ANNALES UNIVERSITATIS MARIAE CURIE – SKŁODOWSKA LUBLIN – POLONIA

VOL. LVI, 8

SECTIO A

2002

PAUL RAYNAUD DE FITTE and WIESŁAW ZIĘBA

On the construction of a stable sequence with given density

ABSTRACT. The notion of a stable sequence of events generalizes the notion of mixing sequence and was introduced by A. Rényi. A sequence of random elements X_n is said to be stable if for every $B \in \mathcal{A}$ with P(B) > 0 there exists a probability measure μ_B on (S, \mathcal{B}) such that $\lim_{n\to\infty} P([X_n \in A] \mid B) = \mu_B(A)$ for every $A \in \mathcal{A}$ with $\mu_B(\delta A) = 0$. Given a density function, the aim of this note is to give a martingale construction of a stable sequence of random elements having the given density function. The problem was solved in the special case $\Omega = < 0, 1 >$ by the second named author and S.Gutkowska.

Let (Ω, \mathcal{A}, P) be a probability space. By (S, ρ) we denote a metric space and \mathcal{B} stands for the σ -field generated by open sets of S.

Let \mathcal{X} be the set of all random elements (r.e.):

$$\mathcal{X} = \{ X : \Omega \to S : X^{-1}(A) \in \mathcal{A}, A \in \mathcal{B} \}$$

Definition 1. An infinite sequence of events $A_1, A_2, \ldots, A_n, \ldots$ $(A_i \in \mathcal{A}, i \geq 1)$ will be called a *stable sequence* if the limit

$$\lim_{n \to \infty} P(A_n B) = Q(B)$$

1991 Mathematics Subject Classification. 60B05, 60B10, 60F99.

Key words and phrases. mixing, stable sequence, weak convergence.

exists for every $B \in \mathcal{A}$.

Thus Q is a bounded measure on \mathcal{A} which is absolutely continuous with respect to the measure P and consequently

$$Q(B) = \int_B \alpha \, dP$$

for every $B \in \mathcal{A}$, where $\alpha = \alpha(\omega)$ is a measurable function on Ω such that $0 \leq \alpha(\omega) \leq 1$ almost surely (a.s.).

In the case when the local density is constant, the sequence $\{A_n, n \ge 1\}$ will be called a *mixing sequence* of events with density α .

In the special case when $\Omega = <0, 1 > a$ construction of a stable sequence with given continuous density function α is described, cf. [7]. In this paper we give a construction in a more general situation.

It is well known [6] that any sample space Ω can be represented as

$$\Omega = B \cup \bigcup_{k=1}^{\infty} B_k, B_m \cap B_n = \emptyset \text{ for } m \neq n, B \cap B_n = \emptyset, n = 1, 2, \dots$$

where each B_k is an atom or an empty set and B has the property that for any given $A \in \mathcal{A}$ such that $A \subset B$ and any ε , $0 < \varepsilon < P(A)$, there exists $C \in \mathcal{A}, C \subset A$, such that $P(C) = \varepsilon$. Random elements are constant a.s. on atoms.

Theorem 1. Assume that (Ω, \mathcal{A}, P) is an atomless probability space. Then for every measurable real function α ($0 \le \alpha \le 1$ a.s.) there exists a stable sequence of events $\{A_n, n \ge 1\}$ such that

$$\lim_{n \to \infty} P(A_n B) = \int_B \alpha \, dP = Q(B).$$

Proof. Let $\mathcal{A}' \subset \mathcal{A}$ be the σ -field generated by the sets $\alpha^{-1}(B(x_i, r_j))$, where x_i and r_j are rational numbers $(0 \leq x_i \leq 1, r_j > 0)$ and

$$B(x_i, r_j) = \{x : |x - x_i| < r_j\}.$$

We can assume that \mathcal{A}' is generated by $B_1, B_2, \ldots, B_n, \ldots$ with $B_i \in \mathcal{A}, i \geq 1$. We denote by $\mathcal{C}_n = \sigma(B_1, B_2, \ldots, B_n)$ the σ -field generated by the set B_1, B_2, \ldots, B_n . \mathcal{C}_n is generated by the measurable partition $\{C_n^1, C_n^2, \ldots, C_n^{k_n}\}$.

