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On the growth of the derivative

of Qp functions

Abstract. In this paper we investigate some properties of the derivative

of functions in the Qp spaces. We first show that T (r, f ′), the Nevanlinna
characteristic of the derivative of a function f ∈ Qp, 0 < p < 1, satisfies∫ 1

0
(1− r)p exp

(
2T (r, f ′)

)
dr <∞,

and that this estimate is sharp in a very strong sense, extending thus a

similar result of Kennedy for functions in the Nevanlinna class.

We also obtain several results concerning the radial growth of the deriv-
ative of Qp functions.

1. Introduction and statements of results. Let ∆ denote the unit disk
{z ∈ C : |z| < 1}. The Nevanlinna characteristic of an analytic function f
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in ∆ is defined by

T (r, f) =
1
2π

∫ π

−π

log+
∣∣f(reiθ)

∣∣dθ, 0 ≤ r < 1.

The Nevanlinna class N consists of functions f analytic in ∆ such that

sup
0≤r<1

T (r, f) < ∞.

It is well known that the condition f ∈ N does not imply f ′ ∈ N . This was
first proved by O. Frostman [11], who showed the existence of a Blaschke
product whose derivative is not of bounded characteristic. Subsequently
many other examples have been given. Kennedy [17] obtained the sharp
bound on the growth of T (r, f ′) for f ∈ N . Namely, he proved that if
f ∈ N , then

(1)
∫ 1

0

(1− r) exp
(
2T (r, f ′)

)
dr < ∞,

and showed that this result is sharp in the sense that if φ is a positive
increasing function in (0, 1) which satisfies certain “regularity conditions”
and is such that ∫ 1

0

(1− r) exp
(
2φ(r)

)
dr < ∞,

then there exists f ∈ N such that T (r, f ′) > φ(r) for all r sufficiently close
to 1.

Since T (r, f ′) is an increasing function of r, (1) easily implies for f ∈ N

(2) log
1

1− r
− T (r, f ′) −→∞ as r → 1.

For 0 < p < ∞ the following spaces are defined:

Qp =
{

f analytic in ∆ : sup
a∈∆

∫∫
∆

∣∣f ′(z)
∣∣2g(z, a)pdxdy < ∞

}
,

Qp,0 =
{

f analytic in ∆ : lim
|a|→1

∫∫
∆

∣∣f ′(z)
∣∣2g(z, a)pdxdy = 0

}
,

where g(z, a) is the Green function of ∆, given by

g(z, a) = log
∣∣∣1− az

z − a

∣∣∣.
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These spaces were introduced by R. Aulaskari and P. Lappan in [3] while
looking for new characterizations of Bloch functions. They proved that for
p > 1,

Qp = B, and Qp,0 = B0.

Recall that the Bloch space B and the little Bloch space B0 consist, re-
spectively, of those functions f analytic in ∆ for which (see [1] for more
information on these spaces)

sup
z∈∆

(
1− |z|2)

∣∣f ′(z)
∣∣ < ∞, and lim

|z|→1

(
1− |z|2)

∣∣f ′(z)
∣∣ = 0.

In fact, Qp spaces put under the same frame a number of important spaces
of functions analytic in ∆. We have, using one of the many characterizations
of the spaces BMOA and V MOA (see, e.g., [6,12]):

Q1 = BMOA, and Q1,0 = V MOA.

We refer to [2,5,4,9] for more properties of Qp spaces.It is shown in [5], that
Qp spaces increase with increasing p,

(3) Qp ⊂ Qq ⊂ BMOA, 0 < p < q < 1,

all the inclusions being strict.
The first object of this paper is to study the possibility of extending

Kennedy’s results to Qp spaces. First of all, let us notice that the function
f constructed by Kennedy to show the sharpness of (1) was given by a
power series with Hadamard gaps, i.e., of the form

f(z) =
∞∑

k=0

ckznk ,
nk+1

nk
≥ λ > 1,

and such that
∑
|ck|2 < ∞. Such a function belongs to BMOA (see

[6, p. 25]) and, even more, to V MOA. Since V MOA ⊂ BMOA ⊂ Hp ⊂ N ,
0 < p < ∞, (we refer to [8] for the theory of Hp spaces,) it follows that (1)
is sharp for V MOA = Q1,0 and, hence, for BMOA = Q1 and for all Hp

spaces with 0 < p < ∞. On the other hand, we remark that Girela [13]
showed that (1) can be improved for the Dirichlet class D, consisting of all
analytic functions in ∆ with a finite Dirichlet integral, i.e., such that∫∫

∆

∣∣f ′(z)
∣∣2dxdy < ∞.

