ANNALES

UNIVERSITATIS MARIAE CURIE - SKもODOWSKA
LUBLIN - POLONIA
VOL. LV, 3
SECTIO A 2001

CRISTÓBAL GONZÁLEZ and MARÍA AUXILIADORA MÁRQUEZ

On the growth of the derivative of Q_{p} functions

Abstract

In this paper we investigate some properties of the derivative of functions in the Q_{p} spaces. We first show that $T\left(r, f^{\prime}\right)$, the Nevanlinna characteristic of the derivative of a function $f \in Q_{p}, 0<p<1$, satisfies

$$
\int_{0}^{1}(1-r)^{p} \exp \left(2 T\left(r, f^{\prime}\right)\right) d r<\infty
$$

and that this estimate is sharp in a very strong sense, extending thus a similar result of Kennedy for functions in the Nevanlinna class.

We also obtain several results concerning the radial growth of the derivative of Q_{p} functions.

1. Introduction and statements of results. Let Δ denote the unit disk $\{z \in \mathbb{C}:|z|<1\}$. The Nevanlinna characteristic of an analytic function f

[^0]in Δ is defined by
$$
T(r, f)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \log ^{+}\left|f\left(r e^{i \theta}\right)\right| d \theta, \quad 0 \leq r<1
$$

The Nevanlinna class N consists of functions f analytic in Δ such that

$$
\sup _{0 \leq r<1} T(r, f)<\infty
$$

It is well known that the condition $f \in N$ does not imply $f^{\prime} \in N$. This was first proved by O. Frostman [11], who showed the existence of a Blaschke product whose derivative is not of bounded characteristic. Subsequently many other examples have been given. Kennedy [17] obtained the sharp bound on the growth of $T\left(r, f^{\prime}\right)$ for $f \in N$. Namely, he proved that if $f \in N$, then

$$
\begin{equation*}
\int_{0}^{1}(1-r) \exp \left(2 T\left(r, f^{\prime}\right)\right) d r<\infty \tag{1}
\end{equation*}
$$

and showed that this result is sharp in the sense that if ϕ is a positive increasing function in $(0,1)$ which satisfies certain "regularity conditions" and is such that

$$
\int_{0}^{1}(1-r) \exp (2 \phi(r)) d r<\infty
$$

then there exists $f \in N$ such that $T\left(r, f^{\prime}\right)>\phi(r)$ for all r sufficiently close to 1 .

Since $T\left(r, f^{\prime}\right)$ is an increasing function of $r,(1)$ easily implies for $f \in N$

$$
\begin{equation*}
\log \frac{1}{1-r}-T\left(r, f^{\prime}\right) \longrightarrow \infty \text { as } r \rightarrow 1 \tag{2}
\end{equation*}
$$

For $0<p<\infty$ the following spaces are defined:

$$
\begin{aligned}
Q_{p} & =\left\{f \text { analytic in } \Delta: \sup _{a \in \Delta} \iint_{\Delta}\left|f^{\prime}(z)\right|^{2} g(z, a)^{p} d x d y<\infty\right\} \\
Q_{p, 0} & =\left\{f \text { analytic in } \Delta: \lim _{|a| \rightarrow 1} \iint_{\Delta}\left|f^{\prime}(z)\right|^{2} g(z, a)^{p} d x d y=0\right\}
\end{aligned}
$$

where $g(z, a)$ is the Green function of Δ, given by

$$
g(z, a)=\log \left|\frac{1-\bar{a} z}{z-a}\right|
$$

These spaces were introduced by R. Aulaskari and P. Lappan in [3] while looking for new characterizations of Bloch functions. They proved that for $p>1$,

$$
Q_{p}=\mathcal{B}, \quad \text { and } \quad Q_{p, 0}=\mathcal{B}_{0}
$$

Recall that the Bloch space \mathcal{B} and the little Bloch space \mathcal{B}_{0} consist, respectively, of those functions f analytic in Δ for which (see [1] for more information on these spaces)

$$
\sup _{z \in \Delta}\left(1-|z|^{2}\right)\left|f^{\prime}(z)\right|<\infty, \quad \text { and } \quad \lim _{|z| \rightarrow 1}\left(1-|z|^{2}\right)\left|f^{\prime}(z)\right|=0 .
$$

In fact, Q_{p} spaces put under the same frame a number of important spaces of functions analytic in Δ. We have, using one of the many characterizations of the spaces $B M O A$ and $V M O A$ (see, e.g., $[6,12]$):

$$
Q_{1}=B M O A, \quad \text { and } \quad Q_{1,0}=V M O A .
$$

We refer to [2,5,4,9] for more properties of Q_{p} spaces.It is shown in [5], that Q_{p} spaces increase with increasing p,

$$
\begin{equation*}
Q_{p} \subset Q_{q} \subset B M O A, \quad 0<p<q<1, \tag{3}
\end{equation*}
$$

all the inclusions being strict.
The first object of this paper is to study the possibility of extending Kennedy's results to Q_{p} spaces. First of all, let us notice that the function f constructed by Kennedy to show the sharpness of (1) was given by a power series with Hadamard gaps, i.e., of the form

$$
f(z)=\sum_{k=0}^{\infty} c_{k} z^{n_{k}}, \quad \frac{n_{k+1}}{n_{k}} \geq \lambda>1
$$

and such that $\sum\left|c_{k}\right|^{2}<\infty$. Such a function belongs to $B M O A$ (see [6, p. 25]) and, even more, to $V M O A$. Since $V M O A \subset B M O A \subset H^{p} \subset N$, $0<p<\infty$, (we refer to [8] for the theory of H^{p} spaces,) it follows that (1) is sharp for $V M O A=Q_{1,0}$ and, hence, for $B M O A=Q_{1}$ and for all H^{p} spaces with $0<p<\infty$. On the other hand, we remark that Girela [13] showed that (1) can be improved for the Dirichlet class \mathcal{D}, consisting of all analytic functions in Δ with a finite Dirichlet integral, i.e., such that

$$
\iint_{\Delta}\left|f^{\prime}(z)\right|^{2} d x d y<\infty
$$

It is worth noticing that $\mathcal{D} \subset Q_{p, 0}$ for all $p>0$, the inclusion being strict, see [5].