By the martingale convergence theorem, we have

$$\alpha(\omega) = \lim_{n \to \infty} E^{\mathcal{C}_n} \alpha(\omega) \text{a.s.},$$

where $E^{\mathcal{C}_n}$ denotes the conditional expectation with respect to the σ -field \mathcal{C}_n .

Since $(\Omega, \mathcal{A}', P)$ is atomless, for every n and $1 \leq i \leq k_n$ there exists in \mathcal{A}' a set $A_n^i \subset C_n^i$ such that

$$P(A_n^i) = \int_{C_n^i} \alpha(\omega) \, dP.$$

We put $A_n = \bigcup_{i=1}^{k_n} A_n^i$. For $\omega \in C_n^i$, we have

$$E^{\mathcal{C}_n}(I_{A_n})(\omega) = \frac{P(A_n \cap C_n^i)}{P(C_n^i)} = \frac{P(A_n^i)}{P(C_n^i)} = \frac{\int_{C_n^i} \alpha(\omega) \, dP}{P(C_n^i)} = E^{\mathcal{C}_n} \alpha(\omega)$$

If $B \in \mathcal{C}_n$ for some $n \ge 1$ then we have

$$\lim_{n \to \infty} E(I_{A_n} I_B) = \lim_{n \to \infty} E(E^{\mathcal{C}_n}(I_{A_n} I_B)) = \lim_{n \to \infty} EI_B E^{\mathcal{C}_n}(I_{A_n})$$
$$= \lim_{n \to \infty} EI_B E^{\mathcal{C}_n} \alpha = EI_B \alpha.$$

Let now $\mathcal{K} = \{B \in \mathcal{A}' : \lim_{n \to \infty} E(I_{A_n}I_B) = EI_B\alpha\}$. The set \mathcal{K} contains \emptyset and $\bigcup_{n=1}^{\infty} \mathcal{C}_n \subset \mathcal{K}$. We prove that \mathcal{K} is a σ -field. It is easy to see that if $B \in \mathcal{K}$ then $B^c \in \mathcal{K}$. Let now $B_n \in \mathcal{K}, n \ge 1$, be an increasing sequence and $B = \bigcup_{n=1}^{\infty} B_n$. For any $\varepsilon > 0$ there exists n_0 such that $P(B) \le P(B_{n_0}) + \varepsilon$. Then we have $\liminf_{n \to \infty} E(I_{A_n}I_B) \ge \lim_{n \to \infty} E(I_{A_n}I_{B_{n_0}}) = E\alpha I_{B_{n_0}} \ge E\alpha I_B - \varepsilon$ and $\limsup_{n \to \infty} E(I_{A_n}I_B) \le \lim_{n \to \infty} E(I_{A_n}I_{B_{n_0}}) + \varepsilon = E\alpha I_{B_{n_0}} + \varepsilon \le E\alpha I_B + \varepsilon$ which implies

$$\lim_{n \to \infty} E(I_{A_n} I_{B)} = E \alpha I_B$$

and this proves that \mathcal{K} is a σ -field and \mathcal{K} contains \mathcal{A}' .

Next, we show that equality $\lim_{n\to\infty} E(I_{A_n}I_B) = E(\alpha I_B)$ remains true for each $B \in \mathcal{A}$. If $g : \Omega \to < 0, 1 >$ is some \mathcal{A}' -measurable function, we can find for each $\varepsilon > 0$ a step function $f : \Omega \to < 0, 1 >$ which is \mathcal{A}' measurable and such that $|f - g| < \varepsilon$ on a set Ω' with $P(\Omega') > 1 - \varepsilon$. Then as $f = \sum_{s=1}^{m} \lambda_s I_{D_s}$ where $D_s \in \mathcal{A}'$ and $\lambda_s \in \mathcal{R}$ for $s = 1, 2, l \dots, m$, we have $\lim_{n \to \infty} \int f I_{A_n} dP = \lim_{n \to \infty} \int (\sum_{s=1}^{m} \lambda_s I_{D_s}) I_{A_n} dP$ $= \lim_{n \to \infty} \sum_{s=1}^{m} \lambda_s \int I_{D_s} I_{A_n} dP$ $= \lim_{n \to \infty} \sum_{s=1}^{m} \lambda_s \int I_{D_s} \alpha dP$ $= \int f \alpha dP$

