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Constants and symmetries in Banach spaces

Abstract. In this paper we indicate some connections between some pro-

perties of normed spaces and the values of some parameters. We also point

out the role of ”symmetric” points in minimizing or maximizing quantities
involving the numbers ‖x − y‖, ‖x + y‖, x and y being on the unit sphere

of the space: in fact, the role of these ”symmetries” has been sometimes

overlooked.

1. Introduction and notations. The starting point for this paper was
the reading of paper [DT], where some constants, already introduced and
studied by J. Gao several years ago (see e.g. [Pa]), are considered. We
remembered that true and false properties of ”symmetries” on the unit
sphere had already been considered in the past; also, properties of Gao’s
constants had been investigated, partly in papers not so well known (like
[C]). Moreover, two other constants considered in [BCP], that we denote by
A1 and A2, look partly similar.

We tried to melt this material, and something new (partly almost evident,
partly shaded) took form; in particular, relations among A1, A2 and Gao’s
constants are proved.
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Let (X, ‖ · ‖) be a Banach space, of dimension at least 2, over the real
field R. We list the notations we shall use in the following:

SX = {x ∈ X : ‖x‖ = 1}, we shall simply write S instead of SX

when no confusion can arise;

X∗ will denote the dual of X;

given a point x ∈ X, we denote by E(±x) the ”equidistant set” from
x,−x; i.e:

E(±x) = {y ∈ X : ‖x− y‖ = ‖x + y‖}.
Given X, its modulus of convexity, δ(ε), is defined, for ε ∈ [0, 2], as

(1) δ(ε) = inf{1− ‖x + y‖
2

: x, y ∈ S; ‖x− y‖ ≥ ε}.

We remind that δ is non–decreasing, and continuous in [0, 2). A space is
said to be uniformly nonsquare when

(2) lim
ε→2−

δ(ε) > 0.

Recall that unifomly nonsquare spaces are reflexive.

2. Inf max, sup min, symmetries. In this section we want to sum-
marize some facts, contained in the literature, relating the minimization
or maximization of quantities involving ‖x − y‖, ‖x + y‖, to the condition
‖x− y‖ = ‖x + y‖.

The following statement appears in [M, pp. 85-86]:

Proposition 0. Let ε > 0; for x fixed in the two-dimensional subspace E2

generated by x and y, maxy∈S(E2)
‖x+εy‖+‖x−εy‖

2 is attained at a y0 such that
‖x+εy0‖ = ‖x−εy0‖, and, in addition, maxy∈S(E2) min{‖x+εy‖, ‖x−εy‖}
is attained also at a y0 such that ‖x + εy0‖ = ‖x− εy0‖.

The second statement is true, also if max and min are exchanged (cf.
Propositions 1 and 2 below). But an example of Poulsen (see [F, p. 125])
shows that also a weaker form of the first statement is wrong: in fact, it
may happen that maxx,y∈S(E2)(‖x+y‖+‖x−y‖) is assumed (only) for pairs
x, y such that min{‖x + y‖, ‖x − y‖} < 1; cf. also Example 4 in Section 3
here.

We recall a result proved in [GL1, Lemma 2.2], and then again in [BR,
Lemma 2]; this will be fundamental throughout the paper. Set, for x ∈ S:

(i) a(x) = inf
y∈S

max{‖x− y‖, ‖x + y‖}

and
(ii) a′(x) = sup

y∈S
min{‖x− y‖, ‖x + y‖}.
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Proposition 1. If X is a two-dimensional space, then for every x ∈ S,
there is a unique y ∈ S such that ‖x− y‖ = ‖x + y‖, say = α(x); moreover
α(x) = a(x) = a′(x). Also, if p = x−y

‖x−y‖ , then inf
u∈S

max{‖p− u‖, ‖p + u‖} =
2

α(x) .

Remark. The uniqueness of y in Proposition 1 must be understood in the
sense that there is a unique such pair y,−y. Also, the statement does not
exclude that the value a(x) = a′(x) is attained also for other points (see
Example 4 below).

