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Subordination chains

and univalence of holomorphic mappings

on bounded balanced pseudoconvex domains

Abstract. Let Ω be a bounded balanced pseudoconvex domain with C1

plurisubharmonic defining functions in Cn. We introduce a subclass of

univalent mappings on Ω, called the class of mappings which have the para-

metric representation and we study several properties of these mappings,
concerning the growth, covering and distortion results. We give some con-

sequences, examples and conjectures.

1. Introduction. Let Cn be the space of n complex variables z =
(z1,. . ., zn)′ with the Euclidean inner product 〈z, w〉 =

∑n
j=1 zjwj and the

norm ‖z‖ = 〈z, z〉1/2, z ∈ Cn. The symbol ′ means the transpose of vectors
and matrices. The origin (0, 0, . . . , 0)′ is denoted by 0 and by L(Cn,Cm) we
denote the space of all continuous, linear operators from Cn into Cm with
the standard operator norm. By I we denote the identity in L(Cn,Cn).
Let H(G) be the set of holomorphic mappings from a domain G ⊂ Cn into
Cn.
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A mapping f ∈ H(G) is said to be locally biholomorphic on G if its
Fréchet derivative

Df(z) =
[
∂fj(z)
∂zk

]
1≤j,k≤n

as an element of L(Cn,Cn) is nonsingular at each point z ∈ G. If f ∈ H(G),
we say that f is biholomorphic on G if the inverse f−1 exists, is holomorphic
on a domain Ω and f−1(Ω) = G.

Let D be a balanced pseudoconvex domain in Cn. The Minkowski func-
tion h of D is defined as follows

h(z) = inf
{

t > 0 :
z

t
∈ D

}
.

Then D = {z ∈ Cn : h(z) < 1}. The set {z ∈ Cn : h(z) < r} is denoted
by Dr for 0 < r ≤ 1. A mapping v ∈ H(D) is called a Schwarz mapping if
h(v(z)) ≤ h(z) for all z ∈ D.

If f, g ∈ H(D), we say that f is subordinate to g (f ≺ g) if there exists
a Schwarz mapping v ∈ H(D) such that f(z) = g(v(z)), for all z ∈ D.

Let {f(z, t)}t≥0 be a family of mappings such that ft(z) = f(z, t) ∈ H(D)
and ft(0) = 0 for each t ≥ 0. We call {f(z, t)} a subordination chain if
f(z, s) ≺ f(z, t) for all z ∈ D and 0 ≤ s ≤ t. Moreover, f(z, t) is called
univalent if f(·, t) is univalent on D for each t ≥ 0.

Let Ω be a domain in Cn. We say that Ω has Ck (k ≥ 1) plurisub-
harmonic defining functions, if for any ζ ∈ ∂Ω, there exist a neighbor-
hood V of ζ in Cn and a Ck plurisubharmonic function r on V such that
Ω ∩ V = {z ∈ V : r(z) < 0}. Then Ω is pseudoconvex. For example, a
bounded pseudoconvex Reinhardt domain with Ck-boundary (k ≥ 2) has
Ck plurisubharmonic defining functions ([2, Lemma 2]) and the complex
ellipsoids

B(p1, . . . , pn) =

z ∈ Cn :
n∑

j=1

|zj |pj < 1

 ,

with p1, . . . , pn > 1, have C1 plurisubharmonic defining functions.
From now on, let Ω be a bounded balanced pseudoconvex domain in Cn

with C1 plurisubharmonic defining functions and let h be the Minkowski
function of Ω.

Then we have the following proposition.

Proposition 1.1 ([5]). Let h be the Minkowski function of Ω, where Ω is
a bounded balanced pseudoconvex domain in Cn with C1 plurisubharmonic
defining functions. Then h is C1 on Cn \ {0} and continuous on Cn. Also,
h(z) = 0 iff z = 0 and Ωr = {z ∈ Ω : h(z) ≤ r} for any r, 0 < r < 1.

By using the method of subordination chains, we will introduce a proper
subclass of S(Ω), where S(Ω) denotes the class of biholomorphic mappings
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on Ω, normalized by f(0) = 0 and Df(0) = I, for f ∈ S(Ω), and we will
investigate several properties of this class. A similar problem was recently
solved by the second author on the unit Euclidean ball of Cn (see [12]) and
by T. Poreda on the unit polydisc of Cn (see [17], [18]).

Let

M =
{

g ∈ H(Ω) : g(0) = 0, Dg(0) = I, Re
〈

g(z),
∂h2

∂z
(z)
〉

> 0,

z ∈ Ω \ {0}
}

,

where
∂h2

∂z
=
(

∂h2

∂z1
, . . . ,

∂h2

∂zn

)′
.

Then we have the following proposition.

Proposition 1.2 ([6]). Let gt(z) = g(z, t) : Ω× [0,∞) → Cn such that
(i) for each t ≥ 0, gt(z) ∈M;
(ii) for each z ∈ Ω, g(z, t) is a measurable function of t on [0,∞);
(iii) for each T > 0 and r ∈ (0, 1), there exists a constant K(r, T ) such

that ‖g(z, t)‖ ≤ K(r, T ), for z ∈ Ωr and t ∈ [0, T ].
Then, for each s ≥ 0 and z ∈ Ω, there exists a unique locally absolutely
continuous solution vs,t(z) = v(z, s, t) of the initial problem

(1.1)
∂v

∂t
= −g(v, t) a.e. t ≥ s, v(z, s, s) = z.

