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The natural affinors on dual r-jet prolongations
of bundles of 2-forms

ABSTRACT. Let J"(A2T*)M be the r-jet prolongation of A2T*M of an n-
dimensional manifold M. For natural numbers » and n > 3 all natural
affinors on (J7(A2T*)M)* are the constant multiples of the identity affinor
only.

0. Let us recall the following definitions (see e.g. [4]).

Let I : Mf, — FM be a functor from the category Mf, of all n-
dimensional manifolds and their local diffeomorphisms into the category
F M of fibered manifolds. Let B be the base functor from the category of
fibered manifolds to the category of manifolds.

A natural bundle over n-manifolds is a functor F' satisfying BoF' = id and
the localization condition: for every inclusion of an open subset iy : U — M,
FU is the restriction py; (U) of ppr : FM — M over U and Fiy is the
inclusion py; (U) — FM.

An affinor @ on a manifold M is a tensor type (1,1), i.e. a linear mor-
phism @Q : TM — TM over idyy.
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A natural affinor on a natural bundle F' is a system of affinors Q :
TFM — TFM on FM for every n-manifold M satisfying TFf o Q =
Q o TF f for every local diffeomorphism f: M — N.

A connection on a fibre bundle Y is an affinor I' : TY — TY on Y such
that 'oI' =T" and im(I") = VY, the vertical bundle of Y.

A natural connection on a natural bundle F' is a system of connections
I' ' TFM — TFM on FM for every n-manifold M which is (additionally)
a natural affinor on F'.

In [5] it was shown how natural affinors ) on some natural bundles F'M
can be used to study the torsion 7 = [I', Q] of connections I' on the same
bundles FM. That is why natural affinors have been classified in many
papers, [1]-[3], [6]-[11].

In this paper one considers the natural bundle F' = (J"(A*T™*))* which as-
sociates to every n-manifold M the vector bundle (J"(A’T*))*M =
(JT(A?2T*)M)*, where J"(A*T*)M = {j’w | wis a 2-form on M , x € M},
and to every embedding ¢ : M — N of n-manifolds the induced vec-
tor bundle mapping (J"(A2T*))*p = (J"(A2T*)p~1)* : (JT(A2T*)M)* —
(JT(A?T*)N)*, where the map J"(A?T*)p : J'(A*T*)M — J"(A*T*)N is
given by jiw — jo .\ (puw).

For integers > 1 and n > 3 we classify all natural affinors on
(JT(A2T*))*M. We prove that every natural affinor Q on (J"(A2T*))*M
is proportional to the identity affinor.

We note that the classification of natural affinors on (J"T™M)* is differ-
ent. In [9] we proved that for n > 2 the vector space of all natural affinors
on (J'T*M)* is 2-dimensional.

The above result shows that ”torsion” of a connection I" on (J"(A%T*))* M
makes no sense because of [I',id] = 0.

The above result also shows that for integers r > 1 and n > 3 there are
no natural connections on (J"(A2T*))* over n-manifolds.

The usual coordinates on R" are denoted by x* and 9; = %, i=1,..,n.
All manifolds and maps are assumed to be of class C*°.

1. We start with the classification of all linear natural transformations
A T(J7(A2T*))*M — (J"(A*T*))*M in the sense of [4] over n-manifolds
M.

A natural transformation T(J"(A2T*))* — (J"(A?T*))* over n-manifolds
is a system of fibered maps A : T(J"(A*T*))*M — (J"(A*T*))* M over id s
for every n-manifold M satisfying (J"(A2T*))*fo A= Ao T(J"(A*T*))*f
for every local diffeo. f : M — N. The linearity means that A gives a
linear map T, (J"(A%T*))*M — (J"(A2T*)):i M for any y € (J"(A*T*)): M,
x e M.
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Proposition 1. If n > 3 and r are natural numbers then every linear
natural transformation A : T(J"(A?T*))* — (J"(A?T*))* over n-manifolds
s 0.

Proof. Every element from the fibre (J"(A2T*))5R™ is a linear combination
of the (j§(x%dx® A dx?))* for all a € (N U {0})" with |a| < r and i,j =
1,..,n, i < j, where the (j5(x®dz® A dx’))* form the basis dual to the
Jo(zdx' Adad) € (JT(A2T*))oR" for o and i, j as beside.

Consider a linear natural transformation A:T(J"(A2T*))* — (J"(A2T*))*
over n-manifolds.

Clearly, A is uniquely determined by the values (A(u), j5 (z®dz Adz?)) €
R for ue (T(J(A2T*))*R")o=R" x (V (J(A2T*))*R")o=R" x (J"(A2T*));
R x (J"(A?T*))sR™ , a € (NU{0})" with |a| <7 andi,j=1,...,n,i < j,
where = is the standard trivialization and the canonical identification.

