumption $\left(^{*}\right)$. Let $j: \mathcal{M} f \rightarrow \mathcal{F}^{2} \mathcal{M}$ be the functor as in Section 2.

Let $\pi: Y \rightarrow X$ be a fibered fibered manifold. A 1-form $\omega: T Y \rightarrow \mathbf{R}$ on $Y$ is called $\mathcal{F}^{2} \mathcal{M}$-horizontal if $\omega \mid V Y=0$ and $\omega \mid \tilde{V} Y=0$, where $V Y$ is the
vertical bundle of the fibered manifold $Y$ and $\tilde{V} Y$ is the vertical bundle of fibered manifold $\pi: Y \rightarrow X$.

In this section we study natural operators $B: T_{\mathcal{F}^{2} \mathcal{M}-h o r \mid \mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}^{*}} \rightsquigarrow$ $T^{*}\left(F_{\mid \mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}}\right)^{*}$ transforming $\mathcal{F}^{2} \mathcal{M}$-horizontal 1-forms $\omega$ on fibered fibered manifolds $Y$ of dimension ( $m_{1}, m_{2}, n_{1}, n_{2}$ ) into 1-forms $B(\omega)$ on the dual vector bundle $(F Y)^{*}$.
Example 2. If $\omega: T Y \rightarrow \mathbf{R}$ is a $\mathcal{F}^{2} \mathcal{M}$-horizontal 1-form on a fibered fibered manifold $\pi: Y \rightarrow X$, we have its vertical lifting $B^{V}(\omega)=\omega \circ$ $T \pi^{F}: T(F Y)^{*} \rightarrow \mathbf{R}$ to $(F Y)^{*}$, where $\pi^{F}:(F Y)^{*} \rightarrow Y$ is the bundle projection. The correspondence $B^{V}: T_{\mathcal{F}^{2} \mathcal{M}-h o r \mid \mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}^{*}} \rightsquigarrow$ $T^{*}\left(F_{\mid \mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}}\right)^{*}$ is a natural operator.
Assumption 1. From now on we assume that there exists a basis $w_{1}, \ldots, w_{K}$ $\in F_{0} \mathbf{R}^{m_{1}, m_{2}, n_{1}, n_{2}}$ such that $w_{s}$ is homogeneous of weight $n_{s} \in \mathbf{N} \cup\{0\}$. It means that $F(\tau \mathrm{id})\left(w_{s}\right)=\tau^{n_{s}} w_{s}$ for any $\tau \in \mathbf{R}$.

Remark 1. It seems that every vector bundle functor $F: \mathcal{F}^{2} \mathcal{M} \rightarrow \mathcal{V B}$ satisfies Assumption 1.
Proposition 2 (Decomposition Proposition). Consider a natural op-
 sumption 1 there exists the uniquely determined natural function $a$ on $\left(F_{\mid \mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}}\right)^{*}$ such that

$$
B=a B^{V}+\lambda
$$

for some canonical 1-form $\lambda$ on $\left(F_{\mid \mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}}\right)^{*}$.

## Lemma 1.

(a) We have $(B(\omega)-B(0)) \mid\left(V\left(F \mathbf{R}^{m_{1}, m_{2}, n_{1}, n_{2}}\right)^{*}\right)_{0}=0$ for any $\mathcal{F}^{2} \mathcal{M}$-horizontal 1-form $\omega$ on $\mathbf{R}^{m_{1}, m_{2}, n_{1}, n_{2}}$, where $\left(V\left(F \mathbf{R}^{m_{1}, m_{2}, n_{1}, n_{2}}\right)^{*}\right)_{0}$ is the fiber over $0 \in \mathbf{R}^{m_{1}, m_{2}, n_{1}, n_{2}}$ of the $\pi^{F}$-vertical subbundle in $T\left(F \mathbf{R}^{m_{1}, m_{2}, n_{1}, n_{2}}\right)^{*}$.
(b) If $F \circ j$ has the point property then $B(\omega) \mid\left(V\left(F \mathbf{R}^{m_{1}, m_{2}, n_{1}, n_{2}}\right)^{*}\right)_{0}=0$ for any $\mathcal{F}^{2} \mathcal{M}$-horizontal 1-form $\omega$ on $\mathbf{R}^{m_{1}, m_{2}, n_{1}, n_{2}}$.