Furthermore, vs,t(z) is a univalent Schwarz mapping on Ω, is a locally ab-
solutely continuous function of t locally uniformly with respect to z ∈ Ω and
Dvs,t(0) = es−tI, for each s and t with 0 ≤ s ≤ t.

Under the assumption of Proposition 1.2 the following proposition holds.

Proposition 1.3 ([6]). Let g(z, t) satisfy the assumptions of Proposition
1.2, and let v(z, s, t) be the locally absolutely continuous solution of the initial
value problem (1.1). Then

(1.2)
eth(v(z, s, t))

(1− h(v(z, s, t)))2
≤ es h(z)

(1− h(z))2

and

(1.3)
esh(z)

(1 + h(z))2
≤ eth(v(z, s, t))

(1 + h(v(z, s, t)))2

hold for all z ∈ Ω and 0 ≤ s ≤ t.
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2. Main results. We begin this section with the following lemma.

Lemma 2.1. Let g(z, t) satisfy the assumptions of Proposition 1.2. Then
there exists the limit limt→∞ etv(z, s, t) = f(z, s), locally uniformly in Ω as t
increases to ∞ through a suitable sequence {tm}, for s ≥ 0 fixed, where v =
v(z, s, t) is the solution of the equation (1.1). Moreover, f(·, s) is univalent
on Ω and Df(0, s) = esI.

Proof. Fix s ≥ 0 and consider ϕ(z, t) = etv(z, s, t). By (1.2), we have

h(ϕ(z, t)) ≤ es h(z)
(1− h(z))2

, z ∈ Ω, t ≥ s.

Since Ω = {z ∈ Cn : h(z) < 1} is a bounded set with respect to h, it
is also bounded with respect to the Euclidean distance, hence {ϕ(z, t)}t≥s

forms a normal family on Ω. Thus, there exists a sequence {tm}, tm → ∞
such that lim

m→∞
ϕ(z, tm) = f(z, s) locally uniformly on Ω, where f(z, s) is

a holomorphic mapping on Ω. Since ϕ(z, tm) is univalent on Ω for each
tm ≥ s, by taking into account Proposition 1.2, Dϕ(0, tm) = esI, the map-
ping f(z, s) cannot have the Jacobian identically zero. Therefore, f(z, s) is
univalent on Ω and also, Df(0, s) = esI. This completes the proof. �

Taking into account the result of Lemma 2.1 we can introduce the fol-
lowing definition.

Definition 2.2. Let f : Ω → Cn. We say that f ∈ S0(Ω) if there exists
a mapping g(z, t) : Ω × [0,∞) → Cn which satisfies the assumptions of
Proposition 1.2, such that limt→∞ etv(z, t) = f(z), locally uniformly on Ω,
through a suitable sequence {tm}, tm > 0, tm →∞, where v = v(z, ·) is the
solution of the equation

∂v

∂t
= −g(v, t), a.e. t ≥ 0, v(z, 0) = z,

such that for each z ∈ Ω, v(z, ·) is a locally absolutely continuous function
on [0,∞), locally uniformly with respect to z.

The class S0(Ω) is called the class of mappings which have the parametric
representation. This class was studied by T. Poreda when Ω is the unit
polydisc of Cn with the maximum norm (see [17], [18]) and by the second
author when Ω is the unit Euclidean ball of Cn (see [12]). Clearly, S0(Ω) ⊆
S(Ω).

Taking into account Theorems 6.1 and 6.3 [16] for n = 1, we have the
following well known result:

S0(U) = S(U),
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where U denotes the unit disc in C. It is natural to ask if an analogous
result holds in several complex variables. Poreda and Kohr showed that the
answer is negative on the unit polydisc and the unit Euclidean ball of Cn,
n ≥ 2 ([17], [18], [12]), thus we expect to have a negative answer on Ω.

Before giving the main result of this paper, we give the following result
that provides an example of a mapping from S0(Ω).

Lemma 2.3 ([6]). Let f(z, t) : Ω×[0,∞) → Cn such that ft(z) = f(z, t) ∈
H(Ω), Dft(0) = etI and assume f(z, t) is a locally absolutely continuous
function of t ∈ [0,∞) locally uniformly with respect to z ∈ Ω. Let g(z, t) be
as in Proposition 1.2. Suppose that f(z, t) satisfies the following differential
equation

∂

∂t
f(z, t) = Df(z, t)g(z, t), a.e. t ≥ 0, z ∈ Ω.

Moreover, suppose that there exists a sequence {tm} such that tm → ∞
and

lim
m→∞

e−tmf(z, tm) = F (z)

locally uniformly in Ω. Then {f(z, t)} is a univalent subordination chain
and the limit limt→∞ etv(z, s, t) = f(z, s), exists locally uniformly on Ω, as
t increases to ∞ through a suitable subsequence of {tm} with s ≥ 0 fixed,
where v = v(z, s, t) is the solution of the initial value problem (1.1). Thus,
f ∈ S0(Ω), where f(z) = f(z, 0), z ∈ Ω.

Theorem 2.4. If f ∈ S0(Ω), then

h(z)
(1 + h(z))2

≤ h(f(z)) ≤ h(z)
(1− h(z))2

, z ∈ Ω.

Consequently, f(Ω) ⊃ 1
4Ω.