Thus

$$\begin{split} \liminf_{n \to \infty} E(gI_{A_n}) &\geq \liminf_{n \to \infty} E(gI_{A_n}I_{\Omega'}) \\ &\geq \lim_{n \to \infty} E(fI_{A_n}I_{\Omega'}) - \varepsilon \\ &= E(f\alpha I_{\Omega'}) - \varepsilon \\ &\geq E(g\alpha I_{\Omega'}) - 2\varepsilon \\ &\geq E(g\alpha) - 3\varepsilon \end{split}$$

and

$$\begin{split} \limsup_{n \to \infty} E(gI_{A_n}) &\leq \limsup_{n \to \infty} E(gI_{A_n}I_{\Omega'}) + \varepsilon \\ &\leq \lim_{n \to \infty} E(fI_{A_n}I_{\Omega'}) + 2\varepsilon \\ &= E(f\alpha I_{\Omega'}) + 2\varepsilon \\ &\leq E(g\alpha I_{\Omega'}) + 3\varepsilon \\ &\leq E(g\alpha) + 4\varepsilon. \end{split}$$

Since ε is arbitrary, we have

(1)
$$\lim_{n \to \infty} E(gI_{A_n}) = E(g\alpha)$$

for each \mathcal{A}' -measurable function g such that $0 \leq g \leq 1$.

Now, let $B \in \mathcal{A}$. We have

$$\lim_{n \to \infty} E(I_{A_n} I_B) = \lim_{n \to \infty} E(E^{\mathcal{A}'}(I_{A_n} I_B)) = \lim_{n \to \infty} E(I_{A_n} E^{\mathcal{A}'} I_B)$$

because $A_n \in \mathcal{A}', n \ge 1$, and by (1) we have

$$\lim_{n \to \infty} E(I_{A_n} I_B) = \lim_{n \to \infty} E(I_{A_n} E^{\mathcal{A}'} I_B) = E(\alpha E^{\mathcal{A}'} I_B) = E(E^{\mathcal{A}'} \alpha I_B)$$
$$= E(\alpha I_B),$$

which completes the proof. \Box

By this construction we see that if α' , α are measurable real functions such that $0 \leq \alpha' \leq \alpha \leq 1$, then there exist stable sequences $\{A'_n, n \geq 1\}$ and $\{A_n, n \geq 1\}$ with density α' and α , respectively, such that $A'_n \subset A_n, n \geq 1$. It is obvious that the sequence $\{A_n \setminus A'_n, n \geq 1\}$ is stable with density $\alpha - \alpha'$. If α' , α are nonnegative measurable real functions such that $0 \leq \alpha' + \alpha \leq 1$, then there exist stable sequences $\{A'_n, n \geq 1\}$ and $\{A_n, n \geq 1\}$ with density α' and α respectively, such that $A_n \cap A'_n = \emptyset$, $n \geq 1$.

Definition 2. A sequence $\{X_n, n \ge 1\}$ of r.e. is said to be *stable* if for every $A \in \mathcal{A}_+ = \{A \in \mathcal{A} : P(A) > 0\}$ there exists a probability measure μ_A , defined on (S, \mathcal{B}) , such that

(2)
$$\lim_{n \to \infty} P([X_n \in B] \mid A) = \mu_A(B)$$

for every $B \in \mathcal{C}_{\mu_A} = \{B \in \mathcal{B} : \mu_A(\partial B) = 0\}$ where ∂B denotes the boundary of B.

If $\mu_A(B) = \mu(B)$ for every $A \in \mathcal{A}_+$ and $B \in \mathcal{B}$ then the sequence $\{X_n, n \ge 1\}$ of r.e. is said to be μ -mixing.

Let $Q_B(A) = \mu_A(B)P(A)$. Obviously Q_B is an absolutely continuous measure with respect to P. By the Radon-Nikodym Theorem there exists a nonnegative function $\alpha_B : \Omega \to R^+$, such that

$$Q_B(A) = \int_A \alpha_B \, dP.$$

The function α_B is called the *density* of the stable sequence $\{X_n, n \ge 1\}$.

