LUBLIN - POLONIA

VOL. LV, 10 SECTIO A 2001

WŁODZIMIERZ M. MIKULSKI

Liftings of 1 -forms to the bundle of affinors

Dedicated to Professor Ivan Kolár on the occasion of his 65-th birthday

Abstract

All natural operators $T^{*} \rightsquigarrow T^{*}\left(T \otimes T^{*}\right)$ over n-manifolds are described. Non-existence of canonical volume forms on some natural bundles is deduced.

We study how a 1-form ω on a n-manifold M induces a 1-form $B(\omega)$ on $T M \otimes T^{*} M$. This problem is reflected in natural operators $T^{*} \rightsquigarrow T^{*}\left(T \otimes T^{*}\right)$ over n-manifolds, [5]. Using the results from [1] and [2], we prove that the set of natural operators $T^{*} \rightsquigarrow T^{*}\left(T \otimes T^{*}\right)$ over n-manifolds is a free $C^{\infty}\left(\mathbf{R}^{n}\right)$ module. We construct a basis of this module. See [6] (or [3]), for the similar problem with T (or T^{*}) instead of $T \otimes T^{*}$.

We deduce non-existence of canonical volume forms (simplectic, cosimplectic, contact structures) on some natural bundles, e.g. $T \otimes T^{*}$.

From now on $\pi: T M \otimes T^{*} M \rightarrow M$ is the bundle projection for every n-manifold M, x^{1}, \ldots, x^{n} are the usual coordinates on \mathbf{R}^{n} and $\partial_{i}=\frac{\partial}{\partial x^{i}}$ for $i=1, \ldots, n$.

[^0]All manifolds and maps are assumed to be of class C^{∞}.
I. The natural operators $\boldsymbol{T}^{*} \rightsquigarrow \boldsymbol{T}^{*}\left(\boldsymbol{T} \otimes \boldsymbol{T}^{*}\right)$. If $L: V \rightarrow V$ is an endomorphism of an n-dimensional vector space V then $a_{1}(L), \ldots, a_{n}(L)$ denote the coefficients of the characteristic polynomial

$$
W_{L}(\lambda)=\operatorname{det}\left(\lambda \operatorname{id}_{V}-L\right)=\lambda^{n}+a_{1}(L) \lambda^{n-1}+\ldots+a_{n-1}(L) \lambda+a_{n}(L) .
$$

1. Example. For every n-manifold M we have $a_{1}, \ldots, a_{n}: T M \otimes T^{*} M \rightarrow$ $\mathbf{R}\left(\right.$ as $\left.T_{x} M \otimes T_{x}^{*} M=\operatorname{End}\left(T_{x} M\right)\right)$ and $d a_{1}, \ldots, d a_{n} \in \Omega^{1}\left(T M \otimes T^{*} M\right)$. $d a_{1}, \ldots, d a_{n}: T^{*} \rightsquigarrow T^{*}\left(T \otimes T^{*}\right)$ are constant natural operators over n manifolds.
2. Example. For every n-manifold $M, \omega \in \Omega^{1}(M)$ and $i=1, \ldots, n$ let $B^{(i)}(\omega) \in \Omega^{1}\left(T M \otimes T^{*} M\right), B^{(i)}(\omega)_{\tau}=\omega_{x} \circ \tau^{n-i} \circ T_{\tau} \pi, \tau \in T_{x} M \otimes T_{x}^{*} M$, $x \in M, \tau^{n-i}=\tau \circ \ldots \circ \tau(n-i)$-times. $B^{(1)}, \ldots, B^{(n)}: T^{*} \rightsquigarrow T^{*}\left(T \otimes T^{*}\right)$ are nat. operators over n-manifolds.

The set of natural operators $T^{*} \rightsquigarrow T^{*}\left(T \otimes T^{*}\right)$ over n-manifolds is a $C^{\infty}\left(\mathbf{R}^{n}\right)$-module: $(f B)(\omega)=f\left(\left(a_{i}\right)_{i=1}^{n}\right) B(\omega), B: T^{*} \rightsquigarrow T^{*}\left(T \otimes T^{*}\right), \omega \in$ $\Omega^{1}(M), f \in C^{\infty}\left(\mathbf{R}^{n}\right)$.
3. Theorem. The operators $d a_{i}$ and $B^{(i)}$ for $i=1, \ldots, n$ form a basis of the $C^{\infty}\left(\mathbf{R}^{n}\right)$-module of natural operators $T^{*} \rightsquigarrow T^{*}\left(T \otimes T^{*}\right)$ over n-manifolds.