Now we turn to Q_{p} spaces with $p>1$. As said before, $Q_{p}=\mathcal{B}$ and $Q_{p, 0}=\mathcal{B}_{0}$ for all $p>1$. We have the following trivial estimate:

$$
f \in \mathcal{B} \quad \Longrightarrow \quad T\left(r, f^{\prime}\right) \leq \log \frac{1}{1-r}+\mathrm{O}(1), \quad \text { as } r \rightarrow 1
$$

Girela [14] proved that this is sharp in the sense that there exists $f \in \mathcal{B}$ such that

$$
\log \frac{1}{1-r}-T\left(r, f^{\prime}\right)=\mathrm{O}(1), \quad \text { as } r \rightarrow 1
$$

and, consequently,

$$
\int_{0}^{1}(1-r) \exp \left(2 T\left(r, f^{\prime}\right)\right) d r=\infty
$$

Hence, neither (1) nor (2) is true for the Bloch space.
On the other hand, if $f \in \mathcal{B}_{0}$ then it trivially satisfies (2). However, Girela [14] proved that there exists $f \in \mathcal{B}_{0}$ which does not satisfy (1).

Hence, it remains to consider Q_{p} spaces with $0<p<1$. We can prove the following results.

Theorem 1. If $f \in Q_{p}, 0<p<1$, then

$$
\begin{equation*}
\int_{0}^{1}(1-r)^{p} \exp \left(2 T\left(r, f^{\prime}\right)\right) d r<\infty \tag{4}
\end{equation*}
$$

Corollary. If $f \in Q_{p}, 0<p<1$, then

$$
\begin{equation*}
\frac{p+1}{2} \log \frac{1}{1-r}-T\left(r, f^{\prime}\right) \underset{r \rightarrow 1}{\longrightarrow} \infty \tag{5}
\end{equation*}
$$

The following theorem shows the sharpness of Theorem 1.
Theorem 2. Let $0<p<1$, and let ϕ be a positive increasing function in $(0,1)$ satisfying:
(i) $(1-r)^{\frac{p+1}{2}} \exp \phi(r)$ decreases as r increases in $(0,1)$;
(ii) $\phi(r)-\phi(\rho) \rightarrow \infty$, as $\frac{1-r}{1-\rho} \rightarrow 0$;
(iii) $\int_{0}^{1}(1-r)^{p} \exp (2 \phi(r)) d r<\infty$.

Then there exists a function $f \in Q_{p}$ such that, for all r sufficiently close to 1,

$$
\begin{equation*}
T\left(r, f^{\prime}\right)>\phi(r) . \tag{6}
\end{equation*}
$$

Now we turn our attention to study the radial growth of the derivative of Q_{p} functions. If $p>1$ and $f \in Q_{p}=\mathcal{B}$ then, trivially,

$$
\left|f^{\prime}\left(r e^{i \theta}\right)\right|=\mathrm{O}\left((1-r)^{-1}\right), \quad \text { as } r \rightarrow 1, \text { for every } \theta \in \mathbb{R}
$$

This is the best that can be said. Indeed, if $q \in \mathbb{N}$ is sufficiently large, there is $C_{q}>0$ such that

$$
f(z)=C_{q} \sum_{k=0}^{\infty} z^{q^{k}}, \quad z \in \Delta,
$$

satisfies $f \in \mathcal{B}$ and

$$
\left|f^{\prime}(z)\right| \geq \frac{1}{1-|z|^{2}} \quad \text { if } \quad 1-\frac{1}{q^{k}} \leq|z| \leq 1-\frac{1}{q^{k+\frac{1}{2}}},
$$

(see [19]) which implies

$$
\limsup _{r \rightarrow 1}\left(1-r^{2}\right)\left|f^{\prime}\left(r e^{i \theta}\right)\right| \geq 1, \quad \text { for every } \theta
$$

If $f \in B M O A$, then it has a finite non-tangential limit $f\left(e^{i \theta}\right)$ for almost every $\theta \in \mathbb{R}$, so, by a result of Zygmund [22, p. 181], it follows that for almost every θ,

$$
\begin{equation*}
\left|f^{\prime}\left(r e^{i \theta}\right)\right|=o\left((1-r)^{-1}\right), \quad \text { as } r \rightarrow 1 \tag{7}
\end{equation*}
$$

This result is also sharp in the sense that the right hand side of (7) cannot be substituted by $\mathrm{O}\left((1-r)^{-\alpha}\right)$ for any $\alpha<1$. Indeed, if

$$
f(z)=\sum_{k=1}^{\infty} \frac{1}{k} z^{2^{k}}, \quad z \in \Delta
$$

then, since f is given by a power series with Hadamard gaps in H^{2}, we have $f \in B M O A$. Also, by Lemma 1 [22, p. 197], the fact $\sum_{k=1}^{\infty} \frac{1}{k}=\infty$ implies

$$
\begin{equation*}
\int_{0}^{1}\left|f^{\prime}\left(r e^{i \theta}\right)\right| d r=\infty, \quad \text { for every } \theta \in \mathbb{R} . \tag{8}
\end{equation*}
$$

Consequently, we have proved the following

Proposition 1. There exists $f \in B M O A$ such that, for any $\alpha<1$ and any θ

$$
\left|f^{\prime}\left(r e^{i \theta}\right)\right| \neq O\left((1-r)^{-\alpha}\right), \quad \text { as } r \rightarrow 1
$$

However, an estimate which is much stronger than (7) is true for the Dirichlet space \mathcal{D}. Seidel and Walsh [20, Thm. 6] proved that if $f \in \mathcal{D}$ then, for a.e. θ,

$$
\begin{equation*}
\left|f^{\prime}\left(r e^{i \theta}\right)\right|=\mathrm{o}\left((1-r)^{-1 / 2}\right), \quad \text { as } r \rightarrow 1, \tag{9}
\end{equation*}
$$

and Girela [13] proved that this is sharp in a very strong sense.
Now, we shall consider these questions for Q_{p} spaces, $0<p \leq 1$. We can prove the following results.