Clearly, in any finite-dimensional space, given x ∈ S the two numbers
defined by (i) and (ii) are assumed at some point in S. In general, the inf
in (i) or the sup in (ii) are not necessarily assumed (see Example 3 below);
but according to Proposition 1, given x ∈ S, to compute (i) or (ii) it is
enough to consider points y in S satisfying ‖x− y‖ = ‖x + y‖; for the sake
of completeness, we give a proof of this fact. A similar remark will apply to
some of the constants considered in Section 5.

Proposition 2. For any X, given x ∈ S we have:

(iii) a′(x) = sup{‖x− y‖ : y ∈ S ∩ E(±x)} ;

(iv) a(x) = inf{‖x− y‖ : y ∈ S ∩ E(±x)}.

Proof. We prove (iii) (the proof of (iv) being similar). Let

α = sup{min{‖x−y‖, ‖x+y‖} : y ∈ S}; β = sup{‖x−y‖ : y ∈ S∩E(±x)}.

Clearly α ≥ β = sup{min{‖x − y‖, ‖x + y‖} : y ∈ S ∩ E(±x)}; we must
prove the converse inequality. Given ε > 0, take y′ ∈ S such that min{‖x−
y′‖, ‖x + y′‖} > α − ε. Let Y denote the two-dimensional subspace of X
generated by x and y′; take y′′ ∈ Y ∩S such that ‖x−y′′‖ = ‖x+y′′‖. Then,
according to Proposition 1, since y′′ ∈ S∩E(±x) and y′ ∈ Y ∩S, we obtain:
β ≥ ‖x− y′′‖ = min{‖x− y′′‖, ‖x+ y′′‖} ≥ min{‖x− y′‖, ‖x+ y′‖} > α− ε;
since ε > 0 is arbitrary, this proves that β ≥ α, thus the equality, which is
(iii). �

Given X, set, for x ∈ S:

(v) b(x) = 1
2 sup{‖x− y‖+ ‖x + y‖ : y ∈ S}

(vi) b′(x) = 1
2 sup{‖x− y‖+ ‖x + y‖ : y ∈ S ∩ E(±x)}

= sup{‖x− y‖ : y ∈ S ∩ E(±x)}.
According to Proposition 2, we have:

(vii) b′(x) = a′(x) = sup{min{‖x− y‖, ‖x + y‖} : y ∈ S}.
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Also, given x ∈ S, we have the following chain of (in)equalities:
(j) 1 ≤ a(x) = inf

y∈S∩E(±x)
max{‖x− y‖, ‖x + y‖}

= inf
y∈S∩E(±x)

‖x− y‖ ≤ sup
y∈S∩E(±x)

‖x− y‖

= sup
y∈S∩E(±x)

min{‖x− y‖, ‖x + y‖}

= a′(x) = b′(x) ≤ b(x) ≤ 2.

The extreme values 1 and 2 in (j), are attained in simple cases (also in
two-dimensional spaces): see Example 1 in the next section.

Proposition 1 is not true when dim(X) > 2: in fact, if dim(X) ≥ 3, then
for some x we can have (see e.g. the simple Example 2 in next section):

(jj) 1 = inf
y∈S

max{‖x− y‖, ‖x + y‖} < sup
y∈S

min{‖x− y‖, ‖x + y‖} = 2.

Proposition 3. Given a space X, for any x ∈ S we have:

(3) 0 ≤ 2b(x)− 2 ≤ b′(x) ≤ b(x) ≤ 2.

Proof. The inequality b(x) ≥ 1 is trivial; and so is b′(x) ≤ b(x) < 2 (see
(j)).

b′(x) ≥ 2b(x)− 2: let be y such that ‖x− y‖+ ‖x + y‖ > 2b(x)− ε; since
max{‖x − y‖, ‖x + y‖} ≤ 2, this implies b′(x) ≥ min{‖x − y‖, ‖x + y‖} >
2b(x) − ε − 2: since ε > 0 is arbitrary, this proves that b′(x) ≥ 2b(x) − 2,
which completes the proof. �

Note that it is possible to have 2b(x) − 2 = b′(x) = b(x) = 2 (for ex-
ample, when b′(x) = b(x) = 2). But in fact, the following is an immediate
consequence of (3):

Corollary. Given x ∈ X, the conditions b(x) = 2 and b′(x) = 2 are equiv-
alent.