Proof. Let $B: T^{*} \rightsquigarrow T^{*}\left(T \otimes T^{*}\right)$ be a natural operator over n-manifolds. We have to show that B is the linear combination of the operators $d a_{i}$ and $B^{(i)}$ for $i=1, \ldots, n$ with uniquely determined coefficients from $C^{\infty}\left(\mathbf{R}^{n}\right)$.
4. Lemma. $B(\omega)=B(0)$ on $V\left(T M \otimes T^{*} M\right)$ for $\omega \in \Omega^{1}(M)$.

Proof. Let $v \in V_{\tau}\left(T \mathbf{R}^{n} \otimes T^{*} \mathbf{R}^{n}\right), \tau \in T_{0} \mathbf{R}^{n} \otimes T_{0}^{*} \mathbf{R}^{n}, \omega \in \Omega^{1}\left(\mathbf{R}^{n}\right)$. Since $t \mathrm{id}_{\mathbf{R}^{n}}$ for $t \neq 0$ preserve $v, B\left(\left(t \operatorname{id}_{\mathbf{R}^{n}}\right)^{*} \omega\right)_{\tau}(v)=B(\omega)_{\tau}(v)$. If $t \rightarrow 0$, $B(\omega)_{\tau}(v)=B(0)_{\tau}(v)$.
5. Lemma. There exist the maps $f_{i} \in C^{\infty}\left(\mathbf{R}^{n}\right)$ such that $B(\omega)_{\tau}\left(\left(v^{o}\right)_{\tau}^{C}\right)=$ $\sum_{i=1}^{n} f_{i}\left(a_{1}(\tau), \ldots, a_{n}(\tau)\right) \omega_{0}\left(\tau^{n-i}(v)\right)$ for $\tau \in T_{0} \mathbf{R}^{n} \otimes T_{0}^{*} \mathbf{R}^{n}, \omega \in \Omega^{1}\left(\mathbf{R}^{n}\right)$, $v \in T_{0} \mathbf{R}^{n}$, where v^{o} is the constant vector field on \mathbf{R}^{n} with $v_{0}^{o}=v$ and $\left(v^{o}\right)^{C}$ its complete lifting.

Proof. Consider $\tau \in T_{0} \mathbf{R}^{n} \otimes T_{0}^{*} \mathbf{R}^{n}$. Given $\omega \in \Omega\left(\mathbf{R}^{n}\right)$, by [5], $B(\omega)_{\tau}$ depends only on $j_{0}^{r} \omega$ for some finite $r=r(\tau)$. Define $\bar{B}_{\tau}:\left(J_{0}^{r} T^{*} \mathbf{R}^{n}\right) \times$ $T_{0} \mathbf{R}^{n} \rightarrow \mathbf{R}, \bar{B}_{\tau}\left(j_{0}^{r} \omega, v\right)=B(\omega)_{\tau}\left(\left(v^{o}\right)_{\tau}^{C}\right), \omega \in \Omega^{1}\left(\mathbf{R}^{n}\right), v \in T_{0} \mathbf{R}^{n}$. By the invariance of B with respect to $t \mathrm{id}_{\mathbf{R}^{n}}$ for $t \in \mathbf{R}_{+}$and the homogeneous function theorem, [5], \bar{B}_{τ} depends linearly on $\left(\omega_{0}, v\right)$.