The set $\mathcal{P}_{\mathcal{A}}(S) = \{\mu_A : A \in \mathcal{A}_+\}$ of all probability measures defined by (2) satisfies the following condition:

(3)
$$P(\bigcup_{i=1}^{n} A_{i}) \mu \bigcup_{i=1}^{n} A_{i}(B) = \sum_{i=1}^{n} \mu_{A_{i}}(B) P(A_{i})$$
for every $A_{i} \in \mathcal{A}_{+}, i = 1, 2, \dots, n, n \ge 1, A_{i} \cap A_{j} = \emptyset, i \ne j.$

Moreover, it is known [10] that a sequence $\{X_n, n \ge 1\}$ of r.e. converges in probability to a r.e. X iff $\{X_n, n \ge 1\}$ is a stable sequence and $\mathcal{P}_{\mathcal{A}}(S)$ satisfies the following condition:

(4) If
$$\mu_A(B) > 0$$
 then there exists a set $A' \in \mathcal{A}_+, A' \subset A$
such that $\mu_{A'}(B) = 1$.

Theorem 2. Assume that (Ω, \mathcal{A}, P) is an atomless probability space. If the set $P_{\mathcal{B}}(S) = \{\mu_A : A \in \mathcal{A}_+\}$ of probability measures on (S, \mathcal{B}) satisfies Condition (3) then there exists a stable sequence $\{X_n, n \ge 1\}$ such that

$$\lim_{n \to \infty} P([X_n \in B], A) = \mu_A(B)P(A), \ B \in \mathcal{B}, \ A \in \mathcal{A}_+$$

Remark. It is easy to check that Condition (3) expresses the fact that the set function $\tilde{\mu}(A \times B) = \mu_A(B)P(A)$ can be extended to a probability measure on the σ -algebra $\mathcal{A} \otimes \mathcal{B}$, whereas Condition (3) means that the measure $\tilde{\mu}$ is supported by the graph of a r.e.

Proof of Theorem 2. Let $Q_B(A) = \mu_A(B)P(A), B \in \mathcal{B}, A \in \mathcal{A}_+$ and $Q_B(A) = 0$ for P(A) = 0. Obviously Q_B is an absolutely continuous measure with respect to P and there exists a measurable function α_B such that

$$Q_B(A) = \int_A \alpha_B \, dP, \ 0 \le \alpha_B \le 1 \text{ a.e.}.$$

Now, there exists a variant $\lambda(B, \cdot)$ of $\alpha(B, \cdot)$ such that with probability 1 $\lambda(\cdot, \omega)$ is a probability measure on (S, \mathcal{B}) $(P\{\omega : \lambda(B, \omega) \neq \alpha(B, \omega)\} = 0$ for every $B \in \mathcal{B}$ [9].

Let us choose a sequence of Borel subsets $S_{i_1,i_2,\ldots,i_k} \in \mathcal{C}_{\mu_{\Omega}}$ satisfying the following conditions [8]:

(a)
$$S_{i_1,i_2,...,i_k} \cap S_{i'_1,i'_2,...,i'_k} = \emptyset$$
 if $i_s \neq i'_s$ for some $1 \le s \le k$,
(b) $\bigcup_{i_k=1}^{\infty} S_{i_1,i_2,...,i_{k-1},i_k} = S_{i_1,i_2,...,i_{k-1}}, \bigcup_{i_1=1}^{\infty} S_{i_1} = S$,
(c) $d(S_{i_1,i_2,...,i_k}) < \frac{1}{2^k}$, where $d(B)$ denotes the diameter of the set $B \subset S$.

By Theorem 1, for every $S_{i_1,i_2,...,i_k}$ there exists a stable sequence $\{A_{i_1,i_2,...,i_k}^n, n \ge 1\}$ with density $\alpha(S_{i_1,i_2,...,i_k}, \cdot)$ such that

(a')
$$A_{i_1,i_2,...,i_k}^n \cap A_{i'_1,i'_2,...,i'_k}^n = \emptyset$$
 if $i_s \neq i'_s$ for some $1 \le s \le k$ and ∞

(b')
$$A_{i_1,i_2,...,i_{k+1}}^n \subset A_{i_1,i_2,...,i_k}^n$$
, $n \ge 1$, $k \ge 1$ and $\bigcup_{i_{k+1}=1} A_{i_1,i_2,...,i_k,i_{k+1}}^n = A_{i_1,i_2,...,i_k}^n$, $\bigcup_{i_1=1}^{\infty} A_{i_1}^n = \Omega$, $n \ge 1$.

If $z_{i_1,i_2,\ldots,i_k} \in S_{i_1,i_2,\ldots,i_k}$ we can define

$$X_n^k(\omega) = z_{i_1, i_2, \dots, i_k}$$
 for $\omega \in A_{i_1, i_2, \dots, i_k}^n$, $n \ge 1$.