Theorem 3. If $f \in Q_{p}, 0<p \leq 1$, then for a.e. θ,

$$
\begin{equation*}
\left|f^{\prime}\left(r e^{i \theta}\right)\right|=o\left((1-r)^{-(p+1) / 2}\right), \quad \text { as } r \rightarrow 1 \tag{10}
\end{equation*}
$$

Theorem 4. Let $0<p \leq 1$, and let ϕ be a positive increasing function in $(0,1)$ such that

$$
\begin{equation*}
\int_{0}^{1}(1-r)^{p} \phi^{2}(r) d r<\infty . \tag{11}
\end{equation*}
$$

Then there exists $f \in Q_{p}$ such that, for every θ,

$$
\begin{equation*}
\limsup _{r \rightarrow 1^{-}} \frac{\left|f^{\prime}\left(r e^{i \theta}\right)\right|}{\phi(r)}=\infty . \tag{12}
\end{equation*}
$$

We remark that Theorem 4 for $p=1$ represents an improvement of Proposition 1.

Finally, let us mention that the techniques used in this work are related to those used by Kennedy [17] and by Girela [13]. Also, we will adopt the convention that C will always denote a positive constant, independent of r, which may be different on other occasion.
2. Proofs of Theorems 1 and 2. Let $f \in Q_{p}$, with $0<p<1$. By Jensen's inequality, we have

$$
\begin{aligned}
\exp \left(2 T\left(r, f^{\prime}\right)\right) & =\exp \left(\frac{1}{2 \pi} \int_{-\pi}^{\pi} 2 \log ^{+}\left|f^{\prime}\left(r e^{i \theta}\right)\right| d \theta\right) \\
& \leq \exp \left(\frac{1}{2 \pi} \int_{-\pi}^{\pi} \log \left(1+\left|f^{\prime}\left(r e^{i \theta}\right)\right|^{2}\right) d \theta\right) \\
& \leq \frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(1+\left|f^{\prime}\left(r e^{i \theta}\right)\right|^{2}\right) d \theta .
\end{aligned}
$$

Multiplying by $(1-r)^{p}$ and integrating, we obtain

$$
\int_{0}^{1}(1-r)^{p} \exp \left(2 T\left(r, f^{\prime}\right)\right) d r \leq \frac{1}{2 \pi} \int_{0}^{1} \int_{-\pi}^{\pi}(1-r)^{p}\left(1+\left|f^{\prime}\left(r e^{i \theta}\right)\right|^{2}\right) d \theta d r .
$$

We now refer to [4, Thm. 1.1], where it is shown that a function f is in $Q_{p}, 0<p \leq 1$, if and only if $d \mu(z)=(1-|z|)^{p}\left|f^{\prime}(z)\right|^{2} d x d y$ is a p Carleson measure. A p-Carleson measure is a finite Borel measure μ in Δ for which there exists a constant $c>0$ such that for all intervals I of the form $I=\left(\theta_{0}, \theta_{0}+h\right), \theta_{0} \in \mathbb{R}$ and $0<h<1$, we have

$$
\mu(S(I)) \leq c h^{p}
$$

where $S(I)$ is the classical Carleson square,

$$
S(I)=\left\{r e^{i \theta}: \theta_{0}<\theta<\theta_{0}+h, 1-h<r<1\right\} .
$$

All this tells us that the term on the right hand side of the above inequality is finite, and therefore Theorem 1 follows.

To prove Theorem 2, take $0<p<1$, and ϕ as in the statement. Since ϕ is increasing, (iii) implies

$$
\begin{aligned}
\infty & >\int_{0}^{1}(1-r)^{p} \exp (2 \phi(r)) d r \geq \sum_{k=1}^{\infty} \int_{1-2^{-k}}^{1-2^{-(k+1)}}(1-r)^{p} \exp (2 \phi(r)) d r \\
& \geq \sum_{k=1}^{\infty} 2^{-(k+1)(p+1)} \exp \left(2 \phi\left(1-2^{-k}\right)\right) \\
& =2^{-(p+1)} \sum_{k=1}^{\infty} 2^{-k(p+1)} \exp \left(2 \phi\left(1-2^{-k}\right)\right) .
\end{aligned}
$$

So (see for instance [18, Dini's Thm, p. 297] there exists an increasing sequence $\left\{\alpha_{k}\right\}$ of integers greater than 2 , such that

$$
\begin{equation*}
\sum_{k=1}^{\infty} \alpha_{k}^{2} 2^{-k(p+1)} \exp \left(2 \phi\left(1-2^{-k}\right)\right)<\infty, \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha_{k} \longrightarrow \infty, \quad \alpha_{k+1} / \alpha_{k} \longrightarrow 1 \quad \text { as } k \rightarrow \infty . \tag{14}
\end{equation*}
$$

Observe that condition (13) implies

$$
\begin{equation*}
\sum_{k=1}^{\infty} \alpha_{k}^{p+1} 2^{-k(p+1)} \exp \left(2 \phi\left(1-2^{-k}\right)\right)<\infty . \tag{15}
\end{equation*}
$$