It is worth noticing that D ⊂ Qp,0 for all p > 0, the inclusion being strict,
see [5].
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Now we turn to Qp spaces with p > 1. As said before, Qp = B and
Qp,0 = B0 for all p > 1. We have the following trivial estimate:

f ∈ B =⇒ T (r, f ′) ≤ log
1

1− r
+ O (1), as r → 1.

Girela [14] proved that this is sharp in the sense that there exists f ∈ B
such that

log
1

1− r
− T (r, f ′) = O (1), as r → 1,

and, consequently,

∫ 1

0

(1− r) exp
(
2T (r, f ′)

)
dr = ∞.

Hence, neither (1) nor (2) is true for the Bloch space.
On the other hand, if f ∈ B0 then it trivially satisfies (2). However,

Girela [14] proved that there exists f ∈ B0 which does not satisfy (1).
Hence, it remains to consider Qp spaces with 0 < p < 1. We can prove

the following results.

Theorem 1. If f ∈ Qp, 0 < p < 1, then

(4)
∫ 1

0

(1− r)p exp
(
2T (r, f ′)

)
dr < ∞.

Corollary. If f ∈ Qp, 0 < p < 1, then

(5)
p + 1

2
log

1
1− r

− T (r, f ′)−→
r→1

∞. �

The following theorem shows the sharpness of Theorem 1.

Theorem 2. Let 0 < p < 1, and let φ be a positive increasing function in
(0, 1) satisfying:

(i) (1− r)
p+1
2 expφ(r) decreases as r increases in (0, 1);

(ii) φ(r)− φ(ρ) →∞, as
1− r

1− ρ
→ 0;

(iii)
∫ 1

0

(1− r)p exp
(
2φ(r)

)
dr < ∞.
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Then there exists a function f ∈Qp such that, for all r sufficiently close to
1,

(6) T (r, f ′) > φ(r).

Now we turn our attention to study the radial growth of the derivative
of Qp functions. If p > 1 and f ∈ Qp = B then, trivially,∣∣f ′(reiθ)

∣∣ = O
(
(1− r)−1

)
, as r → 1, for every θ ∈ R.

This is the best that can be said. Indeed, if q ∈ N is sufficiently large, there
is Cq > 0 such that

f(z) = Cq

∞∑
k=0

zqk

, z ∈ ∆,

satisfies f ∈ B and∣∣f ′(z)| ≥ 1
1− |z|2

if 1− 1
qk
≤ |z| ≤ 1− 1

qk+ 1
2
,

(see [19]) which implies

lim sup
r→1

(1− r2)
∣∣f ′(reiθ)

∣∣ ≥ 1, for every θ.

If f ∈ BMOA, then it has a finite non-tangential limit f(eiθ) for almost
every θ ∈ R, so, by a result of Zygmund [22, p. 181], it follows that for
almost every θ,

(7)
∣∣f ′(reiθ)

∣∣ = o
(
(1− r)−1

)
, as r → 1.

This result is also sharp in the sense that the right hand side of (7) cannot
be substituted by O

(
(1− r)−α

)
for any α < 1. Indeed, if

f(z) =
∞∑

k=1

1
k

z2k

, z ∈ ∆,

then, since f is given by a power series with Hadamard gaps in H2, we have
f ∈ BMOA. Also, by Lemma 1 [22, p. 197], the fact

∑∞
k=1

1
k = ∞ implies

(8)
∫ 1

0

∣∣f ′(reiθ)
∣∣dr = ∞, for every θ ∈ R.

Consequently, we have proved the following
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Proposition 1. There exists f ∈ BMOA such that, for any α < 1 and
any θ ∣∣f ′(reiθ)

∣∣ 6= O
(
(1− r)−α

)
, as r → 1.

However, an estimate which is much stronger than (7) is true for the
Dirichlet space D. Seidel and Walsh [20, Thm. 6] proved that if f ∈ D
then, for a.e. θ,

(9)
∣∣f ′(reiθ)

∣∣ = o
(
(1− r)−1/2

)
, as r → 1,

and Girela [13] proved that this is sharp in a very strong sense.
Now, we shall consider these questions for Qp spaces, 0 < p ≤ 1. We can

prove the following results.

Theorem 3. If f ∈ Qp, 0 < p ≤ 1, then for a.e. θ,

(10)
∣∣f ′(reiθ)

∣∣ = o
(
(1− r)−(p+1)/2

)
, as r → 1.

Theorem 4. Let 0 < p ≤ 1, and let φ be a positive increasing function in
(0, 1) such that

(11)
∫ 1

0

(1− r)pφ2(r)dr < ∞.

Then there exists f ∈ Qp such that, for every θ,

(12) lim sup
r→1−

∣∣f ′(reiθ)
∣∣

φ(r)
= ∞.