Proof. If f ∈ S0(Ω), there exist a mapping g = g(z, t) : Ω × [0,∞) → Cn

satisfying the conditions of Proposition 1.2 and a sequence {tm}, tm > 0,
increasing to ∞ such that f(z) = limm→∞ etmv(z, tm) locally uniformly on
Ω, where v = v(z, t) is the solution of the equation

∂v

∂t
= −g(v, t), a.e. t ≥ 0, v(z, 0) = z.

From Proposition 1.3 we deduce the following inequalities

eth(v(z, t))
(1− h(v(z, t)))2

≤ h(z)
(1− h(z))2
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and
eth(v(z, t))

(1 + h(v(z, t)))2
≥ h(z)

(1 + h(z))2
,

for z ∈ Ω and t ≥ 0. Since lim
m→∞

h(etmv(z, tm)) = h(f(z)) < ∞ for z ∈ Ω,

lim
m→∞

h(v(z, tm)) = lim
m→∞

e−tmh(etmv(z, tm)) = 0. Substituting t = tm into
the above inequalities and letting m →∞, we have

h(z)
(1 + h(z))2

≤ h(f(z)) ≤ h(z)
(1− h(z))2

. �

Remark 2.5. Let f : Ω → Cn be a starlike mapping, normalized by
f(0) = 0, Df(0) = I. Then, as in [5] we can show that f(z, t) = etf(z) is a
univalent subordination chain that satisfies the assumptions of Lemma 2.3,
where g(z, t) = [Df(z)]−1f(z), z ∈ Ω, t ≥ 0. Therefore f ∈ S0(Ω).

Next, we recall the notion of spirallikeness, due to Gurganus [4], Suffridge
[22] and the authors [9]. Let A ∈ L(Cn,Cn) be such that m(A) > 0, where

m(A) = min
{

Re
〈

A(z),
∂h2

∂z
(z)
〉

: z ∈ ∂Ω
}

.

Also, let f ∈ H(Ω) be normalized by f(0) = 0 and Df(0) = I. We say that
f is spirallike relative to A, if f is univalent on Ω and f(Ω) is a spirallike
domain relative to A, i.e.

e−sAf(Ω) ⊂ f(Ω), s ≥ 0,

where e−sA =
∑∞

k=1
(−1)k

k! skAk.
Gurganus [4] gave a characterization of spirallikeness for locally biholo-

morphic mappings on the unit Euclidean ball B and Suffridge [22] extended
the result to locally biholomorphic mappings on the unit ball of a Banach
space. They showed that if f is locally biholomorphic on B, normalized by
f(0) = 0 and Df(0) = I, then f is spirallike relative to A ∈ L(Cn,Cn),
with m(A) > 0, if and only if

Re
〈
[Df(z)]−1Af(z), z

〉
> 0, z ∈ B \ {0}.

The authors [9] extended the above result to bounded balanced pseudo-
convex domains Ω with C1 plurisubharmonic defining functions. Namely,
if f is locally biholomorphic on Ω, normalized by f(0) = 0 and Df(0) = I,
then f is spirallike relative to A ∈ L(Cn,Cn), with m(A) > 0, if and only
if

Re
〈

[Df(z)]−1Af(z),
∂h2

∂z
(z)
〉

> 0, z ∈ Ω \ {0}.
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Now, let f : Ω → Cn be locally biholomorphic on Ω, normalized by
f(0) = 0, Df(0) = I. Let α ∈ R with |α| < π/2. We say that f is spirallike
of type α if

Re
〈

e−iα[Df(z)]−1f(z),
∂h2

∂z
(z)
〉

> 0,

for z ∈ Ω \ {0} (see for details [7], [8]).
Clearly, spirallike mappings of type α, α ∈ R, |α| < π/2, are also, spiral-

like relative to A = e−iαI.
Recently the authors showed that if f is locally biholomorphic on Ω

and normalized, then f is spirallike of type α iff {f(z, t)} is a univalent
subordination chain, where f(z, t) = e(1−ia)tf(eiatz), and a = tanα (see
[7], [8]).

This chain satisfies the assumptions of Lemma 2.3, where

g(z, t) = iaz + (1− ia)e−iat[Df(eiatz)]−1f(eiatz).

Thus f ∈ S0(Ω).
Therefore, we conclude that both spirallike mappings of type α, with

|α| < π/2, and starlike mappings, normalized, satisfy the growth and 1
4 -

theorem, given in Theorem 2.4 (see also [8]).
Next, we will show that, contrary to the case of spirallike mappings of

type α, with α ∈ R, |α| < π/2, in general a spirallike mapping relative to a
fixed linear operator , does not have parametric representation in Cn, with
n ≥ 2. To this end, let A ∈ L(C2,C2), given by A(z1, z2) = (2z1, z2)′, for
all (z1, z2)′ ∈ C2. Also, let f(z1, z2) = (z1 + az2

2 , z2)′, (z1, z2)′ ∈ B, where
a ∈ C. Then m(A) > 0 and f is spirallike relative to A, for all a ∈ C.

Now, let a ∈ R, a > 2
√

15 and z0 =
(
0, 1

2

)′
. Then ‖f(z0)‖ > 2 =

‖z0‖/(1− ‖z0‖)2 and taking into account the result of Theorem 2.4, we
deduce that f 6∈ S0(B).

It is interesting to note that if we consider the complex ellipsoid
B(p1, . . . , pn), where p1, . . . , pn > 1, and if f : B(p1, . . . , pn) → Cn, where
f(z) = (f1(z1), . . . , f(zn))′, for z = (z1, . . . , zn)′ ∈ B(p1, . . . , zn), then it is
not difficult to show that f ∈ S0(B(p1, . . . , pn)) if and only if fj ∈ S(U), for
all j ∈ {1, . . . , n}. This remark may provide many examples of mappings
which have parametric representation on B(p1, . . . , pn), with p1, . . . , pn > 1.

