ANNALES UNIVERSITATIS MARIAE CURIE – SKŁODOWSKA LUBLIN – POLONIA

VOL. LV, 3

SECTIO A

2001

CRISTÓBAL GONZÁLEZ and MARÍA AUXILIADORA MÁRQUEZ

On the growth of the derivative of Q_p functions

ABSTRACT. In this paper we investigate some properties of the derivative of functions in the Q_p spaces. We first show that T(r, f'), the Nevanlinna characteristic of the derivative of a function $f \in Q_p$, 0 , satisfies

$$\int_0^1 (1-r)^p \exp\bigl(2T(r,f')\bigr) dr < \infty,$$

and that this estimate is sharp in a very strong sense, extending thus a similar result of Kennedy for functions in the Nevanlinna class.

We also obtain several results concerning the radial growth of the derivative of Q_p functions.

1. Introduction and statements of results. Let Δ denote the unit disk $\{z \in \mathbb{C} : |z| < 1\}$. The Nevanlinna characteristic of an analytic function f

²⁰⁰⁰ Mathematics Subject Classification. Primary 30D50, 30D45; Secondary 30B10, 31A15.

Key words and phrases. Q_p spaces, Bloch spaces, BMOA, Dirichlet class, Nevanlinna characteristic, radial variation, Hadamard gaps.

Research partially supported by Grants from the D.G.E.S. (Spain) PB97-1081, and from La Junta de Andalucía FQM-210

in Δ is defined by

$$T(r, f) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \log^{+} |f(re^{i\theta})| d\theta, \quad 0 \le r < 1.$$

The Nevanlinna class N consists of functions f analytic in Δ such that

$$\sup_{0\leq r<1}T(r,f)<\infty$$

It is well known that the condition $f \in N$ does not imply $f' \in N$. This was first proved by O. Frostman [11], who showed the existence of a Blaschke product whose derivative is not of bounded characteristic. Subsequently many other examples have been given. Kennedy [17] obtained the sharp bound on the growth of T(r, f') for $f \in N$. Namely, he proved that if $f \in N$, then

(1)
$$\int_0^1 (1-r) \exp\left(2T(r,f')\right) dr < \infty,$$

and showed that this result is sharp in the sense that if ϕ is a positive increasing function in (0,1) which satisfies certain "regularity conditions" and is such that

$$\int_0^1 (1-r) \exp(2\phi(r)) dr < \infty,$$

then there exists $f \in N$ such that $T(r, f') > \phi(r)$ for all r sufficiently close to 1.

Since T(r, f') is an increasing function of r, (1) easily implies for $f \in N$

(2)
$$\log \frac{1}{1-r} - T(r, f') \longrightarrow \infty \text{ as } r \to 1.$$

For 0 the following spaces are defined:

$$Q_p = \Big\{ f \text{ analytic in } \Delta : \sup_{a \in \Delta} \iint_{\Delta} |f'(z)|^2 g(z,a)^p dx dy < \infty \Big\},$$
$$Q_{p,0} = \Big\{ f \text{ analytic in } \Delta : \lim_{|a| \to 1} \iint_{\Delta} |f'(z)|^2 g(z,a)^p dx dy = 0 \Big\},$$

where g(z, a) is the Green function of Δ , given by

$$g(z,a) = \log \left| \frac{1 - \overline{a}z}{z - a} \right|.$$

These spaces were introduced by R. Aulaskari and P. Lappan in [3] while looking for new characterizations of Bloch functions. They proved that for p > 1,

$$Q_p = \mathcal{B},$$
 and $Q_{p,0} = \mathcal{B}_0.$

Recall that the Bloch space \mathcal{B} and the little Bloch space \mathcal{B}_0 consist, respectively, of those functions f analytic in Δ for which (see [1] for more information on these spaces)

$$\sup_{z \in \Delta} (1 - |z|^2) |f'(z)| < \infty, \quad \text{and} \quad \lim_{|z| \to 1} (1 - |z|^2) |f'(z)| = 0.$$

In fact, Q_p spaces put under the same frame a number of important spaces of functions analytic in Δ . We have, using one of the many characterizations of the spaces *BMOA* and *VMOA* (see, e.g., [6,12]):

$$Q_1 = BMOA$$
, and $Q_{1,0} = VMOA$.

We refer to [2,5,4,9] for more properties of Q_p spaces. It is shown in [5], that Q_p spaces increase with increasing p,

$$(3) Q_p \subset Q_q \subset BMOA, 0$$

all the inclusions being strict.