## Proof.

ad (a) We use the invariance of $(B(\omega)-B(0)) \mid\left(V\left(F \mathbf{R}^{m_{1}, m_{2}, n_{1}, n_{2}}\right)^{*}\right)_{0}$ with respect to the homotheties $\frac{1}{t} \mathrm{id}_{\mathbf{R}^{m_{1}, m_{2}, n_{1}, n_{2}}}$ for $t \neq 0$ and apply the homogeneous function theorem. We obtain that $(B(\omega)-B(0)) \mid\left(V\left(F \mathbf{R}^{m_{1}, m_{2}, n_{1}, n_{2}}\right)^{*}\right)_{0}$ is independent of $\omega$. This ends the proof of the part (a).
ad (b) We observe that if $F \circ j$ has the point property then $\left(F_{0} \mathbf{R}^{m_{1}, m_{2}, n_{1}, n_{2}}\right)^{*}$ has no non-zero homogeneous elements of weight 0 . Next, we use the invariance of $B(\omega) \mid\left(V\left(F \mathbf{R}^{m_{1}, m_{2}, n_{1}, n_{2}}\right)^{*}\right)_{0}$ with respect to the homotheties $\frac{1}{t} \mathrm{id}_{\mathbf{R}^{m_{1}, m_{2}, n_{1}, n_{2}}}$ for $t \neq 0$ and put $t \rightarrow 0$.

Proof of Proposition 2. Clearly, $B(0)$ is a canonical 1-form. Then replacing $B$ by $B-B(0)$ we have $B(0)=0$ and $B(\omega) \mid\left(V\left(F \mathbf{R}^{m_{1}, m_{2}, n_{1}, n_{2}}\right)^{*}\right)_{0}$ $=0$. Then $B$ is determined by the values $\left\langle B(\omega)_{\eta}, F^{*}\left(\frac{\partial}{\partial x^{1}}\right)_{\eta}\right\rangle$ for all $\mathcal{F}^{2} \mathcal{M}$-horizontal 1-forms $\omega=\sum_{i=1}^{m_{1}} \omega_{i} d x^{i}$ on $\mathbf{R}^{m_{1}, m_{2}, n_{1}, n_{2}}$ and $\eta \in$ $\left(F_{0} \mathbf{R}^{m_{1}, m_{2}, n_{1}, n_{2}}\right)^{*}$, where $F^{*}\left(\frac{\partial}{\partial x^{1}}\right)$ is the complete lifting (flow prolongation) of $\frac{\partial}{\partial x^{1}}$ to $\left(F \mathbf{R}^{m_{1}, m_{2}, n_{1}, n_{2}}\right)^{*}$.

Using the invariance of $B$ with respect to the homotheties $\frac{1}{t} \operatorname{id}_{\mathbf{R}^{m_{1}, m_{2}, n_{1}, n_{2}}}$ for $t \neq 0$ we get the homogeneity condition

$$
\begin{array}{r}
t\left\langle B(\omega)_{\eta}, F^{*}\left(\frac{\partial}{\partial x^{1}}\right)_{\eta}\right\rangle=\left\langleB \left(\left( t \mathrm{id}_{\left.\left.\mathbf{R}^{m_{1}, m_{2}, n_{1}, n_{2}}\right)^{*} \omega\right)_{F\left(\frac{1}{t} \mathrm{id}_{\mathbf{R}^{m_{1}}, m_{2}, n_{1}, n_{2}}\right)^{*}(\eta)},}^{\left.F^{*}\left(\frac{\partial}{\partial x^{1}}\right)_{F\left(\frac{1}{t} \mathrm{id}_{\left.\mathbf{R}^{m_{1}, m_{2}, n_{1}, n_{2}}\right)^{*}(\eta)}\right.}\right\rangle}, ~\right.\right.\right.
\end{array}
$$

Then by the non-linear Petree theorem [4], the homogeneous function theorem and $B(0)=0$ we deduce that $\left\langle B(\omega)_{\eta}, F^{*}\left(\frac{\partial}{\partial x^{1}}\right)_{\eta}\right\rangle$ is a linear combination of $\omega_{1}(0), \ldots, \omega_{m_{1}}(0)$ with coefficients being smooth maps in homogeneous coordinates of $\eta$ of weight 0 .

