
ANNALES
UN IVERS ITAT I S MAR IAE CUR IE – SKŁODOWSKA

LUBL IN – POLON IA

VOL. LVI, 9 SECTIO A 2002

PRZEMYSŁAW STPICZYŃSKI

Efficient data–parallel algorithms for computing

trigonometric sums

Abstract. In this paper new parallel versions of Goertzel and Reinsch
algorithms for calculating trigonometric sums are introduced. To achieve

portability, the parallel algorithms have been implemented in High Per-

formance Fortran and can be run on variety of parallel computers. The
experimental results on a cluster of Pentium II computers with PVM3 and

ADAPTOR compilation system are presented. Efficiency of the parallel

Reinsch algorithm is about eighty percent.

1. Introduction. Let us consider the problem of computing sums

(1) C(x) =
n∑

k=0

bk cos kx and S(x) =
n∑

k=1

bk sin kx .

which is very important for some numerical algorithms [9]. For example, in
trigonometric interpolation the sums (1) are used for computing values of
trigonometric polynomials

p(x) = β0 + β1e
ix + . . . + βN−1e

(N−1)ix.

1991 Mathematics Subject Classification. 65Y05, 42A05.
Key words and phrases. Trigonometric sums, parallel algorithms, linear recurrence

systems, High Performance Fortran, PVM.

86 P. Stpiczyński

The solution of the problem (1) can be found using well known sequential
Goertzel and Reinsch algorithms which reduce to the problem of solving
linear recurrence systems. The Reinsch algorithm is more complicated but
has better numerical properties [9]. In [12, 7] we presented parallel versions
of Goertzel and Reinsch algorithms based on the recently developed parallel
algorithms for solving linear recurrence systems [10, 11, 6, 5]. However, our
experiments on a Sequent Symmetry parallel computer with shared memory
showed that the algorithms had a rather poor efficiency. Thus, the purpose
of this paper is to present improvements of the parallel algorithms. Studying
the special structure of linear recurrence systems formed according to the
Goertzel and Reinsch algorithms, we show how to develop new parallel
algorithms with better potential parallelism. To achieve portability, we
have implemented the algorithms in High Performance Fortran [3], so they
can be efficiently run on a wide variety of parallel computers with shared or
distributed memory. Our parallel programs have been tested on a cluster of
Pentium II computers running under Linux operating system with PVM3
[4] and ADAPTOR compilation system [1, 2].

2. Parallel algorithms. In this section we briefly describe parallel algo-
rithm for solving linear recurrence systems with constant coefficients and
parallel versions of Goertzel and Reinsch algorithms.

2.1. Linear recurrence systems. Let us consider the following formula

(2) xk =

0 for k ≤ 0

fk +
m∑

j=1

ajxk−j for 1 ≤ k ≤ n

called linear recurrence system with constant coefficients. It can be effi-
ciently solved in parallel using a recently developed algorithm [10, 11, 6,
5]. The idea of the algorithm is to rewrite (2) as the block system of linear
equations

(3)

L
U L

.
U L

x1

x2
...

xp

 =

f1
f2
...
fp

 ,

Efficient data–parallel algorithms for computing trigonometric sums 87

where for q = n/p > m we have

L =

1

−a1
. . .

...
.

−am
.

.
−am · · · −a1 1

∈ Rq×q

U =

−am · · · −a1

. . .
...

−am

0

 ∈ Rq×q.

Then we get the following recurrence system

(4)

{
x1 = L−1f1

xj = L−1fj − L−1Uxj−1 for j = 2, . . . , p.

To solve this system let us consider the structure of the matrix

(5) U = −
m∑

k=1

m∑
l=k

am+k−lekeT
q−m+l,

where ek denotes k-th unit vector of Rq. Thus the equation (4) reduces to
the form

(6)

x1 = L−1f1

xj = L−1fj +
m∑

k=1

αk
j yk for j = 2, . . . , p,

where Lyk = ek and αk
j =

∑m
l=k am+k−lx(j−1)q−m+l. Note that to compute

vectors yk we need to find only the solution of the system Ly1 = e1, namely
y1 = (1, y2, . . . , yq)T . Then we form vectors yk as follows

(7) yk = (0, . . . , 0︸ ︷︷ ︸
k−1

, 1, y2, . . . , yq−k+1)T .

This yields that the number of subsystems we must solve in parallel does
not depend on the order of the system.