Now, we give the following estimate of coefficients of univalent mappings
in Ω which can be imbedded in subordination chains.

Theorem 2.6. Let f(z, s) : Ω× [0,∞) → Cn be a univalent subordination
chain which satisfies the assumptions of Lemma 2.3, where Ω is a bounded
balanced convex domain in Cn with C1 plurisubharmonic defining functions.
If h is the Minkowski function of Ω, then∣∣∣∣ 12!

〈
D2f(0)(z, z),

∂h2

∂z
(z)
〉∣∣∣∣ ≤ 2h3(z), z ∈ Ω \ {0},
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where f(z) = f(z, 0), z ∈ Ω.
In addition, if we denote by Dkf(0) the kth Fréchet derivative of f at

zero, then

h

(
1
k!

Dkf(0)(z, . . . , z)
)
≤
[
e(k + 1)

2

]2
,

for all z ∈ Cn with h(z) = 1 and k ≥ 2.

Proof. Since f(z, s) is a univalent subordination chain that satisfies the
assumptions of Lemma 2.3, there exists a sequence {tm}, increasing to ∞,
such that limm→∞ etmv(z, s, tm) = f(z, s) locally uniformly on Ω with s ≥ 0
fixed, where v is the solution of the equation

∂v

∂t
= −g(v, t), a.e. t ≥ s, v(z, s, s) = z.

Next, let z ∈ Ω \ {0} and t ≥ 0 fixed. Also, let pt : U → C,

pt(ζ) =

{
1
ζ

〈
g
(
ζ z

h(z) , t
)

, ∂h2

∂z

(
z

h(z)

)〉
, ζ 6= 0

1, ζ = 0.

Then pt ∈ H(U). Since gt(z) ∈M, Re pt(ζ) > 0 for ζ ∈ U . Hence

1− |ζ|
1 + |ζ|

≤ Re pt(ζ) ≤ 1 + |ζ|
1− |ζ|

on U . Substituting ζ = h(z), we obtain

(2.1) h2(z)
1− h(z)
1 + h(z)

≤ Re
〈

g(z, t),
∂h2

∂z
(z)
〉
≤ h2(z)

1 + h(z)
1− h(z)

.

Also, since Re pt(ζ) > 0 on U , we have |p′t(0)| ≤ 2. Since

p′t(0) = lim
ζ→0

p′t(ζ) =
1

2h3(z)

〈
D2g(0, t)(z, z),

∂h2

∂z
(z)
〉

,

(2.2)
∣∣∣∣ 12!

〈
D2g(0, t)(z, z),

∂h2

∂z
(z)
〉∣∣∣∣ ≤ 2h3(z).

On the other hand, by Lemma 2.3 f(z, t) satisfies the following differential
equation

∂

∂t
f(z, t) = Df(z, t)g(z, t), a.e. t ≥ 0, z ∈ Ω.
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Fix T > 0. Then we can write the above equality in the form

f(z, T )− f(z, 0) =
∫ T

0

Df(z, t)g(z, t)dt, z ∈ Ω.

Now, fix z ∈ Ω and let Gz(ζ) = f(ζz, T )− f(ζz, 0) and

Hz(ζ) =
∫ T

0

Df(ζz, t)g(ζz, t)dt,

for ζ ∈ U . Then, clearly Gz(ζ) = Hz(ζ), ζ ∈ U .
Considering the result of Lemma 2.3, by differentiation we deduce that

H ′′
z (0) =

∫ T

0

[2D2f(0, t)(z, z) + etD2g(0, t)(z, z)]dt,

hence, we get at once

D2f(0, T )(z, z)−D2f(0, 0)(z, z)

=
∫ T

0

[2D2f(0, t)(z, z) + etD2g(0, t)(z, z)]dt.

By simple transformations this equality is equivalent to the following

e−2T D2f(0, T )(z, z)−D2f(0, 0)(z, z) =
∫ T

0

e−tD2g(0, t)(z, z)dt,

hence,

(2.3)
e−2T

〈
D2f(0, T )(z, z),

∂h2

∂z
(z)
〉
−
〈

D2f(0, 0)(z, z),
∂h2

∂z
(z)
〉

=
∫ T

0

e−t

〈
D2g(0, t)(z, z),

∂h2

∂z
(z)
〉

dt.

As in the proof of Theorem 2.1 we can show that

(2.4) h(f(z, T )) ≤ eT h(z)
(1− h(z))2

.

It is well known that, due to convexity of Ω, h is a norm in Cn and Ω is
the unit ball of Cn with respect to h. By using the Cauchy formula

1
2!

D2f(0, T )(z, z) =
1

2πi

∫
|ζ|=r

f(ζz, T )
ζ3

dζ,
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for 0 < r < 1, and taking into account the relation (2.4), we easily obtain
limT→∞ h(e−2T D2f(0, T )(z, z)) = 0, hence at once, we get

(2.5) lim
T→∞

e−2T D2f(0, T )(z, z) = 0.

Next, making use of the relations (2.2), (2.3) and (2.5), we deduce that∣∣∣∣ 12!

〈
D2f(0, 0)(z, z),

∂h2

∂z
(z)
〉∣∣∣∣ ≤ 2h3(z).

Since f(z) = f(z, 0) for z ∈ Ω, considering the above inequality we
obtain the desired conclusion. This completes the proof of the first part of
our result.