The first object of this paper is to study the possibility of extending Kennedy's results to Q_p spaces. First of all, let us notice that the function f constructed by Kennedy to show the sharpness of (1) was given by a power series with Hadamard gaps, i.e., of the form

$$f(z) = \sum_{k=0}^{\infty} c_k z^{n_k}, \qquad \frac{n_{k+1}}{n_k} \ge \lambda > 1,$$

and such that $\sum |c_k|^2 < \infty$. Such a function belongs to BMOA (see [6, p. 25]) and, even more, to VMOA. Since $VMOA \subset BMOA \subset H^p \subset N$, $0 , (we refer to [8] for the theory of <math>H^p$ spaces,) it follows that (1) is sharp for $VMOA = Q_{1,0}$ and, hence, for $BMOA = Q_1$ and for all H^p spaces with $0 . On the other hand, we remark that Girela [13] showed that (1) can be improved for the Dirichlet class <math>\mathcal{D}$, consisting of all analytic functions in Δ with a finite Dirichlet integral, i.e., such that

$$\iint_{\Delta} \left| f'(z) \right|^2 dx dy < \infty.$$

It is worth noticing that $\mathcal{D} \subset Q_{p,0}$ for all p > 0, the inclusion being strict, see [5].

Now we turn to Q_p spaces with p > 1. As said before, $Q_p = \mathcal{B}$ and $Q_{p,0} = \mathcal{B}_0$ for all p > 1. We have the following trivial estimate:

$$f \in \mathcal{B} \implies T(r, f') \le \log \frac{1}{1-r} + \mathcal{O}(1), \text{ as } r \to 1.$$

Girela [14] proved that this is sharp in the sense that there exists $f \in \mathcal{B}$ such that

$$\log \frac{1}{1-r} - T(r, f') = O(1), \text{ as } r \to 1$$

and, consequently,

$$\int_0^1 (1-r) \exp(2T(r, f')) dr = \infty.$$

Hence, neither (1) nor (2) is true for the Bloch space.

On the other hand, if $f \in \mathcal{B}_0$ then it trivially satisfies (2). However, Girela [14] proved that there exists $f \in \mathcal{B}_0$ which does not satisfy (1).

Hence, it remains to consider Q_p spaces with 0 . We can prove the following results.

Theorem 1. If $f \in Q_p$, 0 , then

(4)
$$\int_0^1 (1-r)^p \exp\left(2T(r,f')\right) dr < \infty.$$

Corollary. If $f \in Q_p$, 0 , then

(5)
$$\frac{p+1}{2}\log\frac{1}{1-r} - T(r,f') \xrightarrow[r \to 1]{\infty} \dots \square$$

The following theorem shows the sharpness of Theorem 1.

Theorem 2. Let $0 , and let <math>\phi$ be a positive increasing function in (0,1) satisfying:

(i)
$$(1-r)^{\frac{p+1}{2}} \exp \phi(r)$$
 decreases as r increases in $(0,1)$;
(ii) $\phi(r) - \phi(\rho) \to \infty$, as $\frac{1-r}{1-\rho} \to 0$;
(iii) $\int_0^1 (1-r)^p \exp(2\phi(r)) dr < \infty$.

Then there exists a function $f \in Q_p$ such that, for all r sufficiently close to 1,

(6)
$$T(r, f') > \phi(r).$$

Now we turn our attention to study the radial growth of the derivative of Q_p functions. If p > 1 and $f \in Q_p = \mathcal{B}$ then, trivially,

$$|f'(re^{i\theta})| = O((1-r)^{-1}), \quad \text{as } r \to 1, \text{ for every } \theta \in \mathbb{R}.$$

This is the best that can be said. Indeed, if $q\in\mathbb{N}$ is sufficiently large, there is $C_q>0$ such that

$$f(z) = C_q \sum_{k=0}^{\infty} z^{q^k}, \qquad z \in \Delta,$$

satisfies $f \in \mathcal{B}$ and

$$|f'(z)| \ge \frac{1}{1-|z|^2}$$
 if $1-\frac{1}{q^k} \le |z| \le 1-\frac{1}{q^{k+\frac{1}{2}}}$,

(see [19]) which implies

$$\limsup_{r \to 1} (1 - r^2) |f'(re^{i\theta})| \ge 1, \quad \text{for every } \theta$$

If $f \in BMOA$, then it has a finite non-tangential limit $f(e^{i\theta})$ for almost every $\theta \in \mathbb{R}$, so, by a result of Zygmund [22, p. 181], it follows that for almost every θ ,

(7)
$$\left|f'(re^{i\theta})\right| = o\left((1-r)^{-1}\right), \quad \text{as } r \to 1.$$

This result is also sharp in the sense that the right hand side of (7) cannot be substituted by $O((1-r)^{-\alpha})$ for any $\alpha < 1$. Indeed, if

$$f(z) = \sum_{k=1}^{\infty} \frac{1}{k} z^{2^k}, \qquad z \in \Delta,$$

then, since f is given by a power series with Hadamard gaps in H^2 , we have $f \in BMOA$. Also, by Lemma 1 [22, p. 197], the fact $\sum_{k=1}^{\infty} \frac{1}{k} = \infty$ implies

