ANNALES

UNIVERSITATIS MARIAECURIE - SKもODOWSKA
 LUBLIN - POLONIA

VOL. LVI, 8

PAUL RAYNAUD DE FITTE and WIESŁAW ZIĘBA

On the construction of a stable sequence with given density

Abstract

The notion of a stable sequence of events generalizes the notion of mixing sequence and was introduced by A. Rényi. A sequence of random elements X_{n} is said to be stable if for every $B \in \mathcal{A}$ with $P(B)>0$ there exists a probability measure μ_{B} on (S, \mathcal{B}) such that $\lim _{n \rightarrow \infty} P\left(\left[X_{n} \in A\right] \mid\right.$ $B)=\mu_{B}(A)$ for every $A \in \mathcal{A}$ with $\mu_{B}(\delta A)=0$. Given a density function, the aim of this note is to give a martingale construction of a stable sequence of random elements having the given density function. The problem was solved in the special case $\Omega=<0,1>$ by the second named author and S.Gutkowska.

Let (Ω, \mathcal{A}, P) be a probability space. By (S, ρ) we denote a metric space and \mathcal{B} stands for the σ-field generated by open sets of S.

Let \mathcal{X} be the set of all random elements (r.e.):

$$
\mathcal{X}=\left\{X: \Omega \rightarrow S: X^{-1}(A) \in \mathcal{A}, A \in \mathcal{B}\right\}
$$

Definition 1. An infinite sequence of events $A_{1}, A_{2}, \ldots, A_{n}, \ldots\left(A_{i} \in\right.$ $\mathcal{A}, i \geq 1$) will be called a stable sequence if the limit

$$
\lim _{n \rightarrow \infty} P\left(A_{n} B\right)=Q(B)
$$

[^0]Key words and phrases. mixing, stable sequence, weak convergence.
exists for every $B \in \mathcal{A}$.
Thus Q is a bounded measure on \mathcal{A} which is absolutely continuous with respect to the measure P and consequently

$$
Q(B)=\int_{B} \alpha d P
$$

for every $B \in \mathcal{A}$, where $\alpha=\alpha(\omega)$ is a measurable function on Ω such that $0 \leq \alpha(\omega) \leq 1$ almost surely (a.s.).

In the case when the local density is constant, the sequence $\left\{A_{n}, n \geq 1\right\}$ will be called a mixing sequence of events with density α.

In the special case when $\Omega=<0,1>$ a construction of a stable sequence with given continuous density function α is described, cf. [7]. In this paper we give a construction in a more general situation.

It is well known [6] that any sample space Ω can be represented as

$$
\Omega=B \cup \bigcup_{k=1}^{\infty} B_{k}, B_{m} \cap B_{n}=\emptyset \text { for } m \neq n, B \cap B_{n}=\emptyset, n=1,2, \ldots
$$

where each B_{k} is an atom or an empty set and B has the property that for any given $A \in \mathcal{A}$ such that $A \subset B$ and any $\varepsilon, 0<\varepsilon<P(A)$, there exists $C \in \mathcal{A}, C \subset A$, such that $P(C)=\varepsilon$. Random elements are constant a.s. on atoms.

Theorem 1. Assume that (Ω, \mathcal{A}, P) is an atomless probability space. Then for every measurable real function $\alpha(0 \leq \alpha \leq 1$ a.s.) there exists a stable sequence of events $\left\{A_{n}, n \geq 1\right\}$ such that

$$
\lim _{n \rightarrow \infty} P\left(A_{n} B\right)=\int_{B} \alpha d P=Q(B)
$$

Proof. Let $\mathcal{A}^{\prime} \subset \mathcal{A}$ be the σ-field generated by the sets $\alpha^{-1}\left(B\left(x_{i}, r_{j}\right)\right)$, where x_{i} and r_{j} are rational numbers $\left(0 \leq x_{i} \leq 1, r_{j}>0\right)$ and

$$
B\left(x_{i}, r_{j}\right)=\left\{x:\left|x-x_{i}\right|<r_{j}\right\}
$$

We can assume that \mathcal{A}^{\prime} is generated by $B_{1}, B_{2}, \ldots, B_{n}, \ldots$ with $B_{i} \in$ $\mathcal{A}, i \geq 1$. We denote by $\mathcal{C}_{n}=\sigma\left(B_{1}, B_{2}, \ldots, B_{n}\right)$ the σ-field generated by the set $B_{1}, B_{2}, \ldots, B_{n} . \mathcal{C}_{n}$ is generated by the measurable partition $\left\{C_{n}^{1}, C_{n}^{2}, \ldots C_{n}^{k_{n}}\right\}$.