Since A is invariant with respect to the coordinate permutations, A is
uniquely determined by the values (A(u), j5(z®dz! A dx?)), where u and «
are as above.

If || > 1, then the local diffeomorphisms o= (2!, 2%, 23+2%, 24, ...z
sends j5 (x3dz! A da?) into j5(x3dzt A dz?) + ji(x*dzt A dz?). Then by the
invariance of A with respect to the ¢’s, A is uniquely determined by the
values (A(u), j5 (z3dzt A dz?)) € R and (A(u), j5(dz! A dz?)) € R, where
w € (T(JT(A2T*))*R™)o=R" x (J7(A2T*))sR" x (J"(A2T*));R™.

The proof of Proposition 1 will be complete after proving that
(A(u), 35 (dxt A dz?)) = 0 and (A(u), j5(z3dxt A dz?)) = 0 for any u €
(T(J"(A’T*))*R™)g = R™ x (JT(A2T*));R"™ x (J"(A2T*))sR"™. We will
prove these conditions in Lemmas 1 — 6.

At first we study the values (A(u), j5(dz! A dz?)).

1 n)—l

Lemma 1. There exist the numbers A, u,v € R such that
(1) (A(w), jo(dz' A da®)) = Mugui + pug (o) 1,2 + Vg (01,2

for every u = (u1,uz,uz) € R™ x (JT(A2T*));R"™ x (J"(A2T*))sR"™, where
up = (uf, ..., ult) € R, ur i is the coefficient of u, € (J"(A*T*))§R™ on
(jo(x*dxt A da?))*, 7= 2,3, (0) = (0,...,0) € (NU{0})".

Proof of Lemma 1. By the naturality of A with respect to the homotheties
ap = (ttat, .. t"a") for t = (', ..., t") € RY,

(AT (AT*))* (a0) (w)), Jg (da' A dz?)) = 12 (A(w), jg (dz' A da?))
for any t = (¢t',...,t") e R%}. Fort e R", 4,5 =1,..,n,i < jand a € (NU
{0})™ we have T(J" (A2T*))*(a) ((j5 (xdz Ada?))*) = toteites (i (x®dat A

dz?))*. Then the lemma follows from the homogeneous function theorem,
[4]. O
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Lemma 2. We have A=pu=v =0.
Proof of Lemma 2. Since (A(u1, uz, u3), j§ (dz! Adx?)) is linear in (u1, us)
for ug, we have A = = 0. Then (in particular) we have

(2)  (AOF ), Jo(det Ada?)) = (Aler,w,0), j (dat A da?)) =0

for w € (J"(A2T*))sR"™, where ()¢ is the complete lift.
To prove v = 0 it is sufficient to show that

(A(0,0, (5 (dz' A d2?))*), jo(dz A dz?)) = 0.

But we have
— (A 00, 5 (dat A da?))
3) = (r+ 1)(A(0, w, (jg(dz' Adz?))" + ...),jg(dz’ Adz?))
= (r+ 1){A(0,0, (5 (dz A da?))"), j3(dat A da®))
where w = (j5((x')"d2z' A dz?))* and the dots mean the linear combination
of the (j§(z%dz® A dx?))* with (j§(x®dz® Ada?))* # (j5(dzt A dz?))*.

Let us explain (3).
Let ¢; be the flow of (z!)"*19;. We have

()10 g (dat A da?))

— (G LTI o)), e da?)
=TT ), Gyt A de)
= (W db((e (et A i)

= <w,j6(jtt:0(30_t)*(dxl A de)»
= (w, j§ (L(z1yr+10, (dz* A dz?)))
= (r + 1)(w,j5((z") dz' ANdz?)) =7+ 1.

Then ((z!)" 10, )‘C = (r + 1)(j5(dz' A dxz?))* + ... under the canonical
")

isomorphism V,, ((j]v T(A2T*))*R™)=(J"(A2T*))R", <A(((x1)r+181)|€u),
jo(dzt Adz?)) = (r+ 1){A0,w, (5 (dzt A dx?))* + ... ) jo(dzt A dz?)).
) ), dg(dat A da?)) =

The equality (r + )(A(O w, (55 (dz* A dx?)
(r +01)<A(0 0, (G (da’ A da))*), )
1 =0.

(dx' A da?)) is clear because of (1) and
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We can prove the equality 0 = (A(((xl)rﬂal)ﬁu),jg(d:vl A dx?)) as fol-
lows. Vector fields 9; + (x1)"710; and 9; have the same r-jets at 0. Then by
[11], there exists a diffeomorphism ¢ : R™ — R” such that j; "¢ = id and
001 = 01+ (x1)" 19 near 0. Clearly, ¢ preserves j5(dx! A dz?) because of

the jet argument. Then, by the naturality of A with respect to ¢, it follows
from (2) that

(A0 + (1) 101 ), Gy (dat A da®)) =0

for any w € (J"(A?T*))5R™. Now, applying the linearity of A, we end the
proof of the equality. O
Now, we study the values (A(u), j§ (z3dz! A dz?)) = 0.

