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On the construction of a stable sequence

with given density

Abstract. The notion of a stable sequence of events generalizes the notion

of mixing sequence and was introduced by A. Rényi. A sequence of random
elements Xn is said to be stable if for every B ∈ A with P (B) > 0 there

exists a probability measure µB on (S,B) such that limn→∞ P ([Xn ∈ A] |
B) = µB(A) for every A ∈ A with µB(δA) = 0. Given a density function,
the aim of this note is to give a martingale construction of a stable sequence

of random elements having the given density function. The problem was

solved in the special case Ω =< 0, 1 > by the second named author and
S.Gutkowska.

Let (Ω,A, P ) be a probability space. By (S, ρ) we denote a metric space
and B stands for the σ−field generated by open sets of S.

Let X be the set of all random elements (r.e.):

X = {X : Ω → S : X−1(A) ∈ A, A ∈ B}

Definition 1. An infinite sequence of events A1, A2, . . . , An, . . . (Ai ∈
A, i ≥ 1) will be called a stable sequence if the limit

lim
n→∞

P (AnB) = Q(B)
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exists for every B ∈ A.

Thus Q is a bounded measure on A which is absolutely continuous with
respect to the measure P and consequently

Q(B) =
∫

B

α dP

for every B ∈ A, where α = α(ω) is a measurable function on Ω such that
0 ≤ α(ω) ≤ 1 almost surely (a.s.).

In the case when the local density is constant, the sequence {An, n ≥ 1}
will be called a mixing sequence of events with density α.

In the special case when Ω =< 0, 1 > a construction of a stable sequence
with given continuous density function α is described, cf. [7]. In this paper
we give a construction in a more general situation.

It is well known [6] that any sample space Ω can be represented as

Ω = B ∪
∞⋃

k=1

Bk, Bm ∩Bn = ∅ for m 6= n, B ∩Bn = ∅, n = 1, 2, . . .

where each Bk is an atom or an empty set and B has the property that for
any given A ∈ A such that A ⊂ B and any ε, 0 < ε < P (A), there exists
C ∈ A, C ⊂ A, such that P (C) = ε. Random elements are constant a.s. on
atoms.

Theorem 1. Assume that (Ω,A, P ) is an atomless probability space. Then
for every measurable real function α ( 0 ≤ α ≤ 1 a.s.) there exists a stable
sequence of events {An, n ≥ 1} such that

lim
n→∞

P (AnB) =
∫

B

α dP = Q(B).

Proof. Let A′ ⊂ A be the σ-field generated by the sets α−1(B(xi, rj)),
where xi and rj are rational numbers (0 ≤ xi ≤ 1, rj > 0) and

B(xi, rj) = {x : |x− xi| < rj}.

We can assume that A′ is generated by B1, B2, . . . , Bn, . . . with Bi ∈
A, i ≥ 1. We denote by Cn = σ(B1, B2, . . . , Bn) the σ-field generated
by the set B1, B2, . . . , Bn. Cn is generated by the measurable partition
{C1

n, C2
n, . . . Ckn

n }.
By the martingale convergence theorem, we have

α(ω) = lim
n→∞

ECnα(ω)a.s.,
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where ECn denotes the conditional expectation with respect to the σ-field
Cn.

Since (Ω,A′, P ) is atomless, for every n and 1 ≤ i ≤ kn there exists in
A′ a set Ai

n ⊂ Ci
n such that

P (Ai
n) =

∫
Ci

n

α(ω) dP.

We put An =
kn⋃
i=1

Ai
n. For ω ∈ Ci

n, we have

ECn(IAn
)(ω) =

P (An ∩ Ci
n)

P (Ci
n)

=
P (Ai

n)
P (Ci

n)
=

∫
Ci

n
α(ω) dP

P (Ci
n)

= ECnα(ω).

If B ∈ Cn for some n ≥ 1 then we have

lim
n→∞

E(IAn
IB) = lim

n→∞
E(ECn(IAn

IB)) = lim
n→∞

EIBECn(IAn
)

= lim
n→∞

EIBECnα = EIBα.