Now, let z ∈ Cn, h(z) = 1 and k ≥ 2 be fixed. The last inequalities from
our result follow from the Cauchy formula

1
k!

Dkf(0)(z, . . . , z) =
1

2πi

∫
|ζ|=r

f(ζz)
ζk+1

dζ,

for all 0 < r < 1.
Since h is a norm on Cn, using the result of Theorem 2.4 we easily obtain

h

(
1
k!

Dkf(0)(z, . . . , z)
)
≤ 1

2π

∫ 2π

0

h(f(reiθz))
rk

dθ

≤ 1
rk−1(1− r)2

, 0 < r < 1.

On the other hand, since

min
0<r<1

1
rk−1(1− r)2

≤
[
e(k + 1)

2

]2
,

combining the above inequalities we obtain the desired relation

h

(
1
k!

Dkf(0)(z, . . . , z)
)
≤
[
e(k + 1)

2

]2
.

This ends the proof. �

Of a particular interest is the case of the complex ellipsoid B(p1, . . . , pn),
with p1, . . . , pn > 1. Then we can show that the results presented in Theo-
rems 2.4 and 2.6 are sharp.
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Corollary 2.7. If f ∈ S0(B(p1, . . . , pn)), with p1, . . . , pn > 1, then

h(z)
(1 + h(z))2

≤ h(f(z)) ≤ h(z)
(1− h(z))2

, z ∈ Ω,

where h is the Minkowski function of B(p1, . . . , pn). Furthermore, the result
is sharp.

We note that this result was recently obtained by Barnard-FitzGerald-
Gong [1] for starlike and normalized mappings on the unit Euclidean ball
and by Pfaltzgraff [14] on B(p) = B(p1, . . . , pn), with p1 = · · · = pn = p > 1.

Proof of Corollary 2.7. It suffices to show that the estimates are sharp.
To this end, let

f(z) =
(

z1

(1− z1)2
, . . . ,

zn

(1− zn)2

)′
, z = (z1, . . . , zn)′ ∈ B(p1, . . . , pn).

Then f is a normalized starlike mapping on B(p1, . . . , pn) and f(z, t) =
etf(z) is a univalent subordination chain that satisfies the assumptions of
Lemma 2.3 (see for details [6]). Thus, f ∈ S0(B(p)).

If z = (r, 0, . . . , 0)′, where r ∈ [0, 1), then h(z) = r and h(f(z)) =
r/(1− r)2 = h(z)/(1− h(z))2. Also, if z = (−r, 0, . . . , 0)′, where r ∈ [0, 1),
then h(f(z)) = r

(1+r)2 = h(z)
(1+h(z))2 . This completes the proof. �

Now, consider p1 = · · · = pn = p > 1 and denote B(p1, . . . , pn) by B(p).
In this case

h(z) = ‖z‖p =

 n∑
j=1

|zj |p
1/p

,

for z ∈ Cn, and we have the following

Corollary 2.8. If f(z, s) : B(p)×[0,∞) → Cn is a univalent subordination
chain that satisfies the assumptions of Lemma 2.3, then∣∣∣∣∣∣

n∑
j=1

uj(z)
|zj |p

zj

∣∣∣∣∣∣ ≤ 4‖z‖p+1
p ,

for z = (z1, . . . , zn)′ ∈ B(p) \ {0}, where u(z) = (u1(z), . . . , un(z))′ =
D2f(0)(z, z). This estimate is sharp.

Proof. We will show that the inequality is sharp. To this end, consider

f(z) =
(

z1

(1− z1)2
, . . . ,

zn

(1− zn)2

)′
,
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for z ∈ B(p). We have just seen that f ∈ S0(B(p)) and since

D2f(0)(z, ·) =

(
n∑

m=1

∂2fk

∂zj∂zm
(0)zm

)
1≤j,k≤n

,

after short computations we obtain D2f(0)(z, ·) = (ajk)1≤j,k≤n, where

ajk =
{

4zk, j = k

0, j 6= k.

Hence,
n∑

j=1

uj(z)
|zj |p

zj
= 4

n∑
j=1

|zj |pzj , z ∈ B(p) \ {0}.

Next, let z = (r, 0, . . . , 0)′, with r ∈ [0, 1). Then ‖z‖p = r and∣∣∣∣ n∑
j=1

uj(z)
|zj |p

zj

∣∣∣∣ = 4rp+1 = 4‖z‖p+1
p .

This ends the proof. �

Now, we come back to the result of Theorem 2.6. It is natural to ask if
the inequality

h

(
1
2!

D2f(0)(z, z)
)
≤ 2h2(z)

holds on Ω \ {0} for f satisfying the assumptions of Theorem 2.5. We give
a negative answer if Ω = B(p1, . . . , pn), where p1, . . . , pn > 1.

To this end, consider the following example, in the case of n = 2. We
note that this example was considered by T. J. Suffridge [22] and by K.
Roper and T.J. Suffridge [19] on the unit ball B(p), where p ≥ 1.

Example 2.9. Let f : B(p1, p2) → C2, p1 ≥ p2 > 1, and f(z) = (z1 +
az2

2 , z2)′, for z = (z1, z2)′ ∈ B(p1, p2) \ {0}, where

a ∈ C, |a| ≤ p2

p1

(
1 +

2p1

p2(p1 − 1)

) p1−1
p1
(

1 +
p2(p1 − 1)

2p1

) 2
p2

.