Also: 2b(x)−2 always has a positive lower bound (see [BCP, Proposition
2.5]); more precisely:

(3′) b(x) ≥ 3 +
√

21
6

(> 5/4)

for any x, in any space X.

3. Some examples. In next examples, R∞n will indicate the space Rn

with the max norm. Note that, by slightly modifying the norm, we obtain
a space with a strictly convex norm: thus situations ”almost” similar can
occur also for X having a strictly convex norm.
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Example 1. This example refers to (j) in Section 2: consider in X = R∞2
the points x = (1, 0) (we get a(x) = a′(x) = 1) and x = (1, 1) (we get
b(x) = b′(x) = 2).

Example 2. This example refers to (jj) in Section 2: consider in X = R∞3
the point x = (0, 1, 1); then we obtain 1 at the left for y = (1, 0, 0); we
obtain 2 at the right for y′ = (0,−1, 1).

Example 3. Consider the space X = C[0, 1]; let f(t) = t (so f ∈ SX).
Take gn(t) = min(t, (3− 2n)t + 2

n (n− 1)2); for n ≥ 2 we have: ‖f − gn‖ =
‖f + gn‖ = 2− 2

n . This shows that

sup{‖f−g‖+‖f+g‖ : g ∈ S} = sup{‖f−g‖+‖f+g‖ : g ∈ S∩E(±f)} = 2

(but the value 2 is not attained).

Example 4. Consider the space X = R∞2 ; let x = (1,−1/2); we have:
maxy∈S min{‖x − y‖, ‖x + y‖} = 3/2. The value 3/2 is attained not only
at points satisfying ‖x − y‖ = ‖x + y‖ (like (1/2, 1)): for example, if we
take z = (1, 1), then we have ‖x + z‖ = 2; ‖x− z‖ = 3/2. A similar remark
applies concerning miny∈S max(‖x− y‖, ‖x + y‖) = 3/2: if z = (0, 1), then
‖x− z‖ = 3/2; ‖x + z‖ = 1.

Moreover, again for x = (1,−1/2): miny∈S(‖x−y‖+‖x+y‖) = 2, which
is attained e.g. for y = (1/2,−1); in fact ‖x − y‖ = 1/2; ‖x + y‖ = 3/2.
It is not attained for points y such that ‖x − y‖ = ‖x + y‖ = 1 (since
miny∈S∩E(±x)(‖x− y‖+ ‖x+ y‖) = 3). Also: maxy∈S(‖x− y‖+ ‖x+ y‖) =
7/2, which is attained e.g. for y = (1, 1); it is not attained for points y such
that ‖x− y‖ = ‖x+ y‖ = 7/4 (since maxy∈S∩E(±x)(‖x− y‖+‖x+ y‖) = 3).

4. Two more constants. In [BCP] the following constants were studied:

(4) A1(X) = inf
x∈S

b(x) =
1
2

inf
x∈S

sup
y∈S

(‖x− y‖+ ‖x + y‖);

(5) A2(X) = sup
x∈S

b(x) =
1
2

sup
x,y∈S

(‖x− y|+ ‖x + y‖).

Note that A2(X) = ρ(1) + 1, where ρ is the modulus of smoothness of the
space X. The constant A2(X) was also used in [G]; in fact, the constant
r(X) considered there is nothing else than 4 · A2(X). The main results of
[G] indicate that when the value of A2 is not too large, then the space has
some kind of ”normal structure”.
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The following formula was indicated in [BCP, Proposition 2.2]: in any
space X,

(a) A2(X) = sup{1 +
ε

2
− δ(ε) : ε ∈ (0, 2)}.

Concerning bounds for A1(X) and A2(X), we send to [BCP]. In particular,
according to (3′):

(3′′) A1(X) ≥ 3 +
√

21
6

Also (see [B, Theorem 6]):

(b) A2(X) < 2 if and only if X is uniformly nonsquare.