By the martingale convergence theorem, we have

$$
\alpha(\omega)=\lim _{n \rightarrow \infty} E^{\mathcal{C}_{n}} \alpha(\omega) \text { a.s. }
$$

where $E^{\mathcal{C}_{n}}$ denotes the conditional expectation with respect to the σ-field \mathcal{C}_{n}.

Since $\left(\Omega, \mathcal{A}^{\prime}, P\right)$ is atomless, for every n and $1 \leq i \leq k_{n}$ there exists in \mathcal{A}^{\prime} a set $A_{n}^{i} \subset C_{n}^{i}$ such that

$$
P\left(A_{n}^{i}\right)=\int_{C_{n}^{i}} \alpha(\omega) d P .
$$

We put $A_{n}=\bigcup_{i=1}^{k_{n}} A_{n}^{i}$. For $\omega \in C_{n}^{i}$, we have

$$
E^{\mathcal{C}_{n}}\left(I_{A_{n}}\right)(\omega)=\frac{P\left(A_{n} \cap C_{n}^{i}\right)}{P\left(C_{n}^{i}\right)}=\frac{P\left(A_{n}^{i}\right)}{P\left(C_{n}^{i}\right)}=\frac{\int_{C_{n}^{i}} \alpha(\omega) d P}{P\left(C_{n}^{i}\right)}=E^{\mathcal{C}_{n}} \alpha(\omega) .
$$

If $B \in \mathcal{C}_{n}$ for some $n \geq 1$ then we have

$$
\begin{aligned}
\lim _{n \rightarrow \infty} E\left(I_{A_{n}} I_{B}\right) & =\lim _{n \rightarrow \infty} E\left(E^{\mathcal{C}_{n}}\left(I_{A_{n}} I_{B}\right)\right)=\lim _{n \rightarrow \infty} E I_{B} E^{\mathcal{C}_{n}}\left(I_{A_{n}}\right) \\
& =\lim _{n \rightarrow \infty} E I_{B} E^{\mathcal{C}_{n}} \alpha=E I_{B} \alpha .
\end{aligned}
$$

Let now $\mathcal{K}=\left\{B \in \mathcal{A}^{\prime}: \lim _{n \rightarrow \infty} E\left(I_{A_{n}} I_{B}\right)=E I_{B} \alpha\right\}$. The set \mathcal{K} contains \emptyset and $\bigcup_{n=1}^{\infty} \mathcal{C}_{n} \subset \mathcal{K}$. We prove that \mathcal{K} is a σ-field. It is easy to see that if $B \in \mathcal{K}$ then $B^{c} \in \mathcal{K}$. Let now $B_{n} \in \mathcal{K}, n \geq 1$, be an increasing sequence and $B=\bigcup_{n=1}^{\infty} B_{n}$. For any $\varepsilon>0$ there exists n_{0} such that $P(B) \leq$ $P\left(B_{n_{0}}\right)+\varepsilon$. Then we have $\liminf _{n \rightarrow \infty} E\left(I_{A_{n}} I_{B}\right) \geq \lim _{n \rightarrow \infty} E\left(I_{A_{n}} I_{B_{n_{0}}}\right)=$ $E \alpha I_{B_{n_{0}}} \geq E \alpha I_{B}-\varepsilon$ and $\lim \sup _{n \rightarrow \infty} E\left(I_{A_{n}} I_{B)} \leq \lim _{n \rightarrow \infty} E\left(I_{A_{n}} I_{B_{n_{0}}}\right)+\varepsilon=\right.$ $E \alpha I_{B_{n_{0}}}+\varepsilon \leq E \alpha I_{B}+\varepsilon$ which implies