Define now

$$
\begin{equation*}
n_{1}=1, \quad n_{k+1}=\alpha_{k} n_{k}, \quad k=1,2, \ldots \tag{16}
\end{equation*}
$$

Clearly $n_{k+1}>2^{k}$ for $k \geq 1$ and by (i) we obtain

$$
\alpha_{k}^{p+1} n_{k+1}^{-(p+1)} \exp \left(2 \phi\left(1-n_{k+1}^{-1}\right)\right) \leq \alpha_{k}^{p+1} 2^{-k(p+1)} \exp \left(2 \phi\left(1-2^{-k}\right)\right)
$$

which, together with (15) and (16), yields

$$
\begin{equation*}
\sum_{k=1}^{\infty} n_{k}^{-(p+1)} \exp \left(2 \phi\left(1-n_{k+1}^{-1}\right)\right)<\infty \tag{17}
\end{equation*}
$$

For each $k=1,2, \ldots$, set

$$
\begin{equation*}
c_{k}=10 n_{k}^{-1} \exp \left(\phi\left(1-n_{k+1}^{-1}\right)\right), \tag{18}
\end{equation*}
$$

and define the function

$$
\begin{equation*}
f(z)=\sum_{k=1}^{\infty} c_{k} z^{n_{k}}, \quad z \in \Delta \tag{19}
\end{equation*}
$$

The way in which n_{k} and c_{k} have been chosen shows that f is a power series with Hadamard gaps defined in Δ. So in order to see that $f \in Q_{p}$, we will use the following result proved in [5].
Theorem A. If $0<p \leq 1$, and $f(z)=\sum_{k=0}^{\infty} c_{k} z^{n_{k}}$ is a power series with Hadamard gaps, then

$$
\begin{equation*}
f \in Q_{p} \Longleftrightarrow f \in Q_{p, 0} \Longleftrightarrow \sum_{k=0}^{\infty} 2^{k(1-p)} \sum_{\left\{j: n_{j} \in I_{k}\right\}}\left|c_{j}\right|^{2}<\infty \tag{20}
\end{equation*}
$$

where $I_{k}=\left\{n \in \mathbb{N}: 2^{k} \leq n<2^{k+1}\right\}, k=0,1, \ldots$.
For each $j \in \mathbb{N}$, let $k(j)$ be the unique non-negative integer such that $2^{k(j)} \leq n_{j}<2^{k(j)+1}$. Bearing in mind this and (17), we have

$$
\begin{aligned}
\sum_{k=0}^{\infty} 2^{k(1-p)} \sum_{\left\{j: n_{j} \in I_{k}\right\}}\left|c_{j}\right|^{2} & =\sum_{j=1}^{\infty} 2^{k(j)(1-p)}\left|c_{j}\right|^{2} \\
& =10^{2} \sum_{j=1}^{\infty} 2^{k(j)(1-p)} n_{j}^{-2} \exp \left(2 \phi\left(1-n_{j+1}^{-1}\right)\right) \\
& \leq 10^{2} \sum_{j=1}^{\infty} n_{j}^{-(p+1)} \exp \left(2 \phi\left(1-n_{j+1}^{-1}\right)\right)<\infty .
\end{aligned}
$$

Hence, $f \in Q_{p}$.
Next, we show that f satisfies (6). Observe that for $k \geq 2$ and $|z|=$ $1-\frac{1}{n_{k}}$,

$$
\begin{aligned}
\left|f^{\prime}(z)\right| & \geq\left|z f^{\prime}(z)\right|=\left|\sum_{j=1}^{\infty} c_{j} n_{j} z^{n_{j}}\right| \\
& \geq c_{k} n_{k}|z|^{n_{k}}-\sum_{j=1}^{k-1} c_{j} n_{j}|z|^{n_{j}}-\sum_{j=k+1}^{\infty} c_{j} n_{j}|z|^{n_{j}} \\
& \geq c_{k} n_{k}\left(1-\frac{1}{n_{k}}\right)^{n_{k}}-\sum_{j=1}^{k-1} c_{j} n_{j}-\sum_{j=k+1}^{\infty} c_{j} n_{j}\left(1-\frac{1}{n_{k}}\right)^{n_{j}} \\
& =(\mathrm{I})-(\mathrm{II})-\text { (III). }
\end{aligned}
$$

Since the sequence $\left(1-\frac{1}{n}\right)^{n}$ increases with n, and $n_{k} \geq 2$,

$$
\begin{equation*}
\text { (I) } \geq \frac{1}{4} c_{k} n_{k} \text {. } \tag{21}
\end{equation*}
$$

Now, in order to estimate (II) and (III), we will use the following lemma stated in [17, p. 339].
Lemma 1. If $\left\{s_{k}\right\}$ is a sequence of positive numbers and $s_{k} / s_{k+1} \rightarrow 0$ as $k \rightarrow \infty$, then,

$$
\sum_{j=1}^{k-1} s_{j}=o\left(s_{k}\right), \quad \text { and } \quad \sum_{j=k+1}^{\infty} s_{j}^{-1}=o\left(s_{k}^{-1}\right) \quad \text { as } k \rightarrow \infty
$$

Notice that by (18), (ii), (16), and (14),

$$
\frac{c_{k} n_{k}}{c_{k+1} n_{k+1}}=\exp \left(\phi\left(1-n_{k+1}^{-1}\right)-\phi\left(1-n_{k+2}^{-1}\right)\right) \rightarrow \infty \quad \text { as } k \rightarrow \infty,
$$

so by the lemma,

$$
\begin{equation*}
\text { (II) }=\mathrm{o}\left(c_{k} n_{k}\right), \quad \text { as } k \rightarrow \infty . \tag{22}
\end{equation*}
$$