Now we define the following constants:

(4′) A′
1(X) = inf

x∈S
b′(x) = inf

x∈S
sup{‖x− y‖ : y ∈ S ∩ E(±x)}

(5′) A′
2(X) = sup

x∈S
b′(x) = sup

x∈S
sup{‖x− y‖ : y ∈ S ∩ E(±x)}

Of course, in any space X:

(c) 1 ≤ A′
1(X) ≤ A1(X);

(d) A′
2(X) ≤ A2(X) ≤ 2

and A′
1(X) ≤ A′

2(X) and A1(X) ≤ A2(X).

Proposition 4. For a space X, A′
2(X) = 2 ⇔ A2(X) = 2 ⇔ X is not

uniformly nonsquare.

Proof. From (3) we obtain

0 ≤ 2A2(X)− 2 ≤ A′
2(X) ≤ A2(X) ≤ 2.

Proposition 4 is an immediate consequence of these inequalities and (b). �
We raise the following

Problem. Is the inequality A1(X) ≤ A′
2(X) true in general?

Note that the inequality is true in a space X, if for some x0 ∈ S,
supy∈S(‖x0 + y‖+ ‖x0 − y‖) is assumed at a point y ∈ E(±x0): in fact, in
this case we obtain A′

2(X) ≥ b′(x0) = b(x0) ≥ A1(X).
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5. Old and new constants. Now we want to compare the ”new” con-
stants with some other ones, defined around two decades ago by J. Gao
(see [GL1]) and considered also elsewhere: see e.g. [Pa], [C] and [GL2]).
Recently, these constants have been generalized and studied in [BR].

Set:

(6) g(X) = inf
x∈S

inf
y∈S

max{‖x− y‖, ‖x + y‖};

(7) G(X) = sup
x∈S

inf
y∈S

max{‖x− y‖, ‖x + y‖};

(8) g′(X) = inf
x∈S

sup
y∈S

min{‖x− y‖, ‖x + y‖};

(9) G′(X) = sup
x∈S

sup
y∈S

min{‖x− y‖, ‖x + y‖}.

According to Proposition 1, if dim(X) = 2, then g(X) = g′(X)(≤
√

2);
G(X) = G′(X)(≥

√
2). Recall that, as known (see [C, Remark 2.3]), we

always have

(10) g(X)−G′(X) = 2

so

(11) G′(X) ≥
√

2;

moreover:

(12)
if G′(X) < 2, then G′(X) is the unique solution

of the equation (in α) δ(α) = 1− α

2
.

Recall that G′(X) < 2 if and only if X is uniformly nonsquare.
With respect to inclusion of spaces, we may observe that when we ”en-

large” the space, G′(X) does not decrease while g(X) does not increase;
thus:

G′(X) = sup{G′(Y ) : Y is a two-dimensional subspace of X}
g(X) = inf{g(Y ) : Y is a two-dimensional subspace of X}.

Moreover, taking into account Proposition 1, it is not difficult to see that

G(X) ≤ sup{G(V ) : V is a two-dimensional subspace of X} = G′(X)

g′(X) ≥ inf{g′(V ) : V is a two-dimensional subspace of X} = g(X).

Now we want to show the relations among these constants, and those
defined in Section 4.
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Proposition 5. In any space X, we have:

(13) A′
2(X) = G′(X); A′

1(X) = g′(X).

Proof. According to (vii), we obtain:

A′
2(X) = sup

x∈S
b′(x) = sup

x∈S
sup
y∈S

min{‖x− y‖, ‖x + y‖} = G′(X);

A′
1(X) = inf

x∈S
b′(x) = inf

x∈S
sup
y∈S

min{‖x− y‖, ‖x + y‖} = g′(X). �

Therefore, we have the following chain of (in)equalities:

(14) g′(X) = A′
1(X) ≤ A1(X)

(15) G′(X) = A′
2(X) ≤ A2(X).

Also, we have:

A1(X) ≥ inf{A1(V ) : V is a two-dimensional subspace of X};
A2(X) = sup{A2(V ) : V is a two-dimensional subspace of X}.

Remark. According to (iv) of Proposition 2, we have:

g(X) = inf
x∈S

inf{‖x− y‖ : y ∈ S ∩ E(±x)};

G(X) = sup
x∈S

inf{‖x− y‖ : y ∈ S ∩ E(±x)}.