$$
\lim _{n \rightarrow \infty} E\left(I_{A_{n}} I_{B)}=E \alpha I_{B}\right.
$$

and this proves that \mathcal{K} is a σ-field and \mathcal{K} contains \mathcal{A}^{\prime}.
Next, we show that equality $\lim _{n \rightarrow \infty} E\left(I_{A_{n}} I_{B}\right)=E\left(\alpha I_{B}\right)$ remains true for each $B \in \mathcal{A}$. If $g: \Omega \rightarrow<0,1>$ is some \mathcal{A}^{\prime}-measurable function, we can find for each $\varepsilon>0$ a step function $f: \Omega \rightarrow<0,1>$ which is \mathcal{A}^{\prime} measurable and such that $|f-g|<\varepsilon$ on a set Ω^{\prime} with $P\left(\Omega^{\prime}\right)>1-\varepsilon$. Then
as $f=\sum_{s=1}^{m} \lambda_{s} I_{D_{s}}$ where $D_{s} \in \mathcal{A}^{\prime}$ and $\lambda_{s} \in \mathcal{R}$ for $s=1,2, l \ldots, m$, we have

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \int f I_{A_{n}} d P & =\lim _{n \rightarrow \infty} \int\left(\sum_{s=1}^{m} \lambda_{s} I_{D_{s}}\right) I_{A_{n}} d P \\
& =\lim _{n \rightarrow \infty} \sum_{s=1}^{m} \lambda_{s} \int I_{D_{s}} I_{A_{n}} d P \\
& =\lim _{n \rightarrow \infty} \sum_{s=1}^{m} \lambda_{s} \int I_{D_{s}} \alpha d P \\
& =\int f \alpha d P
\end{aligned}
$$

Thus

$$
\begin{aligned}
\liminf _{n \rightarrow \infty} E\left(g I_{A_{n}}\right) & \geq \liminf _{n \rightarrow \infty} E\left(g I_{A_{n}} I_{\Omega^{\prime}}\right) \\
& \geq \lim _{n \rightarrow \infty} E\left(f I_{A_{n}} I_{\Omega^{\prime}}\right)-\varepsilon \\
& =E\left(f \alpha I_{\Omega^{\prime}}\right)-\varepsilon \\
& \geq E\left(g \alpha I_{\Omega^{\prime}}\right)-2 \varepsilon \\
& \geq E(g \alpha)-3 \varepsilon
\end{aligned}
$$

and

$$
\begin{aligned}
\limsup _{n \rightarrow \infty} E\left(g I_{A_{n}}\right) & \leq \limsup _{n \rightarrow \infty} E\left(g I_{A_{n}} I_{\Omega^{\prime}}\right)+\varepsilon \\
& \leq \lim _{n \rightarrow \infty} E\left(f I_{A_{n}} I_{\Omega^{\prime}}\right)+2 \varepsilon \\
& =E\left(f \alpha I_{\Omega^{\prime}}\right)+2 \varepsilon \\
& \leq E\left(g \alpha I_{\Omega^{\prime}}\right)+3 \varepsilon \\
& \leq E(g \alpha)+4 \varepsilon .
\end{aligned}
$$

Since ε is arbitrary, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} E\left(g I_{A_{n}}\right)=E(g \alpha) \tag{1}
\end{equation*}
$$

for each \mathcal{A}^{\prime}-measurable function g such that $0 \leq g \leq 1$.
Now, let $B \in \mathcal{A}$. We have

$$
\lim _{n \rightarrow \infty} E\left(I_{A_{n}} I_{B}\right)=\lim _{n \rightarrow \infty} E\left(E^{\mathcal{A}^{\prime}}\left(I_{A_{n}} I_{B}\right)\right)=\lim _{n \rightarrow \infty} E\left(I_{A_{n}} E^{\mathcal{A}^{\prime}} I_{B}\right)
$$

because $A_{n} \in \mathcal{A}^{\prime}, n \geq 1$, and by (1) we have

$$
\begin{aligned}
\lim _{n \rightarrow \infty} E\left(I_{A_{n}} I_{B}\right) & =\lim _{n \rightarrow \infty} E\left(I_{A_{n}} E^{\mathcal{A}^{\prime}} I_{B}\right)=E\left(\alpha E^{\mathcal{A}^{\prime}} I_{B}\right)=E\left(E^{\mathcal{A}^{\prime}} \alpha I_{B}\right) \\
& =E\left(\alpha I_{B}\right),
\end{aligned}
$$