(8)
$$\int_0^1 |f'(re^{i\theta})| dr = \infty, \quad \text{for every } \theta \in \mathbb{R}.$$

Consequently, we have proved the following

Proposition 1. There exists $f \in BMOA$ such that, for any $\alpha < 1$ and any θ

$$\left|f'(re^{i\theta})\right| \neq O\left((1-r)^{-\alpha}\right), \quad as \ r \to 1.$$

However, an estimate which is much stronger than (7) is true for the Dirichlet space \mathcal{D} . Seidel and Walsh [20, Thm. 6] proved that if $f \in \mathcal{D}$ then, for a.e. θ ,

(9)
$$|f'(re^{i\theta})| = o((1-r)^{-1/2}), \quad \text{as } r \to 1,$$

and Girela [13] proved that this is sharp in a very strong sense.

Now, we shall consider these questions for Q_p spaces, 0 . We can prove the following results.

Theorem 3. If $f \in Q_p$, $0 , then for a.e. <math>\theta$,

(10)
$$|f'(re^{i\theta})| = o((1-r)^{-(p+1)/2}), \quad as \ r \to 1.$$

Theorem 4. Let $0 , and let <math>\phi$ be a positive increasing function in (0,1) such that

(11)
$$\int_{0}^{1} (1-r)^{p} \phi^{2}(r) dr < \infty.$$

Then there exists $f \in Q_p$ such that, for every θ ,

(12)
$$\limsup_{r \to 1^{-}} \frac{\left| f'(re^{i\theta}) \right|}{\phi(r)} = \infty.$$

We remark that Theorem 4 for p = 1 represents an improvement of Proposition 1.

Finally, let us mention that the techniques used in this work are related to those used by Kennedy [17] and by Girela [13]. Also, we will adopt the convention that C will always denote a positive constant, independent of r, which may be different on other occasion.

2. Proofs of Theorems 1 and 2. Let $f \in Q_p$, with 0 . By Jensen's inequality, we have

$$\begin{split} \exp\bigl(2T(r,f')\bigr) &= \exp\left(\frac{1}{2\pi}\int_{-\pi}^{\pi} 2\log^+ \left|f'(re^{i\theta})\right|d\theta\right) \\ &\leq \exp\left(\frac{1}{2\pi}\int_{-\pi}^{\pi}\log\Bigl(1+\left|f'(re^{i\theta})\right|^2\Bigr)d\theta\right) \\ &\leq \frac{1}{2\pi}\int_{-\pi}^{\pi}\Bigl(1+\left|f'(re^{i\theta})\right|^2\Bigr)d\theta. \end{split}$$

Multiplying by $(1-r)^p$ and integrating, we obtain

$$\int_0^1 (1-r)^p \exp(2T(r,f')) dr \le \frac{1}{2\pi} \int_0^1 \int_{-\pi}^{\pi} (1-r)^p \left(1 + \left|f'(re^{i\theta})\right|^2\right) d\theta dr.$$

We now refer to [4, Thm. 1.1], where it is shown that a function f is in Q_p , $0 , if and only if <math>d\mu(z) = (1 - |z|)^p |f'(z)|^2 dxdy$ is a p-Carleson measure. A p-Carleson measure is a finite Borel measure μ in Δ for which there exists a constant c > 0 such that for all intervals I of the form $I = (\theta_0, \theta_0 + h), \theta_0 \in \mathbb{R}$ and 0 < h < 1, we have

$$\mu(S(I)) \le ch^p,$$

where S(I) is the classical Carleson square,

$$S(I) = \{ re^{i\theta} : \theta_0 < \theta < \theta_0 + h, \ 1 - h < r < 1 \}.$$

All this tells us that the term on the right hand side of the above inequality is finite, and therefore Theorem 1 follows. \Box

To prove Theorem 2, take $0 , and <math>\phi$ as in the statement. Since ϕ is increasing, (iii) implies

$$\infty > \int_0^1 (1-r)^p \exp(2\phi(r)) dr \ge \sum_{k=1}^\infty \int_{1-2^{-k}}^{1-2^{-(k+1)}} (1-r)^p \exp(2\phi(r)) dr$$
$$\ge \sum_{k=1}^\infty 2^{-(k+1)(p+1)} \exp(2\phi(1-2^{-k}))$$
$$= 2^{-(p+1)} \sum_{k=1}^\infty 2^{-k(p+1)} \exp(2\phi(1-2^{-k})).$$

So (see for instance [18, Dini's Thm, p. 297] there exists an increasing sequence $\{\alpha_k\}$ of integers greater than 2, such that

(13)
$$\sum_{k=1}^{\infty} \alpha_k^2 2^{-k(p+1)} \exp\left(2\phi(1-2^{-k})\right) < \infty,$$

and

(14)
$$\alpha_k \longrightarrow \infty$$
, $\alpha_{k+1}/\alpha_k \longrightarrow 1$ as $k \to \infty$.