Then f ∈ H(B(p1, p2)), f(0) = 0, Df(0) = I, and by straightforward
calculations we deduce that detDf(z) = 1. Hence f is locally biholomorphic
on B(p1, p2).

On the other hand, [Df(z)]−1f(z) = (z1 − az2
2 , z2)′. In order to show

that f is starlike it suffices to prove that

Re
{

p1w1(z)
|z1|p1

z1hp1(z)
+ p2w2(z)

|z2|p2

z2hp2(z)

}
≥ 0,
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for all z = (z1, z2)′ ∈ B(p1, p2) \ {0}, where w(z) = [Df(z)]−1f(z), see
Theorem 3 [5].

Since h(ζz) = |ζ|h(z) for ζ ∈ C, z ∈ Cn, this condition is equivalent to

Re
{

p1w1(ζz̃)
|z̃1|p1

ζz̃1hp1(z̃)
+ p2w2(ζz̃)

|z̃2|p2

ζz̃2hp2(z̃)

}
≥ 0,

for all z̃ = (z̃1, z̃2)′ ∈ ∂B(p1, p2) and ζ ∈ U \ {0}. On the other hand,
applying the minimum principle to the harmonic function

Re
2∑

j=1

pjwj(ζz̃)
|z̃j |pj

ζz̃jhpj (z̃)
, ζ ∈ U,

we may assume that
2∑

j=1

|zj |pj = 1. Then we have,

Re
2∑

j=1

pjwj(z)
|zj |pj

zjhpj (z)
= p1

|z1|p1

hp1(z)
+ p2

|z2|p2

hp2(z)
− p1 Re

[
az2

2

|z1|p1

z1hp1(z)

]
≥ p2 − p1|a|(1− rp1)2/p2rp1−1,

where |z1| = r. By an elementary computation we can see that the function
g(r) = p2 − p1|a|(1− rp1)2/p2rp1−1 has the minimum value

p2 − p1|a|
(

p1 − 1
2p1/p2 + p1 − 1

)(p1−1)/p1
(

2p1/p2

2p1/p2 + p1 − 1

)2/p2

,

therefore, for

|a| ≤ p2

p1

(
1 +

2p1

p2(p1 − 1)

)(p1−1)/p1
(

1 +
p2(p1 − 1)

2p1

)2/p2

,

we deduce that f is starlike and consequently f ∈ S0(B(p1, p2)).
On the other hand, an easy computation shows that

D2f(0)(z, ·) = (ajk)1≤j,k≤2,

where

ajk =
{

2az2, j = 1, k = 2
0, otherwise,

hence D2f(0)(z, z) = (2az2
2 , 0)′.
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Now, let z = (0, r)′, where r ∈ (0, 1]. Then h(z) = r and

h

(
1
2!

D2f(0)(z, z)
)

= |a|r2 = |a|h2(z) > 2h2(z)

for |a| > 2.
Finally, we conclude that if p1 ≥ p2 > 1 and

2 < |a| ≤ p2

p1

(
1 +

2p1

p2(p1 − 1)

)(p1−1)/p1
(

1 +
p2(p1 − 1)

2p1

)2/p2

,

then

h

(
1
2!

D2f(0)(z, z)
)

> 2h2(z).

For example, let p1 = . . . = pn = p > 1. Then the above inequality
becomes

2 < |a| ≤ p + 1
p− 1

(
p2 − 1

4

)1/p

.

Now, consider the function g(x) = x+1
x−1

(
x2−1

4

)1/x

, for x > 1. Obviously g

is strictly increasing on (1,
√

5) and strictly decreasing on (
√

5,∞).
On the other hand, since limx→∞ g(x) = limx→1 g(x) = 1 and g(

√
5) =

(3 +
√

5)/2 > 2, there exists a unique x1 ∈ (
√

5,∞), such that g(x1) = 2.
Also, since g(2) = 3

√
3/2 > 2, there exists a unique x0 ∈ (1, 2), such that

g(x0) = 2. Thus, we conclude that g(x) > 2 for all x ∈ (x0, x1). Hence, if
we choose

|a| = p + 1
p− 1

(
p2 − 1

4

)1/p

,

where p ∈ (x0, x1), then |a| > 2 and∥∥∥∥1
2
D2f(0)(z, z)

∥∥∥∥
p

> 2‖z‖2p.

This ends the proof. �

We finish this section with an example of a mapping f ∈ S0(B(p)), with
p > 1, which cannot be imbedded in a univalent subordination chain that
satisfies the assumptions of Lemma 2.3, in the case n ≥ 2.

Example 2.10. Let f : B(p) → Cn, where p > 1 and let

f(z) = (z1 + az2
2 , z2 . . . , zn)′, z = (z1, . . . , zn)′ ∈ B(p),
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where a ∈ C, |a| > 22+1/p. Then, as in the proof of Example 2.9, we deduce
that f being biholomorphic on B(p), is normalized, hence f ∈ S(B(p)).

From Example 2.9, we deduce that∣∣∣∣ 12!

〈
D2f(0)(z, z),

∂h2

∂z
(z)
〉∣∣∣∣ = ‖z‖2−p

p · |a| · |z1|p−1|z2|2,

for z = (z1, . . . , zn)′ ∈ B(p) \ {0}.
For z = (r, r, 0, . . . , 0)′, where 0 < r < 1

21/p , we obtain∣∣∣∣ 12!