which completes the proof.
By this construction we see that if α^{\prime}, α are measurable real functions such that $0 \leq \alpha^{\prime} \leq \alpha \leq 1$, then there exist stable sequences $\left\{A_{n}^{\prime}, n \geq 1\right\}$ and $\left\{A_{n}, n \geq 1\right\}$ with density α^{\prime} and α, respectively, such that $A_{n}^{\prime} \subset A_{n}, n \geq 1$. It is obvious that the sequence $\left\{A_{n} \backslash A_{n}^{\prime}, n \geq 1\right\}$ is stable with density $\alpha-\alpha^{\prime}$. If α^{\prime}, α are nonnegative measurable real functions such that $0 \leq \alpha^{\prime}+\alpha \leq 1$, then there exist stable sequences $\left\{A_{n}^{\prime}, n \geq 1\right\}$ and $\left\{A_{n}, n \geq 1\right\}$ with density α^{\prime} and α respectively, such that $A_{n} \cap A_{n}^{\prime}=\emptyset, n \geq 1$.

Definition 2. A sequence $\left\{X_{n}, n \geq 1\right\}$ of r.e. is said to be stable if for every $A \in \mathcal{A}_{+}=\{A \in \mathcal{A}: P(A)>0\}$ there exists a probability measure μ_{A}, defined on (S, \mathcal{B}), such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} P\left(\left[X_{n} \in B\right] \mid A\right)=\mu_{A}(B) \tag{2}
\end{equation*}
$$

for every $B \in \mathcal{C}_{\mu_{A}}=\left\{B \in \mathcal{B}: \mu_{A}(\partial B)=0\right\}$ where ∂B denotes the boundary of B.

If $\mu_{A}(B)=\mu(B)$ for every $A \in \mathcal{A}_{+}$and $B \in \mathcal{B}$ then the sequence $\left\{X_{n}, n \geq 1\right\}$ of r.e. is said to be μ-mixing.

Let $Q_{B}(A)=\mu_{A}(B) P(A)$. Obviously Q_{B} is an absolutely continuous measure with respect to P. By the Radon-Nikodym Theorem there exists a nonnegative function $\alpha_{B}: \Omega \rightarrow R^{+}$, such that

$$
Q_{B}(A)=\int_{A} \alpha_{B} d P
$$

The function α_{B} is called the density of the stable sequence $\left\{X_{n}, n \geq 1\right\}$.
The set $\mathcal{P}_{\mathcal{A}}(S)=\left\{\mu_{A}: A \in \mathcal{A}_{+}\right\}$of all probability measures defined by (2) satisfies the following condition:

$$
\begin{align*}
& P\left(\bigcup_{i=1}^{n} A_{i}\right) \mu_{\bigcup_{i=1}^{n} A_{i}}(B)=\sum_{i=1}^{n} \mu_{A_{i}}(B) P\left(A_{i}\right) \tag{3}\\
& \quad \text { for every } A_{i} \in \mathcal{A}_{+}, i=1,2, \ldots, n, n \geq 1, A_{i} \cap A_{j}=\emptyset, i \neq j .
\end{align*}
$$

Moreover, it is known [10] that a sequence $\left\{X_{n}, n \geq 1\right\}$ of r.e. converges in probability to a r.e. X iff $\left\{X_{n}, n \geq 1\right\}$ is a stable sequence and $\mathcal{P}_{\mathcal{A}}(S)$ satisfies the following condition:

$$
\begin{align*}
& \text { If } \mu_{A}(B)>0 \text { then there exists a set } A^{\prime} \in \mathcal{A}_{+}, A^{\prime} \subset A \\
& \text { such that } \mu_{A^{\prime}}(B)=1 \text {. } \tag{4}
\end{align*}
$$

Theorem 2. Assume that (Ω, \mathcal{A}, P) is an atomless probability space. If the set $P_{\mathcal{B}}(S)=\left\{\mu_{A}: A \in \mathcal{A}_{+}\right\}$of probability measures on (S, \mathcal{B}) satisfies Condition (3) then there exists a stable sequence $\left\{X_{n}, n \geq 1\right\}$ such that

$$
\lim _{n \rightarrow \infty} P\left(\left[X_{n} \in B\right], A\right)=\mu_{A}(B) P(A), B \in \mathcal{B}, A \in \mathcal{A}_{+} .
$$