Observe that condition (13) implies

(15)
$$\sum_{k=1}^{\infty} \alpha_k^{p+1} 2^{-k(p+1)} \exp\left(2\phi(1-2^{-k})\right) < \infty.$$

Define now

(16)
$$n_1 = 1, \qquad n_{k+1} = \alpha_k n_k, \quad k = 1, 2, \dots$$

Clearly $n_{k+1} > 2^k$ for $k \ge 1$ and by (i) we obtain

$$\alpha_k^{p+1} n_{k+1}^{-(p+1)} \exp\left(2\phi(1-n_{k+1}^{-1})\right) \le \alpha_k^{p+1} 2^{-k(p+1)} \exp\left(2\phi(1-2^{-k})\right),$$

which, together with (15) and (16), yields

(17)
$$\sum_{k=1}^{\infty} n_k^{-(p+1)} \exp\left(2\phi(1-n_{k+1}^{-1})\right) < \infty.$$

For each $k = 1, 2, \ldots$, set

(18)
$$c_k = 10 \ n_k^{-1} \exp(\phi(1 - n_{k+1}^{-1})),$$

and define the function

(19)
$$f(z) = \sum_{k=1}^{\infty} c_k z^{n_k}, \qquad z \in \Delta.$$

The way in which n_k and c_k have been chosen shows that f is a power series with Hadamard gaps defined in Δ . So in order to see that $f \in Q_p$, we will use the following result proved in [5].

Theorem A. If $0 , and <math>f(z) = \sum_{k=0}^{\infty} c_k z^{n_k}$ is a power series with Hadamard gaps, then

(20)
$$f \in Q_p \iff f \in Q_{p,0} \iff \sum_{k=0}^{\infty} 2^{k(1-p)} \sum_{\{j:n_j \in I_k\}} |c_j|^2 < \infty,$$

where $I_k = \{n \in \mathbb{N} : 2^k \le n < 2^{k+1}\}, \ k = 0, 1, \dots$

For each $j \in \mathbb{N}$, let k(j) be the unique non-negative integer such that $2^{k(j)} \leq n_j < 2^{k(j)+1}$. Bearing in mind this and (17), we have

$$\sum_{k=0}^{\infty} 2^{k(1-p)} \sum_{\{j:n_j \in I_k\}} |c_j|^2 = \sum_{j=1}^{\infty} 2^{k(j)(1-p)} |c_j|^2$$
$$= 10^2 \sum_{j=1}^{\infty} 2^{k(j)(1-p)} n_j^{-2} \exp\left(2\phi(1-n_{j+1}^{-1})\right)$$
$$\leq 10^2 \sum_{j=1}^{\infty} n_j^{-(p+1)} \exp\left(2\phi(1-n_{j+1}^{-1})\right) < \infty.$$

Hence, $f \in Q_p$.

Next, we show that f satisfies (6). Observe that for $k \ge 2$ and $|z| = 1 - \frac{1}{n_k}$,

$$\begin{aligned} |f'(z)| &\ge |zf'(z)| = \left| \sum_{j=1}^{\infty} c_j n_j z^{n_j} \right| \\ &\ge c_k n_k |z|^{n_k} - \sum_{j=1}^{k-1} c_j n_j |z|^{n_j} - \sum_{j=k+1}^{\infty} c_j n_j |z|^{n_j} \\ &\ge c_k n_k \left(1 - \frac{1}{n_k} \right)^{n_k} - \sum_{j=1}^{k-1} c_j n_j - \sum_{j=k+1}^{\infty} c_j n_j \left(1 - \frac{1}{n_k} \right)^{n_j} \\ &= (\mathbf{I}) - (\mathbf{II}) - (\mathbf{III}). \end{aligned}$$

Since the sequence $(1 - \frac{1}{n})^n$ increases with n, and $n_k \ge 2$,

(21)
$$(\mathbf{I}) \ge \frac{1}{4}c_k n_k.$$

Now, in order to estimate (II) and (III), we will use the following lemma stated in [17, p. 339].

Lemma 1. If $\{s_k\}$ is a sequence of positive numbers and $s_k/s_{k+1} \to 0$ as $k \to \infty$, then,

$$\sum_{j=1}^{k-1} s_j = o(s_k), \quad and \quad \sum_{j=k+1}^{\infty} s_j^{-1} = o(s_k^{-1}) \quad as \ k \to \infty.$$

Notice that by (18), (ii), (16), and (14),

$$\frac{c_k n_k}{c_{k+1} n_{k+1}} = \exp\left(\phi(1 - n_{k+1}^{-1}) - \phi(1 - n_{k+2}^{-1})\right) \to \infty \quad \text{as } k \to \infty,$$

so by the lemma,

(22)
$$(II) = o(c_k n_k), \quad \text{as } k \to \infty.$$

Now using the elementary inequality $(1-x)^n < 2(nx)^{-2}$, valid for 0 < x < 1 and $n \ge 1$, we obtain

