ANNALES UNIVERSITATIS MARIAE CURIE – SKŁODOWSKA LUBLIN – POLONIA

VOL. LV, 10

SECTIO A

2001

WŁODZIMIERZ M. MIKULSKI

Liftings of 1-forms to the bundle of affinors

Dedicated to Professor Ivan Kolář on the occasion of his 65-th birthday

ABSTRACT. All natural operators $T^* \rightsquigarrow T^*(T \otimes T^*)$ over *n*-manifolds are described. Non-existence of canonical volume forms on some natural bundles is deduced.

We study how a 1-form ω on a *n*-manifold M induces a 1-form $B(\omega)$ on $TM \otimes T^*M$. This problem is reflected in natural operators $T^* \rightsquigarrow T^*(T \otimes T^*)$ over *n*-manifolds, [5]. Using the results from [1] and [2], we prove that the set of natural operators $T^* \rightsquigarrow T^*(T \otimes T^*)$ over *n*-manifolds is a free $C^{\infty}(\mathbf{R}^n)$ -module. We construct a basis of this module. See [6] (or [3]), for the similar problem with T (or T^*) instead of $T \otimes T^*$.

We deduce non-existence of canonical volume forms (simplectic, cosimplectic, contact structures) on some natural bundles, e.g. $T \otimes T^*$.

From now on π : $TM \otimes T^*M \to M$ is the bundle projection for every *n*-manifold $M, x^1, ..., x^n$ are the usual coordinates on \mathbf{R}^n and $\partial_i = \frac{\partial}{\partial x^i}$ for i = 1, ..., n.

¹⁹⁹¹ Mathematics Subject Classification. 58A20, 53A55.

Key words and phrases. Natural bundles, natural operators.

All manifolds and maps are assumed to be of class C^{∞} .

I. The natural operators $T^* \rightsquigarrow T^*(T \otimes T^*)$. If $L : V \to V$ is an endomorphism of an *n*-dimensional vector space V then $a_1(L), ..., a_n(L)$ denote the coefficients of the characteristic polynomial

 $W_L(\lambda) = \det(\lambda \operatorname{id}_V - L) = \lambda^n + a_1(L)\lambda^{n-1} + \dots + a_{n-1}(L)\lambda + a_n(L) .$

1. Example. For every *n*-manifold M we have $a_1, ..., a_n : TM \otimes T^*M \to \mathbf{R}$ (as $T_xM \otimes T_x^*M = \operatorname{End}(T_xM)$) and $da_1, ..., da_n \in \Omega^1(TM \otimes T^*M)$. $da_1, ..., da_n : T^* \rightsquigarrow T^*(T \otimes T^*)$ are constant natural operators over *n*-manifolds.

2. Example. For every *n*-manifold M, $\omega \in \Omega^1(M)$ and i = 1, ..., n let $B^{(i)}(\omega) \in \Omega^1(TM \otimes T^*M)$, $B^{(i)}(\omega)_{\tau} = \omega_x \circ \tau^{n-i} \circ T_{\tau}\pi$, $\tau \in T_xM \otimes T^*_xM$, $x \in M$, $\tau^{n-i} = \tau \circ ... \circ \tau$ (n-i)-times. $B^{(1)}, ..., B^{(n)} : T^* \rightsquigarrow T^*(T \otimes T^*)$ are nat. operators over *n*-manifolds.

The set of natural operators $T^* \rightsquigarrow T^*(T \otimes T^*)$ over *n*-manifolds is a $C^{\infty}(\mathbf{R}^n)$ -module: $(fB)(\omega) = f((a_i)_{i=1}^n)B(\omega), B: T^* \rightsquigarrow T^*(T \otimes T^*), \omega \in \Omega^1(M), f \in C^{\infty}(\mathbf{R}^n).$

3. Theorem. The operators da_i and $B^{(i)}$ for i = 1, ..., n form a basis of the $C^{\infty}(\mathbf{R}^n)$ -module of natural operators $T^* \rightsquigarrow T^*(T \otimes T^*)$ over n-manifolds.