So, we can define $\tilde{B}: T_{0} \mathbf{R}^{n} \otimes T_{0}^{*} \mathbf{R}^{n} \rightarrow T_{0} \mathbf{R}^{n} \otimes T_{0}^{*} \mathbf{R}^{n}, \tilde{B}(\tau)\left(\omega_{0}, v\right)=$ $B(\omega)_{\tau}\left(\left(v^{o}\right)_{\tau}^{C}\right), \omega \in \Omega^{1}\left(\mathbf{R}^{n}\right), v \in T_{0} \mathbf{R}^{n}$. By the $G L\left(\mathbf{R}^{n}\right)$-invariance of B, \tilde{B} is $G L\left(\mathbf{R}^{n}\right)$-equivariant. Then, by Proposition 2.2 in [1], there exist the $\operatorname{maps} f_{i} \in C^{\infty}\left(\mathbf{R}^{n}\right)$ with $\tilde{B}(\tau)=\sum_{i=1}^{n} f_{i}\left(a_{1}(\tau), \ldots, a_{n}(\tau)\right) \tau^{n-i}$ for $\tau \in$ $T_{0} \mathbf{R}^{n} \otimes T_{0}^{*} \mathbf{R}^{n}$.

Replacing B by $B-\sum_{i=1}^{n} f_{i} B^{(i)}$, we can assume that B is constant.
6. Lemma. There exist the maps $g_{i} \in C^{\infty}\left(\mathbf{R}^{n}\right)$ with $B=\sum_{i=1}^{n} g_{i} d a_{i}$.

Proof. Since B is constant, we can define new natural operator B^{o} : $T \otimes T^{*} \rightsquigarrow T^{*}$ such that $B^{o}(\tau)=\tau^{*} B$ for any tensor field τ on an n-manifold M.

By Theorem 2.2 in [2], there exist the maps $g_{i j} \in C^{\infty}\left(\mathbf{R}^{n}\right)$ for $i, j=$ $1, \ldots, n$ such that $B^{o}(\tau)=\sum_{i, j=1}^{n} g_{i j}\left(a_{1}(\tau), \ldots, a_{n}(\tau)\right) d\left(a_{i}(\tau)\right) \circ \tau^{n-j}$ for any τ as above.

Since the correspondence $B \rightarrow B^{o}$ is injective, it remains to verify that $g_{i j}=0$ for $i=1, \ldots, n$ and $j=1, \ldots, n-1$. We can assume $n \geq 2$.

Consider $i_{o}=1, \ldots, n$ and $j_{o}=1, \ldots, n-1$ and $b=\left(b_{1}, \ldots, b_{n}\right) \in \mathbf{R}^{n}$. Let $A \in \operatorname{gl}(n)$ be such that $A e_{i}=e_{i+1}$ for $i=1, \ldots, n-1$ and $A e_{n}=$ $-b_{n} e_{1}-\ldots-b_{1} e_{n}$.

Let τ be the tensor field on \mathbf{R}^{n} of type $(1,1)$ such that $\tau_{x} \in \operatorname{End}\left(T_{x} \mathbf{R}^{n}\right)$ has matrix A with respect to $\partial_{1 \mid x}, \ldots, \partial_{n \mid x}$ for $x \in \mathbf{R}^{n}$. Then $a_{i}(\tau)=b_{i}$, $i=1, \ldots, n$.

Let η be the tensor field on \mathbf{R}^{n} of type $(1,1)$ such that η_{x} has matrix $A-x^{n-j_{o}+1} E_{n-i_{o}+1, n}$ for any $x=\left(x^{1}, \ldots, x^{n}\right) \in \mathbf{R}^{n}$, where $E_{k, l} \in \operatorname{gl}(n)$ has 1 in the (k, l) position and 0 in other positions. Then $a_{i}(\eta)=b_{i}+\delta_{i_{o}}^{i} x^{n-j_{o}+1}$ for $i=1, \ldots, n$.

Clearly $T \eta\left(\partial_{1 \mid 0}\right)=T \tau\left(\partial_{1 \mid 0}\right)$ and $d\left(a_{i}(\tau)\right)=d b_{i}=0$ for $i=1, \ldots, n$. Then $B^{o}(\eta)_{0}\left(\partial_{1 \mid 0}\right)=B^{o}(\tau)_{0}\left(\partial_{1 \mid 0}\right)=0$. Then, since $\left(\eta_{0}\right)^{n-j}\left(\partial_{1 \mid 0}\right)=\partial_{n-j+1 \mid 0}$ for $j=1, \ldots, n, \sum_{i, j=1}^{n} g_{i j}(b) d\left(a_{i}(\eta)\right)\left(\partial_{n-j+1 \mid 0}\right)=0$. Since $\frac{\partial}{\partial x^{n-j+1}}\left(a_{i}(\eta)\right)=$ $\delta_{i_{o}}^{i} \delta_{n-j_{o}+1}^{n-j+1}, g_{i_{o} j_{o}}(b)=0$.