(23)
$$(\text{III}) \le 2n_k^2 \sum_{j=k+1}^{\infty} \frac{c_j}{n_j}.$$

But also, by (18), (16), (i), and (14),

$$\frac{n_k/c_k}{n_{k+1}/c_{k+1}} = \frac{1}{\alpha_k^2} \frac{\exp\phi(1-n_{k+2}^{-1})}{\exp\phi(1-n_{k+1}^{-1})} \le \frac{1}{\alpha_k^2} \left(\frac{n_{k+2}}{n_{k+1}}\right)^{\frac{p+1}{2}} \\ = \frac{1}{\alpha_k^{(3-p)/2}} \left(\frac{\alpha_{k+1}}{\alpha_k}\right)^{\frac{p+1}{2}} \to 0,$$

so by (23) and the lemma again,

(24) (III) =
$$o(c_k n_k)$$
, as $k \to \infty$.

Therefore, by (21), (22), and (24), there exists k_0 such that for all $k \ge k_0$,

$$|f'(z)| > \frac{1}{8}c_k n_k > \exp\phi\left(1 - \frac{1}{n_{k+1}}\right), \qquad |z| = 1 - \frac{1}{n_k}.$$

Thus, for $k \ge k_0$,

$$T\left(1 - \frac{1}{n_k}, f'\right) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \log^+ \left| f'\left(\left(1 - \frac{1}{n_k}\right)e^{i\theta}\right) \right| d\theta > \phi\left(1 - \frac{1}{n_{k+1}}\right).$$

Now, if $r \ge 1 - (n_{k_0})^{-1}$, take $k \ge k_0$ such that $1 - (n_k)^{-1} \le r < 1 - (n_{k+1})^{-1}$. Since T and ϕ are increasing functions of r, we obtain

$$T(r, f') \ge T\left(1 - \frac{1}{n_k}, f'\right) > \phi\left(1 - \frac{1}{n_{k+1}}\right) \ge \phi(r).$$

This completes the proof of Theorem 2. \Box

2. Proofs of Theorems 3 and 4. We start proving Theorem 3. Let $f \in Q_p$. Set

$$F_r(\theta) = \max_{0 \le \rho \le r} \left| f'(\rho e^{i\theta}) \right|^2, \qquad 0 < r < 1, \ \theta \in \mathbb{R}.$$

By the Hardy-Littlewood Maximal Theorem,

$$\int_{-\pi}^{\pi} F_r(\theta) d\theta \le C \int_{-\pi}^{\pi} \left| f'(re^{i\theta}) \right|^2 d\theta, \qquad 0 < r < 1.$$

Since $g(z,0) = \log \frac{1}{|z|}$ and $f \in Q_p$, we have

$$\int_0^1 \int_{-\pi}^{\pi} F_r(\theta) \left(\log \frac{1}{r} \right)^p r d\theta dr \le C \int_0^1 \int_{-\pi}^{\pi} \left| f'(re^{i\theta}) \right|^2 g(re^{i\theta}, 0)^p r d\theta dr < \infty.$$

Hence we deduce that

$$\int_0^1 F_r(\theta) \left(\log \frac{1}{r}\right)^p r dr < \infty, \qquad \text{a.e. } \theta,$$

which yields, by means of the equivalence $\log \frac{1}{r} \sim (1-r)$ as $r \to 1$,

$$\lim_{r \to 1} \int_{r}^{1} F_{s}(\theta)(1-s)^{p} ds = 0, \qquad \text{a.e. } \theta$$

Since F is an increasing function of r, we have for a.e. θ

$$|f'(re^{i\theta})|^2 \frac{(1-r)^{p+1}}{p+1} \le F_r(\theta) \int_r^1 (1-s)^p ds \le \int_r^1 F_s(\theta) (1-s)^p ds \underset{r \to 1}{\longrightarrow} 0$$

and (10) follows. \Box

Proof of Theorem 4. We may assume without loss of generality that $\phi(r) \nearrow \infty$ as $r \nearrow 1$. Also, it suffices to prove that there exist $f \in Q_p$ and C > 0 such that for every θ

(25)
$$\limsup_{r \to 1} \frac{\left| f'(re^{i\theta}) \right|}{\phi(r)} \ge C.$$

The reason for this is that if ϕ is a positive increasing function in (0,1) satisfying (11), then it is possible to find ϕ_1 , positive and increasing in (0,1) with $\lim_{r\to 1} \phi_1(r) = \infty$, and such that

$$\int_0^1 (1-r)^p \phi^2(r) \, \phi_1^2(r) dr < \infty.$$

Clearly, if there are $f \in Q_p$ and C > 0 satisfying (25) for every θ , with ϕ replaced by $\phi \phi_1$, then the same f satisfies equation (12) for every θ .