Note that the above Remark (for g(X)) and Proposition 5, together with
(5′) (for G′(X)) answer a question raised at the end of [DT]; in that paper
some results concerning these two constants but already proved in [C], were
indicated.

As known, several weakenings of the Jordan-von Neumann condition have
been considered, each of them implying that the norm derives from an inner
product. The following condition instead does not force a space to be an
inner product space, at least when dim(X) = 2:

(∗) ‖x + y‖ = ‖x− y‖ ≤
√

2 for all x, y ∈ S ∩ E(±x).

In fact (see e.g. [B, p. 1078]), examples are known of non–Hilbert spaces
satisfying A2 =

√
2 ; e.g.:

(∗∗) ‖x + y‖+ ‖x− y‖ ≤ 2
√

2 for all x, y ∈ S;
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in particular, if ‖x+ y‖ = ‖x− y‖, this implies (∗). Also, according to (15),
(11), (10), A2 =

√
2 implies

G′(X) = g(X) =
√

2;

so these equalities do not imply that X is an inner product space. In fact
(see also [GL1, Prop. 2.8]), in the same example quoted we have ‖x + y‖ =
‖x − y‖ =

√
2 for all x, y ∈ S ∩ E(±x); g(X) = g′(X) = G(X) = G′(X) =√

2; infy∈S max{‖x− y‖, ‖x+ y‖} = supy∈S min{‖x− y‖, ‖x+ y‖} =
√

2 for
every x.

We do not know of similar examples in spaces X such that dim(X) ≥ 3.
For a discussion of this, see [BCP, p. 143].

It is known that concerning the constants defined in (6)-(9), only the
trivial inequalities

g(X) ≤ G(X)

g′(X) = A′
1(X) ≤ G′(X) = A′

2(X)

g(X) ≤ g′(X) , G(X) ≤ G′(X)

are true (and the 4 constants are really different from each other): see e.g.
[C].

By taking X = `∞ (where G(X) = 2; A1(X) = 3/2), we see that the
following inequality can be true:

A1(X) < G(X).

In general, A1(X) 6= A′
1(X): in fact, we can have A′

1(X) = 1, while
A1(X) > 5/4 always (see (3′′). In particular (see [BCP], § 6): A1(c0) =
3/2 > 1 = A′

1(c0).
For Lp, 1 ≤ p < ∞, the values of g(X), g′(X), G(X), G′(X) have been

given in [GL1, Theorem 3.2]; in particular, g′(Lp) = max(21/p, 21−1/p).
We have the same values for A2 (which, according to (a), depends on the
modulus of convexity): see [BCP, Section 5]. Since A1 ≤ A2 always, by (14)
we also obtain A1(Lp) = max(21/p, 21−1/p).

With regard to Proposition 4, note that g(X) = 1 ⇔ X is not uniformly
nonsquare (see (10)). Uniform nonsquare property cannot be characterized
by g′(X) or G(X) (see again the examples in [C]); also (see [BCP, Proposi-
tion 6.4]) A1(X) = 2 ⇒ X is not uniformly nonsquare, but not conversely.

According to (12), if X is uniformly nonsquare, then A2(X) = A′
2(X)

if and only if δ(A2(X)) = 1 − A2(X)
2 . In general A2(X) 6= A′

2(X): in
[Pr] an example is given of a space satisfying δ(1) = 0, δ(3/2) > 1/4, so
A′

2(X) < 3/2 < A2(X). Compare with the Example of Poulsen quoted in
Section 2 (see also Section 3 in [BCP]).



74 P.L. Papini

Concerning A2, we always have (see [BCP, Proposition 2.2]): A2(X) =
A2(X∗). Also: A1(`∞) = 3/2; A1(`1) = 2, so A1 can both increase and
decrease when passing to the dual. The same is true for the constants G(X)
and g′(X) = A′

1(X): see e.g. their values in `p indicated in [C, Proposition
3.2].