Lemma 3. There exist the numbers a,b,c,e, f,g € R such that

) (A(u), j§ (*da' A da?)) = aujus (0),2,3 + buius,0),1,3

3
+ cujug (0),1,2 + €U3.e; 2,3 T fU3,e,,1,3 T U3 e5,1,2

for any u = (uy,us,us), where uy = (ul,...,ut) € R", ug,uz € (J"(T* A
T*)§R", Ur a,i; is as in Lemma 1 and e; = (0, ...,1,0,...,0) € (NU{0})",
1 wn 2-position.

Proof of Lemmma 3. The proof is similar to the proof of Lemma 1. We ap-
ply the naturality of A with respect to the homotheties a; = (t'a!, ..., t"a™)

for t = (t*,...,t") € R, the homogeneous function theorem and the linear-
ity of A. O

To prove g = f = e =a = b= c =0 we shall use the following

Lemma 4. For every u € (T(J"(A*T*))*R"™)y we have
(5) (A(w), ji(a%da A da?)) = (A(), j3 (sda! A da?)

where u' is the image of u by (z2, 23, 21) X idgn-s.

Proof of Lemma 4. We consider u € (T(J"(A%2T*))*R")o. Let @ be the
image of u by (2! + x'23,22,... 2"). By Lemma 2 we have A\ = g = v =
0, ie. (A(@),j5(dxt A dx?)) = (A(u),j5(dzt A dz?)) = 0. Then by the

invariance of A with respect to (z! + x'23,22,...,2™) ! we get
0 = (A(w), 75 (de Ada?)) + (A(uw), J5 e Ada?)) — (Alu), 75 (e da® Ada))

as (xl+axlz3 22, ... 2™) 71 sends j5 (dxt Adz?) into j§ (dzt Adx?)+j5 (x3dxt A
dx?) — jr(ztdz? Adx?). Hence (A(u), j5(x3dxt A da?)) = (A(u), 55 (xdx® A
dz3)). Therefore we have (5) because (22,23, 21) x idgn-s sends j§(z'dz? A
dz3) into ji(z3dx! A dx?). O
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Lemma 5. We have g= f =e=0.
Proof of Lemma 5. We have to show
(A(0,0, (5 (z®dxt A dz?))*), 5 (2Pdat A d?))
= (A(0,0, — (45 (z2dx* A dx®))*), jo(x3dxt A dx?))
= (A(0,0, (55 (z*dx? A dz®))*), jo (x3dxt A dz?)) = 0.
We see that (22, 23,z )xian s sends (5 (23dx! Adx?))* into — (45 (v?dz?
Adx3))* and —(j ( 2dzr: Adx?))* into (j5(xtdx® A dx?))*. Then due to (5)

it suffices to verify that (A(0,0, (jj(x 3d3: A dz?))*), jo(23dzt A dz?)) = 0.
But we have

0= (A(((«")" 1)), jo (a*da’ A da?))
(6) = (A0, w, (j5 (z3dx' A da?))*), jo(23dat A da?))
(A(0,0, (5 (z3dzt A dz?))*), 56 (3dat A dx?)) |

r

where w = (j5 (23 (x!) "~ tda! A dx?))* € (JT(A2T*));R".

(z

Let us explain (6).

That (A(0,w, (j5(x3dzt A dz?))*), j5(x3dzt A dz?)) = (A(0,0, (j§ (z3dat
Adz?))*), 55 (x3dzt A dz?)) is clear, see (4).

We can prove 0 = (A(((z!)" 81)|w) jo(@3dzt A dx?)) as follows. Vector
fields 1 + (z')"0; and 9; have the same r—1-jets at 0. Then by [11] there
exists a diffeomorphism ¢ = ; x idg=—1 : R® = R x R — R" =
R x R"! such that ¢; : R — R, jl¢ = id and .0 = 01 + (21)"y
near 0. Let ¢~ ! send w into w. Then 1 is the linear combination of the
(j5(x*dxiAdzd))* € (J7(A2T*))sR™ for |o| > 1andi,j = 1,...,n withi < j.
(For, (0, 5(da" A de!)) = (w,jidl* 0 o) Ad(al o 1)) = 0.) Then,
by (4), (A(€)5), jh(@Pdat A da?)) = (A(er,,0), j5(a*dat A da?)) = 0.
Clearly, ¢ preserves j5(x3dz! A dz?). Then, using the naturality of A with
respect to ¢ we get (A((0r + (21)701)C ), jb (aPdxt A da?)) = 0. Now,
applying the linearity of A, we end the proof of equality.