88 P. Stpiczyński

2.2. Goertzel algorithm. First let us observe that we can restrict our
attention to the case where x 6= kπ. If x = kπ then S(x) = 0 for all x
and cos kx = ±1, thus C(x) can be computed using a simple summation
algorithm. In case of the Goertzel algorithm [9] for finding (1), we need to
compute two last components (namely S1 and S2) of the following linear
recurrence system with constant coefficients:

(8) Sk =
{

0 for k = n + 1, n + 2
bk + 2Sk+1 cos x− Sk+2 for k = n, n− 1, . . . , 1

and then we compute

(9) C(x) = b0 + S1 cos x− S2 and S(x) = S1 sin x.

To apply the formula (2) and then the parallel algorithm based on (6), let
us observe that (8) can be rewritten as (2) with m = 2, a1 = 2 cos x = c,
a2 = −1 and right–hand side coefficients given by

(10) fk = bn−k+1 for k = 1, . . . , n.

Thus, for zj = L−1fj , the formula (2) will be of the form
(11){x1 = z1

xj = zj + (−x(j−1)q−1 + cx(j−1)q)y1 − x(j−1)qy2 for j = 2, . . . , p.

When we set

(12) M =
(
−yq−1 cyq−1 − yq−2

−yq cyq − yq−1

)
∈ R2×2

then from (11) we get the following recurrence formula for two last entries
of each vector xj

x
′′

j = z
′′

j + Mx
′′

j−1 for j = 2, . . . , p.

Finally, we get

(13)
(

S2

S1

)
= x

′′

p = z
′′

p +
p−1∑
j=1

Mp−jz
′′

j .

Now let us observe that in fact there is no need to solve the system
Ly1 = e1. Indeed, to form (13) we only need three last entries of y1.

Efficient data–parallel algorithms for computing trigonometric sums 89

Proposition 1. Let y = (1, y2, . . . , yq)T be the solution of the system Ly =
e1. Then for x 6= kπ, k ∈ Z, we have

(14) yr =
sin rx

sin x

where r = q − 2, q − 1, q.

Proof. Clearly, we have

sin qx =
q∑

k=1

ck sin kx

where ck = 1 for k = q and ck = 0 for k = 1, . . . , q− 1. From (8) we obtain
that sin qx = S1 sin x, where S1 is the last component of the solution of the
system

1
−2 cos x 1

1
.
1 −2 cos x 1

Sq

Sq−1

...
S1

 =

1
0
...
0

 ,

so yq = S1. This yields that yq = sin(qx)/ sin x. Analogously we prove (14)
for r = q − 2, q − 1. �

Using the above proposition we can formulate the parallel version of the
Goertzel algorithm:

G1. Solve in parallel Lzj = fj , j = 1, . . . , p

G2. Using (12) and (14) form the matrix M

G3. Using (13) compute S1 and S2

G4. Using (9) compute C(x) and S(x).

2.3. Parallel Reinsch algorithm. To avoid the influence of rounding
errors on the final computed solution when x is close to 0, in Reinsch algo-
rithm [9] we set Sn+2 = Dn+1 = 0 and if cos x > 0, then we solve

(15)
{

Sk+1 = Dk+1 + Sk+2

Dk = bk + βSk+1 + Dk+1

for k = n, n− 1, . . . , 0, where β = −4 sin2 x
2 . If cos x ≤ 0, then we solve

(16)
{

Sk+1 = Dk+1 − Sk+2

Dk = bk + βSk+1 −Dk+1

90 P. Stpiczyński

where β = 4 cos2 x
2 . Finally, we compute

(17) S(x) = S1 sin x and C(x) = D0 −
β

2
S1.

Now let us observe that the solution of (15–16) is equivalent to the solu-
tion of the following system of linear equations

(18) Lx = f,

where x, f ∈ R2n,

(19) xk =
{

Sn−bk/2c for k = 1, 3, . . . , 2n− 1
Dn−k/2 for k = 2, 4, . . . , 2n

,

(20) fk =

bn for k = 1
bn−1 − δbn for k = 2
0 for k = 3, 5, . . . , 2n− 1
bn−k/2 for k = 4, 6, . . . , 2n

and

(21) L =

1
−β 1
δ −1 1

δ −β 1
δ −1 1

.
δ −β 1

∈ R2n×2n

with

(22) δ =
{ −1 for cos x > 0

1 for cos x ≤ 0

To find the solution of (18) in parallel, let us observe that the system
is of the form (3). Thus, applying our parallel algorithm form solving lin-
ear recurrence systems, we have to solve the following systems of linear
equations

L(q)zj = fj , j = 1, . . . , p,

where L(q) ∈ R2q×2q is a submatrix of L built from its first 2q rows and
columns. Next we need to form the matrix

(23) M =

(
y
(1)
q−1 y

(2)
q−1

y
(1)
q y

(2)
q

)
∈ R2×2

Efficient data–parallel algorithms for computing trigonometric sums 91

using two last entries of vectors y1 = (y(1)
1 , . . . , y

(1)
q)T and y2 =

(y(2)
1 , . . . , y

(2)
q)T given by

(24) L(q)y1 = (δ,0, . . . , 0)T

(25) L(q)y2 = (-1, δ,0, . . . , 0)T

and then compute S1 and D0 applying

(26)
(

S1

D0

)
= x

′′

p = z
′′

p −
p−1∑
j=1

Mp−jz
′′

j .