Then using the invariance of $B$ with respect to $\mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}$-morphisms $\left(x^{1}, \frac{1}{t} x^{2}, \ldots, \frac{1}{t} x^{m}, \frac{1}{t} y^{1}, \ldots, \frac{1}{t} y^{m_{2}}, \frac{1}{t} w^{1}, \ldots, \frac{1}{t} w^{n_{1}}, \frac{1}{t} v^{1}, \ldots, \frac{1}{t} v^{n_{2}}\right):$ $\mathbf{R}^{m_{1}, m_{2}, n_{1}, n_{2}} \rightarrow \mathbf{R}^{m_{1}, m_{2}, n_{1}, n_{2}}$ for $t \neq 0$ and put $t \rightarrow 0$ we end the proof.

## 4. On canonical 1-forms on $\left(\boldsymbol{F}_{\mid \mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}}\right)^{*}$.

Proposition 3. Every canonical 1-form $\lambda$ on $\left(F_{\mid \mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}}\right)^{*}$ induces a linear natural operator

$$
A^{(\lambda)}: T_{\mathcal{F}^{2} \mathcal{M}-p r o j \mid \mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}} \rightsquigarrow T^{(0,0)}\left(F_{\mid \mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}}\right)^{*}
$$

such that $A^{(\lambda)}(Z)_{\eta}=\left\langle\lambda_{\eta}, F^{*}(Z)_{\eta}\right\rangle, \eta \in(F Y)^{*}, Z$ is a $\mathcal{F}^{2} \mathcal{M}$-projectable vector field on $Y$, where $F^{*}(Z)$ is the complete lifting (flow operator) of $Z$ to $(F Y)^{*}$. If $F \circ j$ has the point property, then (under Assumption 1) the correspondence " $\lambda \rightarrow A^{(\lambda)}$ " is a linear injection.

Proof. The injectivity is a consequence of Lemma 1 (b).
5. A corollary. Let $j: \mathcal{M} f \rightarrow \mathcal{F}^{2} \mathcal{M}$ be the functor as in Section 2.

Corollary 3. Assume that $F \circ j$ has the point property and there are no nonzero elements from $F_{0} \mathbf{R}^{1,0,0,0}$ of weight 1 . (For example, let $F=F_{1} \otimes F_{2}$ : $\mathcal{F}^{2} \mathcal{M} \rightarrow \mathcal{V B}$ be the tensor product of two vector bundle functors $F_{1}, F_{2}$ :
$\mathcal{F}^{2} \mathcal{M} \rightarrow \mathcal{V B}$ such that $F_{1} \circ j, F_{2} \circ j$ have the point property.) Then (under Assumption 1) every natural operator $B: T_{\mathcal{F}^{2} \mathcal{M}-h o r \mid \mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}^{*} \rightsquigarrow} \rightsquigarrow$


Proof. Since there are no non-zero elements from $F_{0} \mathbf{R}^{1,0,0,0}$ of weight 1 , we see that every canonical 1-form on $\left(F \mid \mathcal{F}^{2} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}\right)^{*}$ is zero because of Corollary 2 and Proposition 3. Then Proposition 2 together with Corollary 1 ends the proof.
6. An application. Let $r_{1}, r_{2}, \ldots, r_{8} \in \mathbf{N}$ be such that $r_{8} \geq r_{4} \leq r_{5} \geq r_{3}$ and $r_{8} \geq r_{6} \leq r_{7} \geq r_{2}$ and $r_{1} \leq r_{i}$ for $i=2,3, \ldots, 8$.