Then for every ω the sequence $\{X_n^k, k \ge 1\}$ satisfies the Cauchy condition and therefore converges to some r.e. X_n . Moreover, for every k, the sequence $\{X_n^k, n \ge 1\}$ is stable. Let $A \in \mathcal{A}$ and $\varepsilon > 0$. We can choose $\delta > 0$ such that

$$\int_{A} \alpha(S_{i_1,i_2,\ldots,i_l}^{2\delta},\cdot) \, dP \le \int_{A} \alpha(S_{i_1,i_2,\ldots,i_l},\cdot) \, dP + \varepsilon,$$

where $B^{\delta} = \{x : \inf_{y \in B} \rho(x, y) < \delta\}.$

Hence, if we set

$$S'(\delta) = \bigcup_{\{i_1, i_2, \dots, i_s: s > \log_2 \frac{1}{\delta}, \ S_{i_1, i_2, \dots, i_s} \cap S_{i_1, i_2, \dots, i_l}^{\delta} \neq \emptyset\}} S_{i_1, i_2, \dots, i_s},$$

we have

$$\begin{split} P([X_n \in S_{i_1, i_2, \dots, i_l}] \cap A) &\leq P([X_n^k \in S_{i_1, i_2, \dots, i_l}^{\delta}] \cap A) \\ &\leq P([X_n^k \in S'(\delta)] \cap A) \\ &\underset{n \to \infty}{\longrightarrow} \int_A \alpha(S'(\delta), \cdot) \, dP \\ &\leq \int_A \alpha(S_{i_1, i_2, \dots, i_l}^{2\delta}, \cdot) \, dP \\ &\leq \int_B \alpha(S_{i_1, i_2, \dots, i_l}, \cdot) \, dP + \varepsilon. \end{split}$$

Similarly,

$$\lim_{n \to \infty} P([X_n \in S_{i_1, i_2, \dots, i_l}] \cap A) \ge \int_A \alpha(S_{i_1, i_2, \dots, i_l}, \cdot) \, dP - \varepsilon,$$

which proves that

$$\lim_{n \to \infty} P([X_n \in S_{i_1, i_2, \dots, i_l}] \cap A) = \int_A \alpha(S_{i_1, i_2, \dots, i_l}, \cdot) \, dP \, .$$

This completes the proof, since the sets $S_{i_1,i_2,...,i_l}$ form a convergence-determining class. \Box

References

- Aldous, D.J., G.K. Eagleson, On mixing and stability of limit theorems, Ann. Probability 6 (1978), 325–331.
- [2] Billingsley, P., Convergence of probability measures, New York, 1968.
- [3] Csörgö, M., R. Fischler, Departure from independence: the strong law, standard and random-sum central limit theorems, Acta Math. Acad. Sci. Hung. 21 (1970), 105–114.

- [4] Dobruschin, R.L., Limit Lemma of composed stochastic process, Usp. Mat. Nauk 10 (1955), wyp. 2(64), 157–159. (Russian)
- [5] Gutkowska, S., W. Zięba, On a stability in Renyi's sense, Ann. Univ. Mariae Curie-Skłodowska Sect. A 51 (1997), no. 1, 61–65.
- [6] Loève, M., Probability Theory, New York, 1963.
- [7] Rényi, A., On stable sequences of events, Sankhya, Ser. A 25 (1963), 293–302.
- [8] Skorohod, A.W., Limit theorems for stochastic process, Theory Probab. Appl. 1 (1956), no. 3, 289–319. (Russian)
- [9] Szynal, D., W. Zięba, On some properties of the stable sequence of random elements, Publ. Math. Debrecen 33 (1986), 271–282.
- [10] Zięba, W., On some criterion of convergence in probability, Probability and Math. Stat. 6 (1985), fasc. 2, 225-232.

Laboratoire de Mathématiques Raphaël Salem UPRES-A CNRS 6085, UFR Sciences Université de Rouen F-76 821 Mont Saint Aignan Cedex, France e-mail: prf@univ-rouen.fr

Institute of Mathematics Maria Curie-Skłodowska University Plac Marii Curie-Skłodowskiej 1 20-031 Lublin, Poland e-mail: ZIEBA@golem.umcs.lublin.pl

received March 13, 2001