〈
D2f(0)(z, z),

∂h2

∂z
(z)
〉∣∣∣∣ = |a|

21+1/p
‖z‖3p > 2‖z‖3p,

for |a| > 22+1/p. Now, taking into account the result of Theorem 2.6, we
deduce that f cannot be imbedded in a univalent subordination chain f(z, t)
that satisfies the assumptions of Lemma 2.3.

Hence, for n ≥ 2 the class S(B(p)), p > 1, is essentially wider than the
class of those biholomorphic mappings on B(p), normalized, which can be
imbedded in univalent subordination chains and which satisfy the assump-
tions of Lemma 2.3.

Finally, we would like to point out that similar results as in this section
can be also obtained on the unit ball of Cn, with an arbitrary norm.

3. On some estimates of Jacobian determinant for mappings with
parametric representation on B(p1, ..., pn), where p1, ..., pn > 1.
The aim of this section is to investigate the Jacobian determinant for a
mapping from S0(B(p1, . . . , pn)) with p1, . . . , pn > 1. A similar problem
was recently studied by Pfaltzgraff and Suffridge for starlike mappings on
the unit Euclidean ball of Cn, see [15]. First, we give the following result
that is essential in this work and which provides a large number of examples
of mappings from S0(B(p1, . . . , pn)).

We remark that the results of Theorems 3.1, 3.3 and 3.5 remain true on
the unit ball of Cn with an arbitrary norm, but in this case we don’t know
whether our estimations remain sharp.

Theorem 3.1. For each j ∈ {1, . . . , n}, let fj ∈ S(U). If λj ≥ 0 and∑n
j=1 λj = 1, then F ∈ S0(B(p1, . . . , pn)), where p1, . . . , pn > 1 and

(3.1) F (z) = z

n∏
j=1

(
fj(zj)

zj

)λj

, z ∈ B(p1, . . . , pn).

Proof. Since fj ∈ S(U), by Theorem 6.3 [16] fj(ζ) = lim
t→∞

etvj(ζ, t) locally

uniformly on U , for each j ∈ {1, . . . , n}, where vj = vj(ζ, ·) is the solution
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of the equation

∂vj

∂t
(ζ, t) = −vj(ζ, t)pj(vj(ζ, t), t), a.e. t ≥ 0, vj(ζ, 0) = ζ.

This holds for all ζ ∈ U , where pj(·, t) ∈ H(U), pj(0, t) = 1 and Re pj(ζ, t) >
0 on U .

Now, let

V (z, t) = z

n∏
j=1

(vj(zj , t)/zj)
λj ,

for all z = (z1, . . . , zn)′ ∈ B(p1, . . . , pn). Then obviously

F (z) = lim
t→∞

etV (z, t)

locally uniformly on B(p1, . . . , pn). Also, V (z, 0) = z and after simple
computations we obtain

∂V

∂t
(z, t) = −V (z, t)

n∑
j=1

λjpj(v(zj , t), t), a.e. t ≥ 0,

for all z ∈ B(p1, . . . , pn).
Let g : B(p1, . . . , pn)×[0,∞) → Cn be given by g(z, t) = z

∑n
j=1 λjpj(zj , t),

for all z = (z1, . . . , zn)′ ∈ B(p1, . . . , pn) and t ≥ 0. Then it is easy to see
that g(0, t) = 0, Dg(0, t) = I and

Re〈g(z, t), z〉 = ‖z‖2
n∑

j=1

λj Re pj(zj , t) > 0,

for z ∈ B(p1, . . . , pn) \ {0}, and t ≥ 0.
On the other hand, using the above notations, we deduce that V (z, t)

satisfies the following equation

∂V

∂t
(z, t) = −g(V (z, t), t), a. e. t ≥ 0, V (z, 0) = z,

for all z ∈ B(p1, . . . , pn). It is clear that the mapping g satisfies the assump-
tions of Proposition 1.2, therefore we deduce that F ∈ S0(B(p1, . . . , pn)),
as the claimed conclusion. �

Remark 3.2. It is interesting to note that if in particular each function
fj is spirallike of type α, where α ∈ R and |α| < π/2, then the mapping
F is also spirallike of type α. To this end it suffices to see that fj(ζ, t) =
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e(1−ia)tfj(eiatζ) is a univalent subordination chain, where a = tanα. Also,
if we form the chain F (z, t) = e(1−ia)tF (eiatz), for z ∈ B(p1, . . . , pn) and
t ≥ 0, then it is not difficult to show that F (z, t) is a univalent subordination
chain, that means F is spirallike of type α.

Indeed,

F (z, s) = z
n∏

j=1

(
fj(zj , s)

zj

)λj

= lim
t→∞

etV (z, s, t),

locally uniformly on B(p1, . . . , pn), for each s ≥ 0, where V (z, s, t) =

z
∏n

j=1

(
vj(zj ,s,t)

zj

)λj

, and vj(ζ, s, t) is the unique solution of the following

differential equation
∂

∂t
vj(ζ, s, t) = −vj(ζ, s, t)pj(vj(ζ, s, t), s, t), a.e. t ≥ s, vj(ζ, s, s) = ζ,

for all ζ ∈ U, s ≥ 0 and j ∈ {1, . . . , n}. Next, it suffices to use the same
kind of arguments as in the proof of Theorem 3.1, in order to show that
V (z, s, t) satisfies the following differential equation

∂

∂t
V (z, s, t) = −g(V (z, s, t), s, t), a.e. t ≥ s, V (z, s, s) = z,

for all z ∈ B(p1, . . . , pn) and s ≥ 0, where g(z, t) = z
n∑

j=1

λjpj(zj , t). Finally,

as in the proof of Theorem 3.1, we deduce that g(·, t) ∈ M for each t ≥ 0
and g(z, t) satisfies the assumptions of Proposition 1.2. Hence, from Lemma
2.1, we deduce that F (z, s) is a univalent subordination chain, as desired
conclusion.