The concept of $r$-jets and $(r, s, q)$-jets can be generalized as follows. Let $\pi: Y \rightarrow X$ be a fibered fibered manifold being surjecive fibered submersion between fibered manifolds $p^{Y}: Y \rightarrow \underline{Y}$ and $p^{X}: X \rightarrow \underline{X}$. Let $\pi^{\prime}: Y^{\prime} \rightarrow$ $X^{\prime}$ be another fibered fibered manifold being surjective fibered submersion between $p^{Y^{\prime}}: Y^{\prime} \rightarrow \underline{Y^{\prime}}$ and $p^{X^{\prime}}: X^{\prime} \rightarrow \underline{X}^{\prime}$. Let $y \in Y$ be a point and $\underline{y}=p^{Y}(y) \in \underline{Y}, x=\pi(y) \in X$ and $\underline{x}=p^{X}(x) \in \underline{X}$ be its underlying points. Let $f, g: Y \rightarrow Y^{\prime}$ be two fibered fibered maps and $\underline{f}, \underline{g}: \underline{Y} \rightarrow \underline{Y}^{\prime}$, $f_{o}, g_{o}: X \rightarrow X^{\prime}$ and $\underline{f}_{o}, \underline{g}_{o}: \underline{X} \rightarrow \underline{X}^{\prime}$ be their underlying maps. We say that $f, g$ determine the same $\left(r_{1}, \ldots, r_{8}\right)$-jet $j_{y}^{\left(r_{1}, \ldots, r_{8}\right)} f=j_{y}^{\left(r_{1}, \ldots, r_{8}\right)} g$ at $y \in Y$ if $j_{y}^{r_{1}} f=j_{y}^{r_{1}} g, j_{y}^{r_{2}}\left(f \mid Y_{x}\right)=j_{y}^{r_{2}}\left(g \mid Y_{x}\right), j_{y}^{r_{3}}\left(f \mid Y_{\underline{y}}\right)=j_{y}^{r_{3}}\left(g \mid Y_{\underline{y}}\right), j_{x}^{r_{4}}\left(f_{o}\right)=$ $j_{x}^{r_{4}}\left(g_{o}\right), j_{x}^{r_{5}}\left(f_{o} \mid X_{\underline{x}}\right)=j_{x}^{r_{5}}\left(g_{o} \mid X_{\underline{x}}\right), j_{\underline{y}}^{r_{6}}(\underline{f})=j_{\underline{y}}^{r_{6}}(\underline{g}), j_{\underline{y}}^{r_{7}}\left(\underline{f} \mid \underline{Y}_{\underline{x}}\right)=j_{\underline{y}}^{r_{7}}\left(\underline{g} \mid \underline{Y_{\underline{x}}}\right)$ and $j_{\underline{x}}^{r_{8}}\left(\underline{f}_{o}\right)=j_{\underline{x}}^{r_{8}}\left(\underline{g}_{o}\right)$. The space of all $\left(r_{1}, r_{2}, \ldots, r_{8}\right)$-jets of $Y$ into $Y^{\prime}$ is denoted by $J^{\left(\bar{r}_{1}, \ldots, r_{8}\right)}\left(Y, Y^{\prime}\right)$. The composition of fibered fibered maps induces the composition of $\left(r_{1}, \ldots, r_{8}\right)$-jets.