Let now K = {B ∈ A′ : limn→∞ E(IAn
IB) = EIBα}. The set K

contains ∅ and
∞⋃

n=1
Cn ⊂ K. We prove that K is a σ-field. It is easy to see

that if B ∈ K then Bc ∈ K. Let now Bn ∈ K, n ≥ 1, be an increasing

sequence and B =
∞⋃

n=1
Bn. For any ε > 0 there exists n0 such that P (B) ≤

P (Bn0) + ε. Then we have lim infn→∞ E(IAnIB) ≥ limn→∞ E(IAnIBn0
) =

EαIBn0
≥ EαIB−ε and lim supn→∞ E(IAn

IB) ≤ limn→∞ E(IAn
IBn0

)+ε =
EαIBn0

+ ε ≤ EαIB + ε which implies

lim
n→∞

E(IAn
IB) = EαIB

and this proves that K is a σ-field and K contains A′.
Next, we show that equality limn→∞ E(IAnIB) = E(αIB) remains true

for each B ∈ A. If g : Ω →< 0, 1 > is some A′-measurable function,
we can find for each ε > 0 a step function f : Ω →< 0, 1 > which is A′-
measurable and such that |f − g| < ε on a set Ω′ with P (Ω′) > 1− ε. Then
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as f =
m∑

s=1
λsIDs

where Ds ∈ A′ and λs ∈ R for s = 1, 2, l . . . , m, we have

lim
n→∞

∫
fIAn dP = lim

n→∞

∫
(

m∑
s=1

λsIDs)IAn dP

= lim
n→∞

m∑
s=1

λs

∫
IDsIAn dP

= lim
n→∞

m∑
s=1

λs

∫
IDs

α dP

=
∫

fα dP

Thus
lim inf
n→∞

E(gIAn) ≥ lim inf
n→∞

E(gIAnIΩ′)

≥ lim
n→∞

E(fIAn
IΩ′)− ε

= E(fαIΩ′)− ε

≥ E(gαIΩ′)− 2ε

≥ E(gα)− 3ε

and
lim sup

n→∞
E(gIAn

) ≤ lim sup
n→∞

E(gIAn
IΩ′) + ε

≤ lim
n→∞

E(fIAnIΩ′) + 2ε

= E(fαIΩ′) + 2ε

≤ E(gαIΩ′) + 3ε

≤ E(gα) + 4ε.

Since ε is arbitrary, we have

(1) lim
n→∞

E(gIAn
) = E(gα)

for each A′-measurable function g such that 0 ≤ g ≤ 1.
Now, let B ∈ A. We have

lim
n→∞

E(IAn
IB) = lim

n→∞
E(EA

′

(IAn
IB)) = lim

n→∞
E(IAn

EA
′

IB)

because An ∈ A′, n ≥ 1, and by (1) we have

lim
n→∞

E(IAn
IB) = lim

n→∞
E(IAn

EA
′

IB) = E(αEA
′

IB) = E(EA
′

αIB)

= E(αIB),
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which completes the proof. �

By this construction we see that if α′, α are measurable real functions
such that 0 ≤ α′ ≤ α ≤ 1, then there exist stable sequences {A′

n, n ≥ 1} and
{An, n ≥ 1} with density α′ and α, respectively, such that A′

n ⊂ An, n ≥ 1.
It is obvious that the sequence {An\A′

n, n ≥ 1} is stable with density α−α′.
If α′, α are nonnegative measurable real functions such that 0 ≤ α′+α ≤ 1,
then there exist stable sequences {A′

n, n ≥ 1} and {An, n ≥ 1} with density
α′ and α respectively, such that An ∩A′

n = ∅, n ≥ 1.

Definition 2. A sequence {Xn, n ≥ 1} of r.e. is said to be stable if for
every A ∈ A+ = {A ∈ A : P (A) > 0} there exists a probability measure
µA, defined on (S,B), such that

(2) lim
n→∞

P ([Xn ∈ B] | A) = µA(B)

for every B ∈ CµA
= {B ∈ B : µA(∂B) = 0} where ∂B denotes the boundary

of B.
If µA(B) = µ(B) for every A ∈ A+ and B ∈ B then the sequence

{Xn, n ≥ 1} of r.e. is said to be µ-mixing.
Let QB(A) = µA(B)P (A). Obviously QB is an absolutely continuous

measure with respect to P . By the Radon-Nikodym Theorem there exists
a nonnegative function αB : Ω → R+, such that

QB(A) =
∫

A

αB dP.

The function αB is called the density of the stable sequence {Xn, n ≥ 1}.

The set PA(S) = {µA : A ∈ A+} of all probability measures defined by
(2) satisfies the following condition:

(3)
P (

n⋃
i=1

Ai)µ n⋃
i=1

Ai

(B) =
n∑

i=1

µAi(B)P (Ai)

for every Ai∈ A+, i = 1, 2, . . . , n, n ≥ 1, Ai ∩Aj = ∅, i 6= j.