Now using the elementary inequality $(1-x)^{n}<2(n x)^{-2}$, valid for $0<$ $x<1$ and $n \geq 1$, we obtain

$$
\begin{equation*}
(\mathrm{III}) \leq 2 n_{k}^{2} \sum_{j=k+1}^{\infty} \frac{c_{j}}{n_{j}} . \tag{23}
\end{equation*}
$$

But also, by (18), (16), (i), and (14),

$$
\begin{aligned}
\frac{n_{k} / c_{k}}{n_{k+1} / c_{k+1}} & =\frac{1}{\alpha_{k}^{2}} \frac{\exp \phi\left(1-n_{k+2}^{-1}\right)}{\exp \phi\left(1-n_{k+1}^{-1}\right)} \leq \frac{1}{\alpha_{k}^{2}}\left(\frac{n_{k+2}}{n_{k+1}}\right)^{\frac{p+1}{2}} \\
& =\frac{1}{\alpha_{k}^{(3-p) / 2}}\left(\frac{\alpha_{k+1}}{\alpha_{k}}\right)^{\frac{p+1}{2}} \rightarrow 0
\end{aligned}
$$

so by (23) and the lemma again,

$$
\begin{equation*}
(\mathrm{III})=\mathrm{o}\left(c_{k} n_{k}\right), \quad \text { as } k \rightarrow \infty \tag{24}
\end{equation*}
$$

Therefore, by $(21),(22)$, and (24), there exists k_{0} such that for all $k \geq k_{0}$,

$$
\left|f^{\prime}(z)\right|>\frac{1}{8} c_{k} n_{k}>\exp \phi\left(1-\frac{1}{n_{k+1}}\right), \quad|z|=1-\frac{1}{n_{k}}
$$

Thus, for $k \geq k_{0}$,

$$
T\left(1-\frac{1}{n_{k}}, f^{\prime}\right)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \log ^{+}\left|f^{\prime}\left(\left(1-\frac{1}{n_{k}}\right) e^{i \theta}\right)\right| d \theta>\phi\left(1-\frac{1}{n_{k+1}}\right)
$$

Now, if $r \geq 1-\left(n_{k_{0}}\right)^{-1}$, take $k \geq k_{0}$ such that $1-\left(n_{k}\right)^{-1} \leq r<1-\left(n_{k+1}\right)^{-1}$. Since T and ϕ are increasing functions of r, we obtain

$$
T\left(r, f^{\prime}\right) \geq T\left(1-\frac{1}{n_{k}}, f^{\prime}\right)>\phi\left(1-\frac{1}{n_{k+1}}\right) \geq \phi(r)
$$

This completes the proof of Theorem 2.
2. Proofs of Theorems 3 and 4. We start proving Theorem 3. Let $f \in Q_{p}$. Set

$$
F_{r}(\theta)=\max _{0 \leq \rho \leq r}\left|f^{\prime}\left(\rho e^{i \theta}\right)\right|^{2}, \quad 0<r<1, \theta \in \mathbb{R}
$$

By the Hardy-Littlewood Maximal Theorem,

$$
\int_{-\pi}^{\pi} F_{r}(\theta) d \theta \leq C \int_{-\pi}^{\pi}\left|f^{\prime}\left(r e^{i \theta}\right)\right|^{2} d \theta, \quad 0<r<1
$$

Since $g(z, 0)=\log \frac{1}{|z|}$ and $f \in Q_{p}$, we have

$$
\int_{0}^{1} \int_{-\pi}^{\pi} F_{r}(\theta)\left(\log \frac{1}{r}\right)^{p} r d \theta d r \leq C \int_{0}^{1} \int_{-\pi}^{\pi}\left|f^{\prime}\left(r e^{i \theta}\right)\right|^{2} g\left(r e^{i \theta}, 0\right)^{p} r d \theta d r<\infty
$$

Hence we deduce that

$$
\int_{0}^{1} F_{r}(\theta)\left(\log \frac{1}{r}\right)^{p} r d r<\infty, \quad \text { a.e. } \theta,
$$

which yields, by means of the equivalence $\log \frac{1}{r} \sim(1-r)$ as $r \rightarrow 1$,

$$
\lim _{r \rightarrow 1} \int_{r}^{1} F_{s}(\theta)(1-s)^{p} d s=0, \quad \text { a.e. } \theta .
$$

Since F is an increasing function of r, we have for a.e. θ

$$
\left|f^{\prime}\left(r e^{i \theta}\right)\right|^{2} \frac{(1-r)^{p+1}}{p+1} \leq F_{r}(\theta) \int_{r}^{1}(1-s)^{p} d s \leq \int_{r}^{1} F_{s}(\theta)(1-s)^{p} d s \underset{r \rightarrow 1}{\longrightarrow} 0
$$

and (10) follows.
Proof of Theorem 4. We may assume without loss of generality that $\phi(r) \nearrow \infty$ as $r \nearrow 1$. Also, it suffices to prove that there exist $f \in Q_{p}$ and $C>0$ such that for every θ

$$
\begin{equation*}
\limsup _{r \rightarrow 1} \frac{\left|f^{\prime}\left(r e^{i \theta}\right)\right|}{\phi(r)} \geq C . \tag{25}
\end{equation*}
$$

The reason for this is that if ϕ is a positive increasing function in $(0,1)$ satisfying (11), then it is possible to find ϕ_{1}, positive and increasing in $(0,1)$ with $\lim _{r \rightarrow 1} \phi_{1}(r)=\infty$, and such that

$$
\int_{0}^{1}(1-r)^{p} \phi^{2}(r) \phi_{1}^{2}(r) d r<\infty .
$$

Clearly, if there are $f \in Q_{p}$ and $C>0$ satisfying (25) for every θ, with ϕ replaced by $\phi \phi_{1}$, then the same f satisfies equation (12) for every θ.