The proof of Theorem 3 is complete.
7. Corollary. The operators $B^{(i)}$ (or $\left.d a_{i}\right)$ for $i=1, \ldots, n$ form a basis of the $C^{\infty}\left(\mathbf{R}^{n}\right)$-module of linear natural operators $T^{*} \rightsquigarrow T^{*}\left(T \otimes T^{*}\right)$ (or canonical 1 -forms on $T \otimes T^{*}$) over n-manifolds.
8. Remark. If $n \geq 2$, there are non-zero canonical 2-forms on $T \otimes T^{*}$ (for example, $d a_{i} \wedge d a_{j}$ for $\left.1 \leq i<j \leq n\right)$ but there are no canonical simplectic structures because there are no canonical volume forms, see Proposition 10 (c).

II. Non-existence of canonical volume forms on some natural bundles.

9. Lemma. Let F be a natural bundle over n-manifolds. Suppose there is $v_{o} \in F_{0} \mathbf{R}^{n}$ with $F\left(t \operatorname{id}_{\mathbf{R}^{n}}\right)\left(v_{o}\right)=v_{o}$ for all $t \in \mathbf{R}$ and there are a basis u_{1}, \ldots, u_{k} of $V_{v_{o}} F \mathbf{R}^{n}$ and $a_{1}, \ldots, a_{k} \in \mathbf{R}$ with $T F\left(t \mathrm{id}_{\mathbf{R}^{n}}\right)\left(u_{j}\right)=t^{a_{j}} u_{j}$ for $j=1, \ldots, k$ and $t \in \mathbf{R}_{+}$. Suppose also that there is a canonical volume form Ω on F. Then $n+\sum_{j=1}^{k} a_{j}=0$.
Proof. Using basis $\partial_{1}^{C}{ }_{\mid v_{o}}, \ldots, \partial_{n \mid v_{o}}^{C}, u_{1}, \ldots, u_{k}$ of $T_{v_{o}} F \mathbf{R}^{n}$ we see that $t \operatorname{id}_{\mathbf{R}^{n}}$ maps $\Omega_{v_{o}}$ into $t^{-\left(n+\sum_{j=1}^{k} a_{j}\right)} \Omega_{v_{o}}$. On the other hand, $t \operatorname{id}_{\mathbf{R}^{n}}$ preserves $\Omega_{v_{o}}$ and $\Omega_{v_{o}} \neq 0$.
10. Proposition. There are no canonical volume forms on:
(a) $\left(F_{\mid \mathcal{M} f_{n}}\right)^{*}$ for every bundle functor $F: \mathcal{M} f \rightarrow \mathcal{V} \mathcal{B}$ with $\operatorname{dim}\left(F_{0} \mathbf{R}^{n}\right)-$ $\operatorname{dim}\left(F \mathbf{R}^{0}\right) \geq n+1$ (in particular, on $T_{p}^{r *}=J^{r}\left(., \mathbf{R}^{p}\right)_{0}$ for $p, r \in \mathbf{N}$ with $(p, r) \neq(1,1)$, on $J^{r} T^{*}$ for $r \in \mathbf{N}$ and on $\Lambda^{p} T^{*}$ for $n \geq 4$ and $p=2, \ldots, n-2)$;
(b) $\Lambda^{n-1} T^{*}$ for $n \geq 3$;
(c) $\otimes^{p} T \otimes \otimes^{q} T^{*}$ for $p, q \in \mathbf{N} \cup\{0\}$ with $(p, q) \neq(0,1)$ if $n \geq 2$ and $(p, q) \neq(p, p+1)$ if $n=1$;
(d) $\otimes^{p}\left(\Lambda^{n} T^{*}\right)$ for $p \geq 2$.