With these assumptions we may start the proof. Take a sequence $\{r_k\} \nearrow 1$, with $r_1 > 1/4$, which satisfies

(26)
$$r_{k+1} - r_k > \frac{1}{2}(1 - r_k), \text{ for all } k,$$

(27)
$$\phi(r_{k+1})/\phi(r_k) \to \infty \quad \text{as } k \to \infty,$$

(28)
$$\frac{(1-r_{k+1})^{\frac{3-p}{2}}}{(1-r_k)^2} = \mathcal{O}(1), \quad \text{as } k \to \infty.$$

It follows from (26) that for all k

(29)
$$1 - r_{k+1} < \frac{1}{2}(1 - r_k) < r_{k+1} - r_k.$$

Bearing this in mind, observe that for all $k \in \mathbb{N}$

$$\int_{r_k}^{r_{k+1}} (1-r)^p dr = \frac{1}{1+p} \left((1-r_k)^{1+p} - (1-r_{k+1})^{1+p} \right) \ge \frac{1-2^{-(1+p)}}{1+p} (1-r_k)^{1+p}.$$

Since ϕ is increasing, (11) implies

(30)

$$\sum_{k=1}^{\infty} (1-r_k)^{1+p} \phi^2(r_k) \leq \frac{1+p}{1-2^{-(1+p)}} \sum_{k=1}^{\infty} \int_{r_k}^{r_{k+1}} (1-r)^p \phi^2(r_k) dr$$

$$\leq \frac{1+p}{1-2^{-(1+p)}} \sum_{k=1}^{\infty} \int_{r_k}^{r_{k+1}} (1-r)^p \phi^2(r) dr$$

$$\leq \frac{1+p}{1-2^{-(1+p)}} \int_0^1 (1-r)^p \phi^2(r) dr < \infty.$$

Now, for each k, let n_k be the unique non-negative integer such that

$$n_k \le \frac{1}{1 - r_k} < n_k + 1.$$

This implies, together with the facts that $\{r_k\}$ is increasing and $r_1 \ge 1/4$,

(31)
$$1 - \frac{1}{n_k} \le r_k < 1 - \frac{1}{n_k + 1}$$
, and $\frac{1}{4} < n_k(1 - r_k) \le 1$.

Define now

$$f(z) = \sum_{k=1}^{\infty} (1 - r_k)\phi(r_k) z^{n_k}$$

By (30), f is analytic in Δ . Moreover, f is a power series with Hadamard gaps. Indeed, by the definition of n_k and by (29),

$$\frac{n_{k+1}}{n_k} \ge \frac{\frac{1}{1-r_{k+1}}-1}{\frac{1}{1-r_k}} = \frac{1-r_k}{1-r_{k+1}} - (1-r_k) > 2 - \frac{3}{4} > 1, \quad \text{all } k.$$

We now check that f is in Q_p . To this end we use Theorem A. For each j, let k(j) be the unique non-negative integer such that

$$2^{k(j)} \le n_j < 2^{k(j)+1}.$$

In this situation, we have by (31) and (30),

$$\sum_{k=0}^{\infty} 2^{k(1-p)} \sum_{\substack{2^k \le n_j < 2^{k+1} \\ \le \sum_{j=1}^{\infty} n_j^{1-p} (1-r_j)^2 \phi^2(r_j) \le \sum_{j=1}^{\infty} 2^{k(j)(1-p)} (1-r_j)^2 \phi^2(r_j) \le \sum_{j=1}^{\infty} (1-r_j)^{1+p} \phi^2(r_j) < \infty.$$

This shows that $f \in Q_p$.

Next, to show that f satisfies (25), it suffices to find a constant C > 0 and $k_0 \in \mathbb{N}$ such that

$$\frac{\left|f'(r_k e^{i\theta})\right|}{\phi(r_k)} \ge C \text{ for every } \theta \text{ and all } k \ge k_0.$$

If $|z| = r_k \ (k \ge 2)$ then, (31) and $r_k^{n_j} \le 1$ imply

$$\begin{split} |f'(z)| &\ge |zf'(z)| = \left| \sum_{j=1}^{\infty} n_j (1 - r_j) \phi(r_j) z^{n_j} \right| \\ &\ge n_k (1 - r_k) \phi(r_k) r_k^{n_k} - \sum_{j \neq k} n_j (1 - r_j) \phi(r_j) r_k^{n_j} \\ &\ge \frac{1}{4} \phi(r_k) \left(1 - \frac{1}{n_k} \right)^{n_k} - \sum_{j=1}^{k-1} \phi(r_j) - \sum_{j=k+1}^{\infty} \phi(r_j) \left(1 - \frac{1}{n_k + 1} \right)^{n_j} \\ &= (\mathbf{I}) - (\mathbf{II}) - (\mathbf{III}). \end{split}$$

The procedure now is basically the same as in the proof of Theorem 2. Since the sequence $(1 - \frac{1}{n})^n$ increases with n and $n_k \ge 2$, we have (I) $\ge C\phi(r_k)$. Now, by (27) and Lemma 1 we obtain (II) = $o(\phi(r_k))$. Finally, as in (23), we deduce