Analogously to the Goertzel algorithm we can state the following proposi-
tions.

Proposition 2. For x 6=kπ, k ∈ Z, two last entries of y1 =(y(1)
1 , . . . , y

(1)
q)T

given by (24) satisfy

(27) y
(1)
q−1 = (δ sin qx + sin(q − 1)x) / sin x

(28) y(1)
q = δ cos qx + cos(q − 1)x +

β

2
y
(1)
q−1

where δ is defined by (22) and β = −4 sin2 x
2 for cos x > 0 and β = 4 cos2 x

2
for cos x ≤ 0.

Proof. Finding two last entries of the solution of (24) is equivalent to the
Reinsch algorithm for computing sums (1). Due to (20), the coefficients bk,
k = 1, . . . , q, are given by

bk =

δ for k = q

1 for k = q − 1
0 for k = 1, . . . , q − 2.

Thus, using the definition of the Reinsch algorithm we get

S(x) = S1 sin x = sin(q − 1)x + δ sin qx.

Analogously

C(x) = D0 −
β

2
= cos(q − 1)x + δ cos qx.

Assigning y
(1)
q−1 = S1 and y

(1)
q = D0 we get (27) and (28). �

92 P. Stpiczyński

Proposition 3. For x 6=kπ, k ∈ Z, two last entries of y2 =(y(2)
1 , . . . , y

(2)
q)T

given by (25) satisfy

(29) y
(2)
q−1 = − sin qx/ sin x

(30) y(2)
q = − cos qx +

β

2
y
(2)
q−1

where β = −4 sin2 x
2 for cos x > 0 and β = 4 cos2 x

2 for cos x ≤ 0.

Proof. As in the proof of the previous proposition, finding two last entries
of the solution of (25) is equivalent to the Reinsch algorithm for computing
sums (1), where coefficients bk, k = 1, . . . , q, are given by

bk =
{ −1 for k = q

0 for k = 1, . . . , q − 1,

so S1 = − sin qx/ sin x and D0 = β
2 − cos qx. �

Using the above propositions we can conclude that the parallel version
of the Reinsch algorithm consists of the following steps:

R1. Solve in parallel L(q)zj = fj , j = 1, . . . , p

R2. According to (23) form the matrix M

R3. Using (26) compute S1 and D0

R4. Using (17) compute S(x) and C(x).

3. Data parallel implementation and experiments. The algorithms
have been implemented in High Performance Fortran [3]. The model of data
parallel programming with HPF is based on the following principles:

• a user must define data mapping onto a virtual array of processors;

• a user must specify data parallelism using array operations, FORALL
statements or an INDEPENDENT directive which asserts to a compiler
that statements in a loop can be executed independently.

Let us briefly describe specific HPF constructions used in our implemen-
tation.

Efficient data–parallel algorithms for computing trigonometric sums 93

Figure 1: Performance for number of processors equal to 10

First of all we have to distribute coefficients fk defined by (20) for Reinsch
and (10) for Goertzel and then distribute them onto a virtual array of
processors. Note, that for Reinsch we need to distribute only non–zero
numbers, i.e. such that k 6= 3, 5, . . . , 2n− 1. For both of the algorithms, it
can be done by the following HPF directives

real*8, allocatable :: f(:,:), x(:,:)
!hpf$ processors P(number of processors())
!hpf$ distribute f(*,block) onto P
!hpf$ distribute x(*,block) onto P
!
! set p as the number of processors
! set q as n/p
! and then allocate arrays

allocate (f(1:q,1:p),x(1:2,1:p))

The first step of the algorithms (i.e. solving in parallel p systems of linear
equations) can be expressed by the following construct

!hpf$ independent
do j=1,p

! solve j-th system for coefficients f(1:q,j)
! and store two last components of the result
! in x(1:2,j)
!
end do

94 P. Stpiczyński

Figure 2: Performance of the parallel algorithms
for N = 6300000

Further steps of the algorithms are typically sequential. Note that the
constructions in which we implement (26) for Reinsch and (13) for Goertzel
require communication between processors. However all necessary calls to
communication subroutines are automatically generated by a HPF compiler.