With these assumptions we may start the proof. Take a sequence $\left\{r_{k}\right\} \nearrow 1$, with $r_{1}>1 / 4$, which satisfies

$$
\begin{align*}
& r_{k+1}-r_{k}>\frac{1}{2}\left(1-r_{k}\right), \quad \text { for all } k \tag{26}\\
& \phi\left(r_{k+1}\right) / \phi\left(r_{k}\right) \rightarrow \infty \quad \text { as } k \rightarrow \infty \tag{27}\\
& \frac{\left(1-r_{k+1}\right)^{\frac{3-p}{2}}}{\left(1-r_{k}\right)^{2}}=\mathrm{O}(1), \quad \text { as } k \rightarrow \infty \tag{28}
\end{align*}
$$

It follows from (26) that for all k

$$
\begin{equation*}
1-r_{k+1}<\frac{1}{2}\left(1-r_{k}\right)<r_{k+1}-r_{k} . \tag{29}
\end{equation*}
$$

Bearing this in mind, observe that for all $k \in \mathbb{N}$

$$
\int_{r_{k}}^{r_{k+1}}(1-r)^{p} d r=\frac{1}{1+p}\left(\left(1-r_{k}\right)^{1+p}-\left(1-r_{k+1}\right)^{1+p}\right) \geq \frac{1-2^{-(1+p)}}{1+p}\left(1-r_{k}\right)^{1+p} .
$$

Since ϕ is increasing, (11) implies

$$
\begin{align*}
\sum_{k=1}^{\infty}\left(1-r_{k}\right)^{1+p} \phi^{2}\left(r_{k}\right) & \leq \frac{1+p}{1-2^{-(1+p)}} \sum_{k=1}^{\infty} \int_{r_{k}}^{r_{k+1}}(1-r)^{p} \phi^{2}\left(r_{k}\right) d r \\
& \leq \frac{1+p}{1-2^{-(1+p)}} \sum_{k=1}^{\infty} \int_{r_{k}}^{r_{k+1}}(1-r)^{p} \phi^{2}(r) d r \tag{30}\\
& \leq \frac{1+p}{1-2^{-(1+p)}} \int_{0}^{1}(1-r)^{p} \phi^{2}(r) d r<\infty
\end{align*}
$$

Now, for each k, let n_{k} be the unique non-negative integer such that

$$
n_{k} \leq \frac{1}{1-r_{k}}<n_{k}+1
$$

This implies, together with the facts that $\left\{r_{k}\right\}$ is increasing and $r_{1} \geq 1 / 4$,

$$
\begin{equation*}
1-\frac{1}{n_{k}} \leq r_{k}<1-\frac{1}{n_{k}+1}, \quad \text { and } \quad \frac{1}{4}<n_{k}\left(1-r_{k}\right) \leq 1 \tag{31}
\end{equation*}
$$

Define now

$$
f(z)=\sum_{k=1}^{\infty}\left(1-r_{k}\right) \phi\left(r_{k}\right) z^{n_{k}}
$$

By (30), f is analytic in Δ. Moreover, f is a power series with Hadamard gaps. Indeed, by the definition of n_{k} and by (29),

$$
\frac{n_{k+1}}{n_{k}} \geq \frac{\frac{1}{1-r_{k+1}}-1}{\frac{1}{1-r_{k}}}=\frac{1-r_{k}}{1-r_{k+1}}-\left(1-r_{k}\right)>2-\frac{3}{4}>1, \quad \text { all } k .
$$

We now check that f is in Q_{p}. To this end we use Theorem A. For each j, let $k(j)$ be the unique non-negative integer such that

$$
2^{k(j)} \leq n_{j}<2^{k(j)+1}
$$

In this situation, we have by (31) and (30),

$$
\begin{array}{r}
\sum_{k=0}^{\infty} 2^{k(1-p)} \sum_{2^{k} \leq n_{j}<2^{k+1}}\left(1-r_{j}\right)^{2} \phi^{2}\left(r_{j}\right)=\sum_{j=1}^{\infty} 2^{k(j)(1-p)}\left(1-r_{j}\right)^{2} \phi^{2}\left(r_{j}\right) \\
\leq \sum_{j=1}^{\infty} n_{j}^{1-p}\left(1-r_{j}\right)^{2} \phi^{2}\left(r_{j}\right) \leq \sum_{j=1}^{\infty}\left(1-r_{j}\right)^{1+p} \phi^{2}\left(r_{j}\right)<\infty
\end{array}
$$

This shows that $f \in Q_{p}$.
Next, to show that f satisfies (25), it suffices to find a constant $C>0$ and $k_{0} \in \mathbb{N}$ such that

$$
\frac{\left|f^{\prime}\left(r_{k} e^{i \theta}\right)\right|}{\phi\left(r_{k}\right)} \geq C \text { for every } \theta \text { and all } k \geq k_{0} .
$$

If $|z|=r_{k}(k \geq 2)$ then, (31) and $r_{k}^{n_{j}} \leq 1$ imply

$$
\begin{aligned}
\left|f^{\prime}(z)\right| & \geq\left|z f^{\prime}(z)\right|=\left|\sum_{j=1}^{\infty} n_{j}\left(1-r_{j}\right) \phi\left(r_{j}\right) z^{n_{j}}\right| \\
& \geq n_{k}\left(1-r_{k}\right) \phi\left(r_{k}\right) r_{k}^{n_{k}}-\sum_{j \neq k} n_{j}\left(1-r_{j}\right) \phi\left(r_{j}\right) r_{k}^{n_{j}} \\
& \geq \frac{1}{4} \phi\left(r_{k}\right)\left(1-\frac{1}{n_{k}}\right)^{n_{k}}-\sum_{j=1}^{k-1} \phi\left(r_{j}\right)-\sum_{j=k+1}^{\infty} \phi\left(r_{j}\right)\left(1-\frac{1}{n_{k}+1}\right)^{n_{j}} \\
& =(\mathrm{I})-(\mathrm{II})-(\mathrm{III}) .
\end{aligned}
$$