Proof. ad (a) Put $v_{o}=0 \in\left(F_{0} \mathbf{R}^{n}\right)^{*}$. There are a basis u_{1}, \ldots, u_{k} of $V_{v_{o}}\left(F \mathbf{R}^{n}\right)^{*}$ and $a_{1}, \ldots, a_{k} \in\{0,-1, \ldots\}$ with $T\left((F)^{*}\left(t \mathrm{id}_{\mathbf{R}^{n}}\right)\right)\left(u_{j}\right)=t^{a_{j}} u_{j}$ for $j=1, \ldots, k$ and $t>0$, [4]. We see $\operatorname{card}\left\{j \mid a_{j}=0\right\}=\operatorname{dim}\left(F \mathbf{R}^{0}\right)$. So, $n+\sum_{j=1}^{k} a_{j}<0$. Apply Lemma 9.
ad (b)—(d) Consider $v_{o}=0$ over $0 \in \mathbf{R}^{n}$ and the obvious bases u_{1}, \ldots, u_{k} of $F_{0} \mathbf{R}^{n} \cong V_{v_{o}} F \mathbf{R}^{n}$ for $F=\otimes^{p} T \otimes \otimes^{q} T^{*}, \Lambda^{n-1} T^{*}, \otimes^{p}\left(\Lambda^{n} T^{*}\right)$. Find a_{1}, \ldots, a_{k} with $F\left(t \operatorname{id}_{\mathbf{R}^{n}}\right)\left(u_{j}\right)=t^{a_{j}} u_{j}$ for $j=1, \ldots, k$ and $t \in \mathbf{R}_{+}$and apply Lemma 9.
11. Remark. (a) There is the well-known simplectic structure (and the volume form) on T^{*}. If $(p, r)=(1,1), T_{p}^{r *} \tilde{=} T^{*}$. If $n=1, \otimes^{p} T \otimes \otimes^{p+1} T^{*} \tilde{=} T^{*}$ by a contraction.
(b) We have a volume form $d \Theta$ on $\Lambda^{n} T^{*}, \Theta_{\omega}\left(v_{1}, \ldots, v_{n}\right)=\omega\left(T \pi\left(v_{1}\right), \ldots\right.$, $\left.T \pi\left(v_{n}\right)\right), v_{1}, \ldots, v_{n} \in T_{\omega} \Lambda^{n} T^{*} M, \omega \in \Lambda^{n} T_{x}^{*} M, x \in M$.
(c) If $F: \mathcal{M} f \rightarrow \mathcal{V} \mathcal{B}$ is a bundle functor with $\operatorname{dim}\left(F_{0} \mathbf{R}^{n}\right)-\operatorname{dim}\left(F \mathbf{R}^{0}\right)=n$ $(<n)$, then a volume form on $\left(F_{\mid \mathcal{M} f_{n}}\right)^{*}$ can exist or not, see (a) and $10(\mathrm{~b})$ ((b) and 10(d)).

References

[1] Debecki, J., Natural transformations of affinors into functions and affinors, Suppl Rend. Circolo Mat. Palermo 30(II) (1993), 101-112.
[2] , Natural transformations of affinors into linear forms, Suppl. Rend. Circolo Mat. Palermo 32(II) (1993), 49-59.
[3] Doupovec, M., J. Kurek, Lifting of tensor fields to the cotangent bundle, Proc Conf. Differential Geom. and Appl., Brno, 1995, pp. 141-150.
[4] Epstein, D.B.A., Natural vector bundles, Category theory, Homology theory and their applications III, Lecture Notes in Mathematics, vol. 99, Springer Verlag, 1969, pp. 171-195.
[5] Kolář, I., P.W. Michor and J. Slovák, Natural Operations in Differential Geometry, Springer Verlag, Berlin, 1993.
[6] Mikulski, W.M., The natural operators lifting 1-forms on manifolds to the bundles of A-velocities, Mh. Math. 119 (1995), 63-77.

Institute of Mathematics received December 15, 2000
Jagiellonian University
Reymonta 4, 30-059 Kraków, Poland
e-mail: mikulski@im.uj.edu.pl

[^0]: 1991 Mathematics Subject Classification. 58A20, 53A55.
 Key words and phrases. Natural bundles, natural operators.