Remark. It is easy to check that Condition (3) expresses the fact that the set function $\widetilde{\mu}(A \times B)=\mu_{A}(B) P(A)$ can be extended to a probability measure on the σ-algebra $\mathcal{A} \otimes \mathcal{B}$, whereas Condition (3) means that the measure $\widetilde{\mu}$ is supported by the graph of a r.e.
Proof of Theorem 2. Let $Q_{B}(A)=\mu_{A}(B) P(A), B \in \mathcal{B}, A \in \mathcal{A}_{+}$ and $Q_{B}(A)=0$ for $P(A)=0$. Obviously Q_{B} is an absolutely continuous measure with respect to P and there exists a measurable function α_{B} such that

$$
Q_{B}(A)=\int_{A} \alpha_{B} d P, 0 \leq \alpha_{B} \leq 1 \text { a.e.. }
$$

Now, there exists a variant $\lambda(B, \cdot)$ of $\alpha(B, \cdot)$ such that with probability 1 $\lambda(\cdot, \omega)$ is a probability measure on $(S, \mathcal{B})(P\{\omega: \lambda(B, \omega) \neq \alpha(B, \omega)\}=0$ for every $B \in \mathcal{B}[9]$.

Let us choose a sequence of Borel subsets $S_{i_{1}, i_{2}, \ldots, i_{k}} \in \mathcal{C}_{\mu_{\Omega}}$ satisfying the following conditions [8]:
(a) $S_{i_{1}, i_{2}, \ldots, i_{k}} \cap S_{i_{1}^{\prime}, i_{2}^{\prime}, \ldots, i_{k}^{\prime}}=\emptyset$ if $i_{s} \neq i_{s}^{\prime}$ for some $1 \leq s \leq k$,
(b) $\bigcup_{i_{k}=1}^{\infty} S_{i_{1}, i_{2}, \ldots, i_{k-1}, i_{k}}=S_{i_{1}, i_{2}, \ldots, i_{k-1}}, \bigcup_{i_{1}=1}^{\infty} S_{i_{1}}=S$,
(c) $d\left(S_{i_{1}, i_{2}, \ldots, i_{k}}\right)<\frac{1}{2^{k}}$, where $d(B)$ denotes the diameter of the set $B \subset S$.

By Theorem 1, for every $S_{i_{1}, i_{2}, \ldots, i_{k}}$ there exists a stable sequence $\left\{A_{i_{1}, i_{2}, \ldots, i_{k}}^{n}, n \geq 1\right\}$ with density $\alpha\left(S_{i_{1}, i_{2}, \ldots, i_{k}}, \cdot\right)$ such that
(a') $A_{i_{1}, i_{2}, \ldots, i_{k}}^{n} \cap A_{i_{1}^{\prime}, i_{2}^{\prime}, \ldots, i_{k}^{\prime}}^{n}=\emptyset$ if $i_{s} \neq i_{s}^{\prime}$ for some $1 \leq s \leq k$
and
(b') $A_{i_{1}, i_{2}, \ldots, i_{k+1}}^{n} \subset A_{i_{1}, i_{2}, \ldots, i_{k}}^{n}, n \geq 1, k \geq 1$ and $\bigcup_{i_{k+1}=1}^{\infty} A_{i_{1}, i_{2}, \ldots, i_{k}, i_{k+1}}^{n}=$ $A_{i_{1}, i_{2}, \ldots, i_{k}}^{n}, \bigcup_{i_{1}=1}^{\infty} A_{i_{1}}^{n}=\Omega, n \geq 1$.

If $z_{i_{1}, i_{2}, \ldots, i_{k}} \in S_{i_{1}, i_{2}, \ldots, i_{k}}$ we can define

$$
X_{n}^{k}(\omega)=z_{i_{1}, i_{2}, \ldots, i_{k}} \text { for } \omega \in A_{i_{1}, i_{2}, \ldots, i_{k}}^{n}, n \geq 1
$$

Then for every ω the sequence $\left\{X_{n}^{k}, k \geq 1\right\}$ satisfies the Cauchy condition and therefore converges to some r.e. X_{n}.