The procedure now is basically the same as in the proof of Theorem 2. Since the sequence $\left(1-\frac{1}{n}\right)^{n}$ increases with n and $n_{k} \geq 2$, we have (I) \geq $C \phi\left(r_{k}\right)$. Now, by (27) and Lemma 1 we obtain (II) $=o\left(\phi\left(r_{k}\right)\right)$. Finally, as in (23), we deduce

$$
(\mathrm{III}) \leq 2\left(n_{k}+1\right)^{2} \sum_{j=k+1}^{\infty} \frac{\phi\left(r_{j}\right)}{n_{j}^{2}} .
$$

But by (31), (28) and (30),

$$
\begin{aligned}
\frac{n_{j}^{2} / \phi\left(r_{j}\right)}{n_{j+1}^{2} / \phi\left(r_{j+1}\right)} & \leq \frac{16}{\phi(1 / 4)} \frac{\left(1-r_{j+1}\right)^{2} \phi\left(r_{j+1}\right)}{\left(1-r_{j}\right)^{2}} \\
& =\frac{16}{\phi(1 / 4)} \frac{\left(1-r_{j+1}\right)^{\frac{3-p}{2}}}{\left(1-r_{j}\right)^{2}}\left(1-r_{j+1}\right)^{\frac{1+p}{2}} \phi\left(r_{j+1}\right) \underset{j \rightarrow \infty}{\longrightarrow} 0
\end{aligned}
$$

so by Lemma 1 ,

$$
\sum_{j=k+1}^{\infty} \frac{\phi\left(r_{j}\right)}{n_{j}^{2}}=\mathrm{o}\left(\frac{\phi\left(r_{k}\right)}{n_{k}^{2}}\right),
$$

which implies (III) $=\mathrm{o}\left(\phi\left(r_{k}\right)\right)$. This completes the proof of Theorem 4.

4. Remarks.

Remark 1. The estimate given in Theorem 3 allows us to say something about the radial variation of functions in the Q_{p} spaces. We start recalling some definitions. For a function f analytic in the unit disk Δ and $\theta \in$ $[-\pi, \pi]$, the quantity

$$
V(f, \theta)=\int_{0}^{1}\left|f^{\prime}\left(r e^{i \theta}\right)\right| d r
$$

denotes the radial variation of f along the radius $\left[0, e^{i \theta}\right]$, i.e., the length of the image of this radius under the mapping f. The exceptional set $E(f)$ associated to f is then defined as

$$
E(f)=\left\{e^{i \theta} \in \partial \Delta: V(f, \theta)=\infty\right\}
$$

Since $\int_{0}^{1}(1-r)^{-(p+1) / 2} d r$ is finite if and only if $p<1$, then an immediate consequence of Theorem 3 is the following

Theorem 5. If $f \in Q_{p}, 0<p<1$, then the exceptional set $E(f)$ has linear measure 0.

Observe that nothing of this kind can be stated for Q_{p} with $p \geq 1$. Indeed, as we have noticed above before Proposition 1, if $f(z)=\sum_{k=1}^{\infty} \frac{1}{k} z^{2^{k}}$, then $f \in B M O A=Q_{1}$ and $V(f, \theta)=\infty$ for every θ.

On the other hand, for functions in the Dirichlet class $\mathcal{D} \equiv Q_{0}$ there is a more precise result due to Beurling [7].

Theorem B. If $f \in \mathcal{D}$, then the exceptional set $E(f)$ has a zero logarithmic capacity.

We refer to $[10,16,21]$ for the definition and basic results about capacities and Hausdorff measures. We do not know whether the conclusion of Theorem B is true for $Q_{p}, 0<p<1$. However, something can be said. For $0<p<1$, let \mathcal{D}_{p} be the space of functions $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$, analytic in Δ such that

$$
\sum_{n=1}^{\infty} n^{1-p}\left|a_{n}\right|^{2}<\infty
$$

Zygmund proved the following result (see [16, Ch. 4]).
Theorem C. If $f \in \mathcal{D}_{p}, 0<p<1$, then the exceptional set $E(f)$ has zero p-capacity. Conversely, if E is a set of zero p-capacity, then there is $f \in \mathcal{D}_{p}$ whose exceptional set contains E.

It is not difficult to see that $f \in Q_{p}, 0<p<1$ implies $f \in \mathcal{D}_{p}$. In fact, if $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n} \in Q_{p}, 0<p<1$, there exists $C>0$ such that

$$
\iint_{\Delta}\left|f^{\prime}(z)\right|^{2} g^{p}(z, a) d x d y<C, \quad \text { for all } a \in \Delta
$$

In particular, we have for $a=0$, using properties of the Beta function and Stirling's formula for the Gamma function: $\Gamma(t+1) \sim t^{t} e^{-t}(2 \pi t)^{1 / 2}$,

$$
\begin{aligned}
\infty & >\int_{0}^{1} \int_{-\pi}^{\pi}\left|f^{\prime}\left(r e^{i \theta}\right)\right|^{2} \log ^{p} \frac{1}{r} r d r d \theta=\sum_{n=1}^{\infty} n^{2}\left|a_{n}\right|^{2} \int_{0}^{1} r^{2 n-1} \log ^{p} \frac{1}{r} d r \\
& \geq \sum_{n=1}^{\infty} n^{2}\left|a_{n}\right|^{2} \int_{0}^{1} r^{2 n-1}(1-r)^{p} d r=\sum_{n=1}^{\infty} n^{2}\left|a_{n}\right|^{2} \mathrm{~B}(2 n, p+1) \\
& =\sum_{n=1}^{\infty} n^{2}\left|a_{n}\right|^{2} \frac{\Gamma(2 n) \Gamma(p+1)}{\Gamma(2 n+p+1)} \approx \sum_{n=1}^{\infty} n^{1-p}\left|a_{n}\right|^{2} .
\end{aligned}
$$

Therefore, an immediate consequence of Zygmund's result is the following
Theorem 6. If $f \in Q_{p}, 0<p<1$, then the exceptional set $E(f)$ has zero p-capacity.