We have tested our parallel programs on a cluster of ten PCs with Pen-
tium II/400 processors running under Linux operating system with PVM3
message passing system [4]. As an HPF compiler, we have used ADAPTOR
compilation system [1, 2]. Results of the experiments can be summarized
as follows.

1. Both algorithms achieve better performance for greater problem
sizes (see Figure 1). It is obvious, because in our algorithms the
total amount of communication does not depend on the problem
size and it is the same for both of them. Because of Reinsch per-
forms more flops, thus it achieves better performance than Goertzel.
Its efficiency is about 80.

2. For each problem size there exists an optimal number of processors
(popt) for which the best performance is achieved. When we apply p
processors, p > popt, the performance decreases (see Figures 2 and
3). For Reinsch, the value of popt is greater than for Goertzel.

3. We have not observed any significant loss of accuracy in comparison
with corresponding sequential algorithms. Moreover, for Reinsch,

Efficient data–parallel algorithms for computing trigonometric sums 95

the accuracy is better for greater number of processors. Though it
will be a subject of our further research.

Figure 3: Performance of the parallel algorithms
for N = 1260000

4. Conclusions. We have presented new efficient parallel versions of Go-
ertzel and Reinsch algorithms for computing trigonometric sums. In the
algorithms, we have applied the divide–and–conquer approach for solving
problems in parallel. The additional improvements have been obtained by
studying the special structure of linear recurrence systems formulated ac-
cording to the sequential algorithms. We have shown how to reduce the
number of subsystems to be solved in parallel. The new algorithms have
been implemented in HPF and tested on a cluster of PCs with PVM3 mes-
sage passing system. For a big problem size the efficiency of the parallel
Reinsch algorithm is about eighty percent.

References

[1] Brandes, T., R. Höver-Klier, ADAPTOR User’s Guide (Version 6.1), Technical

documentation, GMD, 1998.
[2] Brandes, T., ADAPTOR Programmers’s Guide (Version 6.1), Technical documen-

tation, GMD, 1998.

[3] Koelbel, C., D. Loveman, R. Shreiber, G. Steele and M. Zosel, The High Perfor-
mance Fortran Handbook, MIT Press, Cambridge, 1994.

96 P. Stpiczyński

[4] Geist, A., A. Beguelin, J. Dongarra, W. Jiang, R. Manchek and V. Sunderam, PVM:

Parallel Virtual Machine. A Users’s Guide and Tutorial for Networked Parallel

Computing, The MIT Press, Cambridge, 1994.
[5] Paprzycki, M., P. Stpiczyński, Solving linear recurrence systems on a Cray Y-MP,

in: Lecture Notes in Computer Science 879 (J.Dongarra, J. Waśniewski, eds.),

Springer–Verlag, Berlin, 1994, pp. 416–424.
[6] Paprzycki, M., P. Stpiczyński, Solving linear recurrence systems on parallel comput-

ers, Proceedings of the Mardi Gras ’94 Conference, Baton Rouge, Feb. 10–12, 1994,

Nova Science Publishers, New York, 1995, pp. 379–384.
[7] Paprzycki, M., P. Stpiczyński, Parallel solution of linear recurrence systems, Z.

Angew. Math. Mech. 76 (1996), Suppl. 2, 5–8.
[8] Sameh, A.H., R.P. Brent, Solving triangular systems on a parallel computer, SIAM

J. Numer. Anal. 14 (1977), 1101–1113.

[9] Stoer, J., R. Bulirsh, Introduction to Numerical Analysis, 2nd ed., Springer, New
York, 1993.

[10] Stpiczyński, P., Parallel algorithms for solving linear recurrence systems, in: Lecture

Notes in Computer Science 634 (L. Bougé et al., eds.), Springer–Verlag, Berlin, 1992,
pp. 343–348.

[11] Stpiczyński, P., Error analysis of two parallel algorithms for solving linear recur-

rence systems, Parallel Comput. 19 (1993), 917–923.
[12] Stpiczyński, P., M. Paprzycki, Parallel algorithms for finding trigonometric sums,

in: Parallel Processing for Scientific Computing (D.H. Bailey et al., eds.), SIAM,

Philadelphia, 1995, pp. 291–292.

Department of Computer Science received June 13, 2001
Maria Curie-Sk lodowska University
Pl. M. C.-Sk lodowskiej 1
20-031 Lublin, Poland
e-mail: przem@hektor.umcs.lublin.pl