Moreover, for every k, the sequence $\left\{X_{n}^{k}, n \geq 1\right\}$ is stable.
Let $A \in \mathcal{A}$ and $\varepsilon>0$. We can choose $\delta>0$ such that

$$
\int_{A} \alpha\left(S_{i_{1}, i_{2}, \ldots, i_{l}}^{2 \delta}, \cdot\right) d P \leq \int_{A} \alpha\left(S_{i_{1}, i_{2}, \ldots, i_{l}}, \cdot\right) d P+\varepsilon
$$

where $B^{\delta}=\left\{x: \inf _{y \in B} \rho(x, y)<\delta\right\}$.
Hence, if we set

$$
S^{\prime}(\delta)=\bigcup_{\left\{i_{1}, i_{2}, \ldots, i_{s}: s>\log _{2} \frac{1}{\delta}, S_{\left.i_{1}, i_{2}, \ldots, i_{s} \cap S_{i_{1}, i_{2}, \ldots, i_{l}}^{\delta} \neq \emptyset\right\}} S_{i_{1}, i_{2}, \ldots, i_{s}}, ~\right.}^{\substack{ \\ }}
$$

we have

$$
\begin{aligned}
P\left(\left[X_{n} \in S_{i_{1}, i_{2}, \ldots, i_{l}}\right] \cap A\right) & \leq P\left(\left[X_{n}^{k} \in S_{i_{1}, i_{2}, \ldots, i_{l}}^{\delta}\right] \cap A\right) \\
& \leq P\left(\left[X_{n}^{k} \in S^{\prime}(\delta)\right] \cap A\right) \\
& \xrightarrow[n \rightarrow \infty]{ } \int_{A} \alpha\left(S^{\prime}(\delta), \cdot\right) d P \\
& \leq \int_{A} \alpha\left(S_{i_{1}, i_{2}, \ldots, i_{l}}^{2 \delta}, \cdot\right) d P \\
& \leq \int_{B} \alpha\left(S_{i_{1}, i_{2}, \ldots, i_{l}}, \cdot\right) d P+\varepsilon
\end{aligned}
$$

Similarly,

$$
\lim _{n \rightarrow \infty} P\left(\left[X_{n} \in S_{i_{1}, i_{2}, \ldots, i_{l}}\right] \cap A\right) \geq \int_{A} \alpha\left(S_{i_{1}, i_{2}, \ldots, i_{l}}, \cdot\right) d P-\varepsilon
$$

which proves that

$$
\lim _{n \rightarrow \infty} P\left(\left[X_{n} \in S_{i_{1}, i_{2}, \ldots, i_{l}}\right] \cap A\right)=\int_{A} \alpha\left(S_{i_{1}, i_{2}, \ldots, i_{l}}, \cdot\right) d P
$$

This completes the proof, since the sets $S_{i_{1}, i_{2}, \ldots, i_{l}}$ form a convergence-determining class.

References

[1] Aldous, D.J., G.K. Eagleson, On mixing and stability of limit theorems, Ann. Probability 6 (1978), 325-331.
[2] Billingsley, P., Convergence of probability measures, New York, 1968.
[3] Csörgö, M., R. Fischler, Departure from independence: the strong law, standard and random-sum central limit theorems, Acta Math. Acad. Sci. Hung. 21 (1970), 105-114.
[4] Dobruschin, R.L., Limit Lemma of composed stochastic process, Usp. Mat. Nauk 10 (1955), wyp. 2(64), 157-159. (Russian)
[5] Gutkowska, S., W. Zięba, On a stability in Renyi's sense, Ann. Univ. Mariae CurieSkłodowska Sect. A 51 (1997), no. 1, 61-65.
[6] Loève, M., Probability Theory, New York, 1963.
[7] Rényi, A., On stable sequences of events, Sankhya, Ser. A 25 (1963), 293-302.
[8] Skorohod, A.W., Limit theorems for stochastic process, Theory Probab. Appl. 1 (1956), no. 3, 289-319. (Russian)
[9] Szynal, D., W. Zięba, On some properties of the stable sequence of random elements, Publ. Math. Debrecen 33 (1986), 271-282.
[10] Zięba, W., On some criterion of convergence in probability, Probability and Math. Stat. 6 (1985), fasc. 2, 225-232.

Laboratoire de Mathématiques Raphaël Salem UPRES-A CNRS 6085, UFR Sciences
Université de Rouen
F-76 821 Mont Saint Aignan Cedex, France
e-mail: prf@univ-rouen.fr
Institute of Mathematics
Maria Curie-Skłodowska University
Plac Marii Curie-Skłodowskiej 1
20-031 Lublin, Poland
e-mail: ZIEBA@golem.umcs.lublin.pl
received March 13, 2001

[^0]: 1991 Mathematics Subject Classification. 60B05, 60B10, 60F99.