However, we do not know whether for a given set E of null p-capacity there is $f \in Q_{p}$ whose exceptional set contains E.

Remark 2. From Beurling's result (Theorem B), it follows that any $f \in \mathcal{D}$ has non-tangential limit everywhere except for a set of null logarithmic capacity, and then

$$
\begin{equation*}
\left|f^{\prime}\left(r e^{i \theta}\right)\right|=\mathrm{o}\left((1-r)^{-1}\right) \text { as } r \rightarrow 1, \tag{32}
\end{equation*}
$$

whenever $e^{i \theta}$ is a point at which f has a finite non-tangential limit.
This implies that for $f \in \mathcal{D}$ the estimate (32) holds for every $\theta \in(-\pi, \pi]$, except for a set of null logarithmic capacity. Girela [15] showed that this estimate is sharp in a very strong sense. In our case, using Theorem 6 and (32), we obtain a similar result for $Q_{p}, 0<p<1$, although we do not know whether it is sharp in the sense given by Girela.

Theorem 7. If $f \in Q_{p}, 0<p<1$, then

$$
\left|f^{\prime}\left(r e^{i \theta}\right)\right|=o\left((1-r)^{-1}\right) \text { as } r \rightarrow 1,
$$

for every $\theta \in(-\pi, \pi]$, except for a set of null p-capacity.

References

[1] Anderson, J.M., J. Clunie and Ch. Pommerenke, On Bloch functions and normal functions, J. Reine Angew. Math. 270 (1974), 12-37.
[2] Aulaskari, R., G. Csordas, Besov spaces and the $Q_{q, 0}$ classes, Acta Sci. Math. (Szeged) 60 (1995), 31-48.
[3] Aulaskari, R., P. Lappan, Criteria for an analytic function to be Bloch and a harmonic or meromorphic function to be normal, Complex Analysis and its Applications (Harlow), Pitman Research Notes in Math, vol. 305, Longman Scientific and Technical, 1994, pp. 136-146.
[4] Aulaskari, R., D.A. Stegenga and J. Xiao, Some subclasses of BMOA and their characterizations in terms of Carleson measures, Rocky Mountain J. Math. 26 (1996), 485-506.
[5] Aulaskari, R., J. Xiao and R. Zhao, On subspaces and subsets of $B M O A$ and $U B C$, Analysis 15 (1995), 101-121.
[6] Baernstein, A., Analytic functions of bounded mean oscillation, Aspects of Contemporary Complex Analysis (D. Brannan and J. Clunie, eds.), Academic Press, 1980, pp. 3-36.
[7] Beurling, A., Ensembles exceptionnels, Acta Math. 72 (1940), 1-13.
[8] Duren, P.L., Theory of H^{p} spaces, Academic Press, New York, 1970.
[9] Essén, M., J. Xiao, Some results on Q_{p} spaces, $0<p<1$, J. Reine Angew. Math. 485 (1997), 173-195.
[10] Frostman, O., Potential d'équilibre et capacité des ensembles avec quelques applications à la théorie des fonctions, Meddel. Lunds Univ. Mat. Sem. 3 (1935), 173-195.
[11] , Sur les produits de Blaschke, Kung. Fysiogr. Sällsk. i Lund Förh 12 (1942), no. 15, 169-182.
[12] Garnett, J.B., Bounded analytic functions, Academic Press, New York, 1981.
[13] Girela,D., On analytic functions with finite Dirichlet integral, Complex Variables 12 (1989), 9-15.
[14] , On Bloch functions and gap series, Publicacions Matemàtiques 35 (1991), 403-427.
[15] _, Radial growth and variation of univalent functions and of Dirichlet finite holomorphic functions, Colloq. Math. LXIX (1995), no. 1, 19-28.
[16] Kahane, J-P., R. Salem, Ensembles parfaits et séries trigonométriques, seconde éd., Hermann, Paris, 1994.
[17] Kennedy, P.B., On the derivative of a function of bounded characteristic, Quart. J. Math. Oxford 15 (1964), no. 2, 337-341.
[18] Knopp, K., Theory and applications of infinite series, Hafner Publishing Co., New York, 1971.
[19] Ramey, W., D. Ullrich, Bounded mean oscillation of Bloch pullbacks, Math. Ann. 291 (1991), 591-606.
[20] Seidel,W., J.L. Walsh, On the derivatives of functions analytic in the unit disc and their radii of univalence and of p-valence, Trans. Amer. Math. Soc. 52 (1942), 128-216.
[21] Tsuji, M., Potential theory in modern function theory, Chelsea, New York, 1975.
[22] Zygmund, A., On certain integrals, Trans. Amer. Math. Soc. 55 (1944), 170-204.
Dept. Análisis Matemático
received May 11, 2000
Fac. Ciencias
Univ. Málaga
29071 Málaga, Spain
e-mail: gonzalez@anamat.cie.uma.es
e-mail: marquez@anamat.cie.uma.es

[^0]: 2000 Mathematics Subject Classification. Primary 30D50, 30D45; Secondary 30B10, 31A15.

 Key words and phrases. Q_{p} spaces, Bloch spaces, BMOA, Dirichlet class, Nevanlinna characteristic, radial variation, Hadamard gaps.

 Research partially supported by Grants from the D.G.E.S. (Spain) PB97-1081, and from La Junta de Andalucía FQM-210