In particular, if f1, . . . , fn are starlike and normalized by fj(0) = f ′j(0)−
1 = 0, then F is starlike on B(p1, . . . , pn). This result was recently obtained
by Pfaltzgraff and Suffridge in the case of the unit Euclidean ball of Cn, see
[15]. Their proof is based on the well known analytic property of starlike
mappings on the unit ball, e.g. Re〈[Df(z)]−1f(z), z〉 > 0 on B \ {0}.

Now, we give the following distortion result for the Jacobian determinant
of the mapping F that we have just constructed in the above theorem. To
this end we introduce the following notations. Let S0

π(B(p1, . . . , pn)) be
the class of mappings F defined by (3.1) and JF (z) = det DF (z) for z ∈
B(p1, . . . , pn). Clearly S0

π(U) = S(U), but in several variables this is not
true, because the mapping F (z1, z2) = (z1 + az2

2 , z2)′, (z1, z2)′ ∈ B(p1, p2)
where

|a| ≤ p2

p1

(
1 +

2p1

p2(p1 − 1)

)(p1−1)/p1
(

1 +
p2(p1 − 1)

2p1

)2/p2

,

is an example of a mapping from S0(B(p1, p2)), with p1 ≥ p2 > 1, but not
from S0

π(B(p1, p2)).
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Theorem 3.3. If F ∈ S0
π(B(p1, . . . , pn)), where p1, . . . , pn > 1, then

(3.2) |JF (z)| ≤ 1 + h(z)
(1− h(z))2n+1

, z ∈ B(p1, . . . , pn),

where h is the Minkowski function of B(p1, . . . , pn). This estimate is sharp.

Proof. Since F ∈ S0
π(B(p1, . . . , pn)), F (z) = z

∏n
j=1(

fj(zj)
zj

)λj , where each
fj ∈ S(U) and λj ≥ 0,

∑n
j=1 λj = 1. As in the proof of Theorem 3 [15], we

can easily deduce that

JF (z) =
n∏

j=1

(
fj(zj)

zj

)nλj n∑
j=1

λj

zjf
′
j(zj)

fj(zj)
.

Since fj are normalized and univalent on U , by the well known Koebe-
Bieberbach growth and distortion theorem we obtain the following relations,
see [16], ∣∣∣∣zjf

′
j(zj)

fj(zj)

∣∣∣∣ ≤ 1 + |zj |
1− |zj |

≤ 1 + h(z)
1− h(z)

,

and ∣∣∣∣fj(zj)
zj

∣∣∣∣ ≤ 1
(1− |zj |)2

≤ 1
(1− h(z))2

,

for all z = (z1, . . . , zn)′ ∈ B(p1, . . . , pn) and j ∈ {1, . . . , n}.
Therefore, we have

|JF (z)| ≤ 1 + h(z)
(1− h(z))2n+1

,

for z ∈ B(p1, . . . , pn).
In order to show that the result is sharp, let f1(ζ) = ζ/(1− ζ)2, for

ζ ∈ U . Also, let λ1 = 1 and λj = 0 for j 6= 1. Then f1 ∈ S(U) and

JF (z) =
1

(1− z1)2n

(
1 + z1

1− z1

)
,

for all z = (z1, . . . , zn)′ ∈ B(p1, . . . , pn). If z = (r, . . . , 0)′, where r ∈ [0, 1),
then h(z) = r and |JF (z)| = (1 + h(z))/(1− h(z))2n+1. �

Conjecture 3.4. If f ∈ S0(B(p1, . . . , pn)), then Jf satisfies the relation
(3.2).

If in addition, we assume that each function fj is starlike and normalized
for j ∈ {1, . . . , n}, then we can give the following better result. This result
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was obtained by Pfaltzgraff and Suffridge on the unit Euclidean ball of
Cn. In order to obtain the lower estimate, denote by S∗π(B(p1, . . . , pn))
the class of those mappings F given by (3.1), where each function fj is
starlike and normalized on the unit disc U . Clearly, this class is a subclass
of starlike and normalized mappings on B(p1, . . . , pn). Also, each function
fj has the property that zjf

′
j(zj)/fj(zj) is a point lying in a disc centered

on the positive real axis whose diameter is the line segment
[

1−r
1+r , 1+r

1−r

]
for

all z = (z1, . . . , zn)′ ∈ B(p1, . . . , pn) with h(z) < r and j ∈ {1, . . . , n}.
Then, as in the proof of Theorem 3 [15], we can show the following

Theorem 3.5. If F ∈ S∗π(B(p1, . . . , pn)), where p1, . . . , pn > 1, then

(3.3)
1− h(z)

(1 + h(z))2n+1
≤ |JF (z)| ≤ 1 + h(z)

(1− h(z))2n+1
,

for all z ∈ B(p1, . . . , pn). The result is sharp.

Conjecture 3.6. If f is starlike on B(p1, . . . , pn) and normalized by
f(0) = 0 and Df(0) = I, then Jf satisfies the relation (3.3).

We remark that the same conjecture as in Theorem 3.5, was also given
for starlike and normalized mappings on the unit ball of Cn by Pfaltzgraff
and Suffridge, see [15].
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