Moreover, it is known [10] that a sequence {Xn, n ≥ 1} of r.e. converges
in probability to a r.e. X iff {Xn, n ≥ 1} is a stable sequence and PA(S)
satisfies the following condition:

(4)
If µA(B) > 0 then there exists a set A′ ∈ A+, A′ ⊂ A

such that µA′(B) = 1.
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Theorem 2. Assume that (Ω,A, P ) is an atomless probability space. If
the set PB(S) = {µA : A ∈ A+} of probability measures on (S,B) satisfies
Condition (3) then there exists a stable sequence {Xn, n ≥ 1} such that

lim
n→∞

P ([Xn ∈ B], A) = µA(B)P (A), B ∈ B, A ∈ A+ .

Remark. It is easy to check that Condition (3) expresses the fact that
the set function µ̃(A × B) = µA(B)P (A) can be extended to a probability
measure on the σ–algebra A ⊗ B, whereas Condition (3) means that the
measure µ̃ is supported by the graph of a r.e.

Proof of Theorem 2. Let QB(A) = µA(B)P (A), B ∈ B, A ∈ A+

and QB(A) = 0 for P (A) = 0. Obviously QB is an absolutely continuous
measure with respect to P and there exists a measurable function αB such
that

QB(A) =
∫

A

αB dP, 0 ≤ αB ≤ 1 a.e..

Now, there exists a variant λ(B, ·) of α(B, ·) such that with probability 1
λ(· , ω) is a probability measure on (S,B) (P{ω : λ(B,ω) 6= α(B,ω)} = 0
for every B ∈ B [9].

Let us choose a sequence of Borel subsets Si1,i2,...,ik
∈ CµΩ satisfying the

following conditions [8]:

(a) Si1,i2,...,ik
∩ Si′1,i′2,...,i′k

= ∅ if is 6= i′s for some 1 ≤ s ≤ k,

(b)
∞⋃

ik=1

Si1,i2,...,ik−1,ik
= Si1,i2,...,ik−1 ,

∞⋃
i1=1

Si1 = S,

(c) d(Si1,i2,...,ik
) < 1

2k , where d(B) denotes the diameter of the set B ⊂ S.

By Theorem 1, for every Si1,i2,...,ik
there exists a stable sequence

{An
i1,i2,...,ik

, n ≥ 1} with density α(Si1,i2,...,ik
, ·) such that

(a’) An
i1,i2,...,ik

∩An
i′1,i′2,...,i′k

= ∅ if is 6= i′s for some 1 ≤ s ≤ k

and
(b’) An

i1,i2,...,ik+1
⊂ An

i1,i2,...,ik
, n ≥ 1, k ≥ 1 and

∞⋃
ik+1=1

An
i1,i2,...,ik,ik+1

=

An
i1,i2,...,ik

,
∞⋃

i1=1

An
i1

= Ω, n ≥ 1.

If zi1,i2,...,ik
∈ Si1,i2,...,ik

we can define

Xk
n(ω) = zi1,i2,...,ik

for ω ∈ An
i1,i2,...,ik

, n ≥ 1.

Then for every ω the sequence {Xk
n, k ≥ 1} satisfies the Cauchy condition

and therefore converges to some r.e. Xn.
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Moreover, for every k, the sequence {Xk
n, n ≥ 1} is stable.

Let A ∈ A and ε > 0. We can choose δ > 0 such that∫
A

α(S2δ
i1,i2,...,il

, ·) dP ≤
∫

A

α(Si1,i2,...,il
, ·) dP + ε,

where Bδ = {x : inf
y∈B

ρ(x, y) < δ}.
Hence, if we set

S′(δ) =
⋃

{i1,i2,...,is:s>log2
1
δ , Si1,i2,...,is∩Sδ

i1,i2,...,il
6=∅}

Si1,i2,...,is
,

we have

P ([Xn ∈ Si1,i2,...,il
] ∩A) ≤ P ([Xk

n ∈ Sδ
i1,i2,...,il

] ∩A)

≤ P ([Xk
n ∈ S′(δ)] ∩A)

−→
n→∞

∫
A

α(S′(δ), ·) dP

≤
∫

A

α(S2δ
i1,i2,...,il

, ·) dP

≤
∫

B

α(Si1,i2,...,il
, ·) dP + ε.

Similarly,

lim
n→∞

P ([Xn ∈ Si1,i2,...,il
] ∩A) ≥

∫
A

α(Si1,i2,...,il
, ·) dP − ε,

which proves that

lim
n→∞

P ([Xn ∈ Si1,i2,...,il
] ∩A) =

∫
A

α(Si1,i2,...,il
, ·) dP .

This completes the proof, since the sets Si1,i2,...,il
form a convergence-deter-

mining class. �
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