Proof. Let $B: T^* \rightsquigarrow T^*(T \otimes T^*)$ be a natural operator over *n*-manifolds. We have to show that B is the linear combination of the operators da_i and $B^{(i)}$ for i = 1, ..., n with uniquely determined coefficients from $C^{\infty}(\mathbf{R}^n)$. \Box

4. Lemma. $B(\omega) = B(0)$ on $V(TM \otimes T^*M)$ for $\omega \in \Omega^1(M)$.

Proof. Let $v \in V_{\tau}(T\mathbf{R}^n \otimes T^*\mathbf{R}^n)$, $\tau \in T_0\mathbf{R}^n \otimes T_0^*\mathbf{R}^n$, $\omega \in \Omega^1(\mathbf{R}^n)$. Since $t \operatorname{id}_{\mathbf{R}^n}$ for $t \neq 0$ preserve v, $B((t \operatorname{id}_{\mathbf{R}^n})^*\omega)_{\tau}(v) = B(\omega)_{\tau}(v)$. If $t \to 0$, $B(\omega)_{\tau}(v) = B(0)_{\tau}(v)$. \Box

5. Lemma. There exist the maps $f_i \in C^{\infty}(\mathbf{R}^n)$ such that $B(\omega)_{\tau}((v^o)_{\tau}^C) = \sum_{i=1}^n f_i(a_1(\tau), ..., a_n(\tau))\omega_0(\tau^{n-i}(v))$ for $\tau \in T_0\mathbf{R}^n \otimes T_0^*\mathbf{R}^n$, $\omega \in \Omega^1(\mathbf{R}^n)$, $v \in T_0\mathbf{R}^n$, where v^o is the constant vector field on \mathbf{R}^n with $v_0^o = v$ and $(v^o)^C$ its complete lifting.

Proof. Consider $\tau \in T_0 \mathbf{R}^n \otimes T_0^* \mathbf{R}^n$. Given $\omega \in \Omega(\mathbf{R}^n)$, by [5], $B(\omega)_{\tau}$ depends only on $j_0^r \omega$ for some finite $r = r(\tau)$. Define $\overline{B}_{\tau} : (J_0^r T^* \mathbf{R}^n) \times T_0 \mathbf{R}^n \to \mathbf{R}, \ \overline{B}_{\tau}(j_0^r \omega, v) = B(\omega)_{\tau}((v^o)_{\tau}^C), \ \omega \in \Omega^1(\mathbf{R}^n), \ v \in T_0 \mathbf{R}^n$. By the invariance of B with respect to $t \operatorname{id}_{\mathbf{R}^n}$ for $t \in \mathbf{R}_+$ and the homogeneous function theorem, [5], \overline{B}_{τ} depends linearly on (ω_0, v) .

So, we can define $\tilde{B} : T_0 \mathbf{R}^n \otimes T_0^* \mathbf{R}^n \to T_0 \mathbf{R}^n \otimes T_0^* \mathbf{R}^n$, $\tilde{B}(\tau)(\omega_0, v) = B(\omega)_{\tau}((v^o)_{\tau}^C)$, $\omega \in \Omega^1(\mathbf{R}^n)$, $v \in T_0 \mathbf{R}^n$. By the $GL(\mathbf{R}^n)$ -invariance of B, \tilde{B} is $GL(\mathbf{R}^n)$ -equivariant. Then, by Proposition 2.2 in [1], there exist the maps $f_i \in C^{\infty}(\mathbf{R}^n)$ with $\tilde{B}(\tau) = \sum_{i=1}^n f_i(a_1(\tau), ..., a_n(\tau))\tau^{n-i}$ for $\tau \in T_0 \mathbf{R}^n \otimes T_0^* \mathbf{R}^n$. \Box

Replacing B by $B - \sum_{i=1}^{n} f_i B^{(i)}$, we can assume that B is constant.

6. Lemma. There exist the maps $g_i \in C^{\infty}(\mathbf{R}^n)$ with $B = \sum_{i=1}^n g_i da_i$.

Proof. Since B is constant, we can define new natural operator B^o : $T \otimes T^* \rightsquigarrow T^*$ such that $B^o(\tau) = \tau^* B$ for any tensor field τ on an n-manifold M.

By Theorem 2.2 in [2], there exist the maps $g_{ij} \in C^{\infty}(\mathbf{R}^n)$ for i, j = 1, ..., n such that $B^o(\tau) = \sum_{i,j=1}^n g_{ij}(a_1(\tau), ..., a_n(\tau))d(a_i(\tau)) \circ \tau^{n-j}$ for any τ as above.