The (described in [4] and [5],[15]) vector bundle functors $T^{(r)}=$ $\left(J^{r}(., \mathbf{R})_{0}\right)^{*}: \mathcal{M} f \rightarrow \mathcal{V} \mathcal{B}$ and $T^{(r, s, q)}=\left(J^{(r, s, q)}\left(., \mathbf{R}^{1,1}\right)_{0}\right)^{*}: \mathcal{F M} \rightarrow$ $\mathcal{V B}$ can be generalized as follows. The space $J^{\left(r_{1}, \ldots, r_{8}\right)}\left(Y, \mathbf{R}^{1,1,1,1}\right)_{0}, 0 \in$ $\mathbf{R}^{4}$, has an induced structure of a vector bundle over $Y$. Every fibered fibered map $f: Y \rightarrow Y^{\prime}, f(y)=y^{\prime}$, induces a linear map $\lambda\left(j_{y}^{\left(r_{1}, \ldots, r_{8}\right)} f\right)$ : $J_{y^{\prime}}^{\left(r_{1}, \ldots, r_{8}\right)}\left(Y^{\prime}, \mathbf{R}^{1,1,1,1}\right)_{0} \rightarrow J_{y}^{\left(r_{1}, \ldots, r_{8}\right)}\left(Y, \mathbf{R}^{1,1,1,1}\right)_{0}$ by means of the jet composition. If we denote by $T^{\left(r_{1}, \ldots, r_{8}\right)} Y$ the dual vector bundle of $J^{\left(r_{1}, \ldots, r_{8}\right)}\left(Y, \mathbf{R}^{1,1,1,1}\right)_{0}$ and define $T^{\left(r_{1}, \ldots, r_{8}\right)} f: T^{\left(r_{1}, \ldots, r_{8}\right)} Y \rightarrow T^{\left(r_{1}, \ldots, r_{8}\right)} Y^{\prime}$ by using the dual maps to $\lambda\left(j_{y}^{\left(r_{1}, \ldots, r_{8}\right)} f\right)$, we obtain a vector bundle functor $T^{\left(r_{1}, \ldots, r_{8}\right)}: \mathcal{F}^{2} \mathcal{M} \rightarrow \mathcal{V} \mathcal{B}$.
Example 3. We have 1-forms $\lambda_{\alpha}^{\left(r_{1}, \ldots, r_{8}\right)}: T J^{\left(r_{1}, \ldots, r_{8}\right)}\left(Y, \mathbf{R}^{1,1,1,1}\right)_{0} \rightarrow \mathbf{R}$ on $J^{\left(r_{1}, \ldots, r_{8}\right)}\left(Y, \mathbf{R}^{1,1,1,1}\right)_{0}, \alpha=1,2,3,4, \lambda_{\alpha}^{\left(r_{1}, \ldots, r_{8}\right)}(v)=d \gamma_{\alpha}(T \tilde{\pi}(v)), v \in$ $T_{w} J^{\left(r_{1}, \ldots, r_{8}\right)}\left(Y, \mathbf{R}^{1,1,1,1}\right)_{0}, w=j_{y}^{\left(r_{1}, \ldots, r_{8}\right)}\left(\gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{4}\right), y \in Y, \tilde{\pi}: J^{\left(r_{1}, \ldots, r_{8}\right)}$ $\left(Y, \mathbf{R}^{1,1,1,1}\right)_{0} \rightarrow Y$ is the bundle projection.

Corollary 4. Every natural operator

$$
B: T_{\mathcal{F}^{2} \mathcal{M}-h o r \mid \mathcal{F} \mathcal{M}_{m_{1}, m_{2}, n_{1}, n_{2}}^{*} \rightsquigarrow T^{*}\left(J^{\left(r_{1}, \ldots, r_{8}\right)}\left(., \mathbf{R}^{1,1,1,1}\right)_{0}\right), ~}^{\text {and }}
$$

is a linear combination of the vertical lifting $B^{V}$ and the canonical 1-forms $\lambda_{\alpha}^{\left(r_{1}, \ldots, r_{8}\right)}$ for $\alpha=1,2,3,4$ with real coefficients.

Proof. The vector bundle functor $T^{\left(r_{1}, \ldots, r_{8}\right)}$ satisfies Assumption 1. Moreover, $T^{\left(r_{1}, \ldots, r_{8}\right)} \circ j$ has the point property and the subspace of elements from $T_{0}^{\left(r_{1}, \ldots, r_{8}\right.} \mathbf{R}^{1,0,0,0}$ of weight 1 is 4 -dimensional. Then by Proposition 3 together with Corollaries 1 and 2, the space of canonical 1-forms on $J^{\left(r_{1}, \ldots, r_{8}\right)}\left(., \mathbf{R}^{1,1,1,1}\right)_{0}$ is at most 4-dimensional. Now, Proposition 2 ends the proof.