(III)
$$\leq 2(n_k+1)^2 \sum_{j=k+1}^{\infty} \frac{\phi(r_j)}{n_j^2}.$$

But by (31), (28) and (30),

$$\frac{n_j^2/\phi(r_j)}{n_{j+1}^2/\phi(r_{j+1})} \le \frac{16}{\phi(1/4)} \frac{(1-r_{j+1})^2\phi(r_{j+1})}{(1-r_j)^2}$$
$$= \frac{16}{\phi(1/4)} \frac{(1-r_{j+1})^{\frac{3-p}{2}}}{(1-r_j)^2} (1-r_{j+1})^{\frac{1+p}{2}}\phi(r_{j+1}) \underset{j \to \infty}{\longrightarrow} 0$$

so by Lemma 1,

$$\sum_{j=k+1}^{\infty} \frac{\phi(r_j)}{n_j^2} = o\left(\frac{\phi(r_k)}{n_k^2}\right),$$

which implies (III) = $o(\phi(r_k))$. This completes the proof of Theorem 4. \Box

4. Remarks.

Remark 1. The estimate given in Theorem 3 allows us to say something about the radial variation of functions in the Q_p spaces. We start recalling some definitions. For a function f analytic in the unit disk Δ and $\theta \in$ $[-\pi, \pi]$, the quantity

$$V(f,\theta) = \int_0^1 \left| f'(re^{i\theta}) \right| dr,$$

denotes the radial variation of f along the radius $[0, e^{i\theta}]$, i.e., the length of the image of this radius under the mapping f. The exceptional set E(f) associated to f is then defined as

$$E(f) = \left\{ e^{i\theta} \in \partial \Delta : V(f,\theta) = \infty \right\}.$$

Since $\int_0^1 (1-r)^{-(p+1)/2} dr$ is finite if and only if p < 1, then an immediate consequence of Theorem 3 is the following

Theorem 5. If $f \in Q_p$, 0 , then the exceptional set <math>E(f) has linear measure 0.

Observe that nothing of this kind can be stated for Q_p with $p \ge 1$. Indeed, as we have noticed above before Proposition 1, if $f(z) = \sum_{k=1}^{\infty} \frac{1}{k} z^{2^k}$, then $f \in BMOA = Q_1$ and $V(f, \theta) = \infty$ for every θ .

On the other hand, for functions in the Dirichlet class $\mathcal{D} \equiv Q_0$ there is a more precise result due to Beurling [7].

Theorem B. If $f \in D$, then the exceptional set E(f) has a zero logarithmic capacity.

We refer to [10,16,21] for the definition and basic results about capacities and Hausdorff measures. We do not know whether the conclusion of Theorem B is true for Q_p , 0 . However, something can be said. For $<math>0 , let <math>\mathcal{D}_p$ be the space of functions $f(z) = \sum_{n=0}^{\infty} a_n z^n$, analytic in Δ such that

$$\sum_{n=1}^{\infty} n^{1-p} |a_n|^2 < \infty.$$

Zygmund proved the following result (see [16, Ch. 4]).

Theorem C. If $f \in D_p$, 0 , then the exceptional set <math>E(f) has zero *p*-capacity. Conversely, if *E* is a set of zero *p*-capacity, then there is $f \in D_p$ whose exceptional set contains *E*.

It is not difficult to see that $f \in Q_p$, $0 implies <math>f \in \mathcal{D}_p$. In fact, if $f(z) = \sum_{n=0}^{\infty} a_n z^n \in Q_p$, 0 , there exists <math>C > 0 such that

$$\iint_{\Delta} |f'(z)|^2 g^p(z, a) dx dy < C, \qquad \text{for all } a \in \Delta$$

In particular, we have for a = 0, using properties of the Beta function and Stirling's formula for the Gamma function: $\Gamma(t+1) \sim t^t e^{-t} (2\pi t)^{1/2}$,

$$\begin{split} & \infty > \int_0^1 \int_{-\pi}^{\pi} \left| f'(re^{i\theta}) \right|^2 \log^p \frac{1}{r} r dr d\theta = \sum_{n=1}^{\infty} n^2 |a_n|^2 \int_0^1 r^{2n-1} \log^p \frac{1}{r} dr \\ & \ge \sum_{n=1}^{\infty} n^2 |a_n|^2 \int_0^1 r^{2n-1} (1-r)^p dr = \sum_{n=1}^{\infty} n^2 |a_n|^2 \mathcal{B}(2n,p+1) \\ & = \sum_{n=1}^{\infty} n^2 |a_n|^2 \frac{\Gamma(2n)\Gamma(p+1)}{\Gamma(2n+p+1)} \approx \sum_{n=1}^{\infty} n^{1-p} |a_n|^2. \end{split}$$

Therefore, an immediate consequence of Zygmund's result is the following

Theorem 6. If $f \in Q_p$, 0 , then the exceptional set <math>E(f) has zero *p*-capacity.