Since the correspondence $B \to B^o$ is injective, it remains to verify that $g_{ij} = 0$ for i = 1, ..., n and j = 1, ..., n - 1. We can assume $n \ge 2$.

Consider $i_o = 1, ..., n$ and $j_o = 1, ..., n - 1$ and $b = (b_1, ..., b_n) \in \mathbf{R}^n$. Let $A \in gl(n)$ be such that $Ae_i = e_{i+1}$ for i = 1, ..., n - 1 and $Ae_n = -b_ne_1 - ... - b_1e_n$.

Let τ be the tensor field on \mathbf{R}^n of type (1,1) such that $\tau_x \in \text{End}(T_x \mathbf{R}^n)$ has matrix A with respect to $\partial_{1|x}, ..., \partial_{n|x}$ for $x \in \mathbf{R}^n$. Then $a_i(\tau) = b_i$, i = 1, ..., n.

Let η be the tensor field on \mathbf{R}^n of type (1,1) such that η_x has matrix $A - x^{n-j_o+1}E_{n-i_o+1,n}$ for any $x = (x^1, ..., x^n) \in \mathbf{R}^n$, where $E_{k,l} \in gl(n)$ has 1 in the (k,l) position and 0 in other positions. Then $a_i(\eta) = b_i + \delta_{i_o}^i x^{n-j_o+1}$ for i = 1, ..., n.

Clearly $T\eta(\partial_{1|0}) = T\tau(\partial_{1|0})$ and $d(a_i(\tau)) = db_i = 0$ for i = 1, ..., n. Then $B^o(\eta)_0(\partial_{1|0}) = B^o(\tau)_0(\partial_{1|0}) = 0$. Then, since $(\eta_0)^{n-j}(\partial_{1|0}) = \partial_{n-j+1|0}$ for $j = 1, ..., n, \sum_{i,j=1}^n g_{ij}(b)d(a_i(\eta))(\partial_{n-j+1|0}) = 0$. Since $\frac{\partial}{\partial x^{n-j+1}}(a_i(\eta)) = \delta_{i_o}^i \delta_{n-j_o+1}^{n-j+1}, g_{i_oj_o}(b) = 0$.

The proof of Theorem 3 is complete. \Box

7. Corollary. The operators $B^{(i)}$ (or da_i) for i = 1, ..., n form a basis of the $C^{\infty}(\mathbf{R}^n)$ -module of linear natural operators $T^* \rightsquigarrow T^*(T \otimes T^*)$ (or canonical 1-forms on $T \otimes T^*$) over n-manifolds.

8. Remark. If $n \ge 2$, there are non-zero canonical 2-forms on $T \otimes T^*$ (for example, $da_i \wedge da_j$ for $1 \le i < j \le n$) but there are no canonical simplectic structures because there are no canonical volume forms, see Proposition 10 (c).

II. Non-existence of canonical volume forms on some natural bundles.

9. Lemma. Let F be a natural bundle over n-manifolds. Suppose there is $v_o \in F_0 \mathbf{R}^n$ with $F(t \operatorname{id}_{\mathbf{R}^n})(v_o) = v_o$ for all $t \in \mathbf{R}$ and there are a basis $u_1, ..., u_k$ of $V_{v_o} F \mathbf{R}^n$ and $a_1, ..., a_k \in \mathbf{R}$ with $TF(t \operatorname{id}_{\mathbf{R}^n})(u_j) = t^{a_j}u_j$ for j = 1, ..., k and $t \in \mathbf{R}_+$. Suppose also that there is a canonical volume form Ω on F. Then $n + \sum_{j=1}^k a_j = 0$.

Proof. Using basis $\partial_1^C|_{v_o}, ..., \partial_n^C|_{v_o}, u_1, ..., u_k$ of $T_{v_o}F\mathbf{R}^n$ we see that $t \operatorname{id}_{\mathbf{R}^n}$ maps Ω_{v_o} into $t^{-(n+\sum_{j=1}^k a_j)}\Omega_{v_o}$. On the other hand, $t \operatorname{id}_{\mathbf{R}^n}$ preserves Ω_{v_o} and $\Omega_{v_o} \neq 0$. \Box