## References

[1] Doupovec, M., J. Kurek, Liftings of tensor fields to the cotangent bundle, Differential Geometry and Applications, Proceedings of the International Conference Brno (1995), 141-150.
[2] Epstein, D.B.A., Natural Vector Bundles, Category Theory, Homology Theory and Their Applications III, Lecture Notes in Mathematics, vol. 99, Springer-Verlag, Berlin-New York, 1969.
[3] Gancarzewicz, J., Liftings of functions and vector fields to natural bundles, Dissert. Math. CCXII, Warszawa, 1983.
[4] Kolář, I., P.W. Michor and J. Slovák, Natural Operations in Differential Geometry, Springer-Verlag, Berlin, 1993.
[5] Kolář, I., W.M. Mikulski, Contact elements on fibered manifolds, Czechoslovak Math. J. (to appear).
[6] Kurek, J., W.M. Mikulski, The natural operators lifting 1-forms to the r-jet prolongation of the cotangent bundle, Proc. Conf. on Diff. Geom. and Appl. Opava 2001, Math. Publ. Silesian Univ. Opava (2001), 215-227.
[7] Kurek, J., W.M. Mikulski, The natural operators lifting 1-forms to some vector bundle functors, Colloq. Math. 93(2) (2002), 259-265.
[8] Kurek, J., W.M. Mikulski, The natural operators lifting horizontal 1-forms to some vector bundle functors on fibered manifolds, Colloq. Math. (to appear).
[9] Mikulski, W.M., Natural transformations transforming functions and vector fields to functions on some natural bundles, Math. Bohemica 117 (1992), 217-223.
[10] Mikulski, W.M., The natural operators lifting 1-forms on manifolds to the bundles of A-velocities, Monatsh. Math. 119 (1995), 63-77.
[11] Mikulski, W.M., The natural operators lifting 1-forms to r-jet prolongation of the tangent bundle, Geometriae Dedicata 68 (1997), 1-20.
[12] Mikulski, W.M., Liftings of 1-forms to the linear r-tangent bundle, Arch. Math. Brno 31(2) (1995), 97-111.
[13] Mikulski, W.M., Liftings of 1-forms to the bundle of affinors, Ann. Univ. Mariae Curie-Skłodowska Sect. A 55 (2001), 109-113.
[14] Mikulski, W.M., Liftings of 1-form to $\left(J^{r} T^{*}\right)^{*}$, Colloq. Math. 91(1) (2002), 69-77.
[15] Mikulski, W.M., Natural affinors on $\left(J^{r, s, q}\left(., \mathbf{R}^{1,1}\right)_{0}\right)^{*}$, Comment. Math. Univ. Carolinae 42(4) (2001), 655-663.
[16] Mikulski, W.M., The jet prolongations of fibered fibered manifolds and the flow operator, Publ. Math. Debrecen 59(3-4) (2001), 441-458.
[17] Mikulski, W.M., J. Tomaš, Product preserving bundle functors on fibered fibered manifolds, Colloq. Math. (to appear).
[18] Wolak, R., On transverse structures of foliations, Suppl. Rend. Circ. Mat. Palermo 9 (1985), 227-243.
[19] Yano, K., S. Ishihara, Tangent and Cotangent Bundles, Marcel Dekker, Inc., New York, 1973.

Institute of Mathematics
Maria Curie-Skłodowska University
pl. M. Curie-Skłodowskiej 1
20-031 Lublin, Poland
e-mail: kurek@golem.umcs.lublin.pl

Institute of Mathematics
Jagiellonian University
ul. Reymonta 4
Kraków, Poland
e-mail: mikulski@im.uj.edu.pl

Received May 14, 2003


[^0]:    2000 Mathematics Subject Classification. 58A20.
    Key words and phrases. Fibered fibered manifold, bundle functor, natural operator.