Using the flow argument one can prove <A(((x1)7”81)|%), jo(z3dat Ndx?))=
(A0, w, (j5(x3dxt A dx?))*), ji(z3dat A dx?)) as follows. For any a €
(NU{0})™ with |a] <r and any 4,j = 1,...,n with ¢ < j we have

(@) 01)C s 75 (272 A d2)) = (w0, 5Lty 52’ A dat))
= (w, anjf (@) e et A dad)
+ w35 (@ dr(ay et A de?))
Since w = (55 (23 (x)"1dz! A dz?))*, the sum is equal to 7 if & = e3 and
(i,7) = (1,2) and equal to 0 in the other cases. Hence ((z')701)%, =

(76 ( 3dat Adz?))* € Vi (JT(A2T*))*R™. This ends the proof of (A(((z!)"
O, (a8 dr Adr?)) = A0, w, (j§ (#*dat Ada?))*), j§ (+det Ade?)). D
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Lemma 6. We have a=b=c=0.

Proof of Lemma 6. By (5), similarly as for e = f = g = 0, it is sufficient
to prove that ¢ = 0, i.e. <A(8§|(j5(dx1/\dxz))*),jg(m3d$1 Adz?)) = 0. But we
have

0 = (A (55 ((e1)rdat nda2))- ): o (2P dat A da?))
(7) = (A0S \(jr (dw nda2))+..)» o (2 dat A d?))
= (A0S \(jr (dw nda2))* ), J6 (@ dzt A da®))

where the dots denote the linear combination of the (j§(z“dx® A dz?))* #
(jo(dzt A dx?))* for |a| <randi,j=1,..,n, i< j.

Let us explain (7).

The equality 0 = <A(8g|(j6‘((1,1)7-dz1/\dz2))*), jo(z3dxt Adx?)) follows from
(4). Similarly, from (4) we obtain (A(9S|(jr (dzinda2))*+...) Jo (£*dxt Ada?))=
(A0 (jr (dar Adw))* ), J6 (23 dat A da?)).

We consider the local diffeomorphism ¢ = (2! + =5 ('), 22, ..., 2") 7L,
We see that ¢! preserves jf(z3dz! A dz?) and 3. Moreover, we see that
o~ sends (j5 ((z1)"dzt Adz?))* into (j§ (dxt Adx?))* +..., where the dots are
as above, because of {(j5((z)"dz! A dx?))*, j5 (. (dx! A dx?))) = 1. Now,
by the invariance of A with respect to ¢! we get <A(8BC|(j(’)"((m1)”da:1/\dgc2))* ),
Jo(@3dat A dx?)) = (A (i (do nda?))= +...), 36 (P dzt Ada?)). O

The proof of Proposition 1 is complete. [

2. The tangent map T'w : T(J"(A*T*))*M — TM of the bundle pro-
jection m : (J"(A2T*))*M — M defines a linear natural transformation
Tr: T(J"(A2T*))* — T over n-manifolds. (The definition of linear natural
transformations T'(J"(A2T*))* — T over n-manifolds is similar to the one
of Section 1.)

Proposition 2. Ifr andn > 2 are natural numbers, then every linear natu-
ral transformation B : T(J"(A*T*))* — T over n-manifolds is proportional
toTm.

Proof. Due to similar arguments as in the proof of Proposition 1, B is
uniquely determined by the values (B(u), dox!) for u € (T(J(A2T*)*R")g
=R x (JT(A2T*))gR™ x (JT(A2T*));R".

By the naturality of B with respect to the homotheties (t'z1, ..., t"2™) for
t € R’} and the homogeneous function theorem we deduce that (B(.), dz') =
z! o p1, where p1 : R™ x (JT(A2T*));R" x (JT(A*T*));R™ — R™ is the
canonical projection.

Then the vector space of all B as above is 1-dimensional. [J
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3. The main result of this paper is the following theorem.

Theorem 1. Ifn > 3 and r are natural numbers, then every natural affinor
Q on (J"(A2T*))* over n-manifolds is a constant multiple of id.

Proof. Let Q : T(J"(A*T*))*M — T(J"(A?T*))*M be a natural affinor
on (J"(A2T*))* over n-manifolds. Then B = Two Q : T(J"(A?T*))* — T
is a linear natural transformation. By Proposition 2, B = Two@Q = XI'w for
some A. Clearly, T'm oid = T'w. Then @ — \id is an affinor of vertical type.
Now, applying Proposition 1 we deduce that Q — Aid is the zero affinor. [

From Theorem 1 we obtain immediately

Corollary 1. Ifn > 3 and r are natural numbers, then there is no natural
connection on (J"(A*T*))* over n-manifolds.
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