Concerning g(X) and G′(X), the fact that they can be different in X and
in X∗ is not strange, according to the fact that the moduli of convexity of
X and X∗ are in general different (see (12)); Example 2 in [KMT] indicates
a space X such that G′(X) 6= G′(X∗). Also, according to a result in [Gu],
g(X) ≥ 1 + δ(1/2) holds always.

6. Other coefficients? Given X, set for ε ∈ [0, 2] (see [BR, p.398])

σ(ε) = sup
{

1− ‖x + y‖
2

: x, y ∈ S; ‖x− y‖ = ε

}
.

This modulus has already been introduced by Day; we have:

δ(ε) ≤ σ(ε) ≤ ε/2 holds always.

It was proved in Section 5 of [BR, p.422], that g(X) is the unique solution,
in β, of the equation

σ(β) = 1− β/2.

Since g(X) = 2/G′(X), if g(X) 6= 1, then by using (12) we have: g(X) =
β ⇔ β = 2(1− σ(β)) ⇔ δ(2/β) = 1− 1/β.

Note that X is uniformly nonsquare ⇔ limε→2− δ(ε) > 0 ⇔ g(X) = 1 ⇔
σ(1) = 1/2 ⇔ σ(ε) = ε/2 for 0 ≤ ε ≤ 1.

The following coefficient was introduced and studied in [N]:

NS(X) = sup{ρ : ρ ·min{‖x‖, ‖y‖} ≤ max{‖x + y‖, ‖x− y‖} ∀x,y∈X}.

Next proposition shows that, in fact, this is not a new parameter (so the
results in [N] are reformulations of previous results); this fact was implicit
in Proposition 7 of [N].

Proposition 6. For any space X, we have:

(16) NS(X) = g(X).

Proof. We have:

NS(X) = inf
{

max{‖x + y‖, ‖x− y‖}
min{‖x‖, ‖y‖}

: x, y ∈ X \ {0}
}

≤ inf
{

max{‖x + y‖, ‖x− y‖}
min{‖x‖, ‖y‖}

: x, y ∈ S

}
= g(X).
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We must prove the reverse inequality. Given ε > 0, take x, y ∈ X \ {0}
such that max{‖x+y‖,‖x−y‖}

min{‖x‖,‖y‖} < NS(X) + ε; since max{‖x+y‖,‖x−y‖}
min{‖x‖,‖y‖} does not

change when passing from x, y to τx, τy (τ ∈ R), we can assume - eventually
exchanging x and y - that 0 < ‖x‖ ≤ 1 = ‖y‖. Set s = 1/‖x‖ (‖sx‖ = 1) and
f(t) = max{‖sx + ty‖, ‖sx − ty‖} (t ∈ R); we have f(0) = 1 = min{f(t) :
t ∈ R} , so (s ≥ 1) f(s) ≥ f(1).

Therefore we have:

NS(X) + ε >
max{‖x + y‖, ‖x− y‖}

‖x‖
= max{‖sx + sy‖, ‖sx− sy‖}

≥ max{‖sx + y‖, ‖sx− y‖} ≥ g(X);

this shows that NS(X) ≥ g(X), thus concluding the proof. �

We end by indicating a few remarks concerning the following constant,
called the Jordan-von Neumann constant:

(17) CNJ(X) = sup
{
‖x + y‖2 + ‖x− y‖2

2(‖x‖2 + ‖y‖2)
: x, y ∈ X, not both 0

}
.

This constant was considered e.g. in [KMT] and compared in Section 3 there
with some of Gao’s constants; we note that it had already been introduced
and used in [Pe]. Clearly, 1 ≤ CNJ(X) ≤ 2 is always true.

Among the main results proved for CNJ(X), we quote the following:
(e) X is Hilbert if and only if CNJ(X) = 1 ;
(f) X is uniformly nonsquare if and only if CNJ(X) < 2.

We observe that if we define:
(17′)

C′NJ(X)=sup
{
‖x+y‖2+‖x−y‖2

2(‖x‖2+‖y‖2)
: x, y∈X, not both 0; ‖x+y‖=‖x−y‖

}
,

then (e) and (f) are true also for C′NJ(X) (to prove (e), use the characteri-
zations of inner product spaces indicated at page 50 of [A]).
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