However, we do not know whether for a given set E of null p-capacity there is $f \in Q_p$ whose exceptional set contains E.

Remark 2. From Beurling's result (Theorem B), it follows that any $f \in D$ has non-tangential limit everywhere except for a set of null logarithmic capacity, and then

(32)
$$|f'(re^{i\theta})| = o((1-r)^{-1}) \text{ as } r \to 1,$$

whenever $e^{i\theta}$ is a point at which f has a finite non-tangential limit.

This implies that for $f \in \mathcal{D}$ the estimate (32) holds for every $\theta \in (-\pi, \pi]$, except for a set of null logarithmic capacity. Girela [15] showed that this estimate is sharp in a very strong sense. In our case, using Theorem 6 and (32), we obtain a similar result for Q_p , 0 , although we do notknow whether it is sharp in the sense given by Girela.

Theorem 7. If $f \in Q_p$, 0 , then

$$|f'(re^{i\theta})| = o((1-r)^{-1}) \text{ as } r \to 1,$$

for every $\theta \in (-\pi, \pi]$, except for a set of null p-capacity.

References

- Anderson, J.M., J. Clunie and Ch. Pommerenke, On Bloch functions and normal functions, J. Reine Angew. Math. 270 (1974), 12–37.
- [2] Aulaskari, R., G. Csordas, Besov spaces and the $Q_{q,0}$ classes, Acta Sci. Math. (Szeged) **60** (1995), 31–48.

- [3] Aulaskari, R., P. Lappan, Criteria for an analytic function to be Bloch and a harmonic or meromorphic function to be normal, Complex Analysis and its Applications (Harlow), Pitman Research Notes in Math, vol. 305, Longman Scientific and Technical, 1994, pp. 136–146.
- [4] Aulaskari, R., D.A. Stegenga and J. Xiao, Some subclasses of BMOA and their characterizations in terms of Carleson measures, Rocky Mountain J. Math. 26 (1996), 485–506.
- [5] Aulaskari, R., J. Xiao and R. Zhao, On subspaces and subsets of BMOA and UBC, Analysis 15 (1995), 101–121.
- [6] Baernstein, A., Analytic functions of bounded mean oscillation, Aspects of Contemporary Complex Analysis (D. Brannan and J. Clunie, eds.), Academic Press, 1980, pp. 3–36.
- [7] Beurling, A., Ensembles exceptionnels, Acta Math. 72 (1940), 1–13.
- [8] Duren, P.L., Theory of H^p spaces, Academic Press, New York, 1970.
- [9] Essén, M., J. Xiao, Some results on Q_p spaces, 0 , J. Reine Angew. Math.**485**(1997), 173–195.
- [10] Frostman, O., Potential d'équilibre et capacité des ensembles avec quelques applications à la théorie des fonctions, Meddel. Lunds Univ. Mat. Sem. 3 (1935), 173–195.
- [11] _____, Sur les produits de Blaschke, Kung. Fysiogr. Sällsk. i Lund Förh 12 (1942), no. 15, 169–182.
- [12] Garnett, J.B., Bounded analytic functions, Academic Press, New York, 1981.
- [13] Girela, D., On analytic functions with finite Dirichlet integral, Complex Variables 12 (1989), 9–15.
- [14] _____, On Bloch functions and gap series, Publications Matemàtiques 35 (1991), 403–427.
- [15] _____, Radial growth and variation of univalent functions and of Dirichlet finite holomorphic functions, Colloq. Math. LXIX (1995), no. 1, 19–28.
- [16] Kahane, J-P., R. Salem, Ensembles parfaits et séries trigonométriques, seconde éd., Hermann, Paris, 1994.
- [17] Kennedy, P.B., On the derivative of a function of bounded characteristic, Quart. J. Math. Oxford 15 (1964), no. 2, 337–341.
- [18] Knopp, K., Theory and applications of infinite series, Hafner Publishing Co., New York, 1971.
- [19] Ramey, W., D. Ullrich, Bounded mean oscillation of Bloch pullbacks, Math. Ann. 291 (1991), 591–606.
- [20] Seidel, W., J.L. Walsh, On the derivatives of functions analytic in the unit disc and their radii of univalence and of p-valence, Trans. Amer. Math. Soc. 52 (1942), 128–216.
- [21] Tsuji, M., Potential theory in modern function theory, Chelsea, New York, 1975.
- [22] Zygmund, A., On certain integrals, Trans. Amer. Math. Soc. 55 (1944), 170–204.

received May 11, 2000

Dept. Análisis Matemático Fac. Ciencias Univ. Málaga 29071 Málaga, Spain e-mail: gonzalez@anamat.cie.uma.es

e-mail: marquez@anamat.cie.uma.es