10. Proposition. There are no canonical volume forms on:

- (a) $(F_{|\mathcal{M}f_n})^*$ for every bundle functor $F : \mathcal{M}f \to \mathcal{VB}$ with $\dim(F_0\mathbf{R}^n) \dim(F\mathbf{R}^0) \ge n+1$ (in particular, on $T_p^{r*} = J^r(., \mathbf{R}^p)_0$ for $p, r \in \mathbf{N}$ with $(p, r) \ne (1, 1)$, on J^rT^* for $r \in \mathbf{N}$ and on Λ^pT^* for $n \ge 4$ and p = 2, ..., n-2);
- (b) $\Lambda^{n-1}T^*$ for $n \geq 3$;
- (c) $\otimes^{p}T \otimes \otimes^{q}T^{*}$ for $p, q \in \mathbf{N} \cup \{0\}$ with $(p,q) \neq (0,1)$ if $n \geq 2$ and $(p,q) \neq (p,p+1)$ if n = 1;
- (d) $\otimes^p (\Lambda^n T^*)$ for $p \geq 2$.

Proof. ad (a) Put $v_o = 0 \in (F_0 \mathbf{R}^n)^*$. There are a basis $u_1, ..., u_k$ of $V_{v_o}(F\mathbf{R}^n)^*$ and $a_1, ..., a_k \in \{0, -1, ...\}$ with $T((F)^*(t \operatorname{id}_{\mathbf{R}^n}))(u_j) = t^{a_j}u_j$ for j = 1, ..., k and t > 0, [4]. We see $\operatorname{card}\{j \mid a_j = 0\} = \dim(F\mathbf{R}^0)$. So, $n + \sum_{j=1}^k a_j < 0$. Apply Lemma 9.

ad (b)—(d) Consider $v_o = 0$ over $0 \in \mathbf{R}^n$ and the obvious bases $u_1, ..., u_k$ of $F_0 \mathbf{R}^n = V_{v_o} F \mathbf{R}^n$ for $F = \otimes^p T \otimes \otimes^q T^*$, $\Lambda^{n-1} T^*$, $\otimes^p (\Lambda^n T^*)$. Find $a_1, ..., a_k$ with $F(t \operatorname{id}_{\mathbf{R}^n})(u_j) = t^{a_j} u_j$ for j = 1, ..., k and $t \in \mathbf{R}_+$ and apply Lemma 9. \Box

11. Remark. (a) There is the well-known simplectic structure (and the volume form) on T^* . If (p,r) = (1,1), $T_p^{r*} = T^*$. If n = 1, $\otimes^p T \otimes \otimes^{p+1} T^* = T^*$ by a contraction.

(b) We have a volume form $d\Theta$ on $\Lambda^n T^*$, $\Theta_{\omega}(v_1, ..., v_n) = \omega(T\pi(v_1), ..., T\pi(v_n))$, $v_1, ..., v_n \in T_{\omega}\Lambda^n T^*M$, $\omega \in \Lambda^n T^*_x M$, $x \in M$.

(c) If $F : \mathcal{M}f \to \mathcal{VB}$ is a bundle functor with $\dim(F_0\mathbf{R}^n) - \dim(F\mathbf{R}^0) = n$ (< n), then a volume form on $(F_{|\mathcal{M}f_n})^*$ can exist or not, see (a) and 10(b) ((b) and 10(d)).

References

- Debecki, J., Natural transformations of affinors into functions and affinors, Suppl. Rend. Circolo Mat. Palermo **30(II)** (1993), 101–112.
- [2] _____, Natural transformations of affinors into linear forms, Suppl. Rend. Circolo Mat. Palermo **32(II)** (1993), 49–59.
- [3] Doupovec, M., J. Kurek, Lifting of tensor fields to the cotangent bundle, Proc Conf. Differential Geom. and Appl., Brno, 1995, pp. 141–150.
- [4] Epstein, D.B.A., Natural vector bundles, Category theory, Homology theory and their applications III, Lecture Notes in Mathematics, vol. 99, Springer Verlag, 1969, pp. 171–195.
- [5] Kolář, I., P.W. Michor and J. Slovák, Natural Operations in Differential Geometry, Springer Verlag, Berlin, 1993.
- [6] Mikulski, W.M., The natural operators lifting 1-forms on manifolds to the bundles of A-velocities, Mh. Math. 119 (1995), 63–77.

Institute of Mathematics Jagiellonian University Reymonta 4, 30-059 Kraków, Poland e-mail: mikulski@im.uj.edu.pl received December 15, 2000