We remark that Theorem 4 for p = 1 represents an improvement of
Proposition 1.

Finally, let us mention that the techniques used in this work are related
to those used by Kennedy [17] and by Girela [13]. Also, we will adopt the
convention that C will always denote a positive constant, independent of r,
which may be different on other occasion.

2. Proofs of Theorems 1 and 2. Let f ∈ Qp, with 0 < p < 1. By
Jensen’s inequality, we have

exp
(
2T (r, f ′)

)
= exp

(
1
2π

∫ π

−π

2 log+
∣∣f ′(reiθ)

∣∣dθ

)
≤ exp

(
1
2π

∫ π

−π

log
(
1 +

∣∣f ′(reiθ)
∣∣2)dθ

)
≤ 1

2π

∫ π

−π

(
1 +

∣∣f ′(reiθ)
∣∣2)dθ.
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Multiplying by (1− r)p and integrating, we obtain∫ 1

0

(1− r)p exp
(
2T (r, f ′)

)
dr ≤ 1

2π

∫ 1

0

∫ π

−π

(1− r)p
(
1 +

∣∣f ′(reiθ)
∣∣2)dθdr.

We now refer to [4, Thm. 1.1], where it is shown that a function f is
in Qp, 0 < p ≤ 1, if and only if dµ(z) =

(
1 − |z|

)p∣∣f ′(z)
∣∣2dxdy is a p-

Carleson measure. A p-Carleson measure is a finite Borel measure µ in ∆
for which there exists a constant c > 0 such that for all intervals I of the
form I = (θ0, θ0 + h), θ0 ∈ R and 0 < h < 1, we have

µ
(
S(I)

)
≤ chp,

where S(I) is the classical Carleson square,

S(I) = {reiθ : θ0 < θ < θ0 + h, 1− h < r < 1}.

All this tells us that the term on the right hand side of the above inequality
is finite, and therefore Theorem 1 follows. �

To prove Theorem 2, take 0 < p < 1, and φ as in the statement. Since φ
is increasing, (iii) implies

∞ >

∫ 1

0

(1− r)p exp
(
2φ(r)

)
dr ≥

∞∑
k=1

∫ 1−2−(k+1)

1−2−k

(1− r)p exp
(
2φ(r)

)
dr

≥
∞∑

k=1

2−(k+1)(p+1) exp
(
2φ(1− 2−k)

)
= 2−(p+1)

∞∑
k=1

2−k(p+1) exp
(
2φ(1− 2−k)

)
.

So (see for instance [18, Dini’s Thm, p. 297] there exists an increasing
sequence {αk} of integers greater than 2, such that

(13)
∞∑

k=1

α2
k2−k(p+1) exp

(
2φ(1− 2−k)

)
< ∞,

and

(14) αk −→∞ , αk+1/αk −→ 1 as k →∞ .

Observe that condition (13) implies

(15)
∞∑

k=1

αp+1
k 2−k(p+1) exp

(
2φ(1− 2−k)

)
< ∞.
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Define now

(16) n1 = 1, nk+1 = αknk, k = 1, 2, . . . .

Clearly nk+1 > 2k for k ≥ 1 and by (i) we obtain

αp+1
k n

−(p+1)
k+1 exp

(
2φ(1− n−1

k+1)
)
≤ αp+1

k 2−k(p+1) exp
(
2φ(1− 2−k)

)
,

which, together with (15) and (16), yields

(17)
∞∑

k=1

n
−(p+1)
k exp

(
2φ(1− n−1

k+1)
)

< ∞.

For each k = 1, 2, . . . , set

(18) ck = 10 n−1
k exp

(
φ(1− n−1

k+1)
)
,

and define the function

(19) f(z) =
∞∑

k=1

ckznk , z ∈ ∆.

The way in which nk and ck have been chosen shows that f is a power series
with Hadamard gaps defined in ∆. So in order to see that f ∈ Qp, we will
use the following result proved in [5].

Theorem A. If 0 < p ≤ 1, and f(z) =
∑∞

k=0 ckznk is a power series with
Hadamard gaps, then

(20) f ∈ Qp ⇐⇒ f ∈ Qp,0 ⇐⇒
∞∑

k=0

2k(1−p)
∑

{j:nj∈Ik}

|cj |2 < ∞,

where Ik = {n ∈ N : 2k ≤ n < 2k+1}, k = 0, 1, . . . .

For each j ∈ N, let k(j) be the unique non-negative integer such that
2k(j) ≤ nj < 2k(j)+1. Bearing in mind this and (17), we have

∞∑
k=0

2k(1−p)
∑

{j:nj∈Ik}

|cj |2 =
∞∑

j=1

2k(j)(1−p)|cj |2

= 102
∞∑

j=1

2k(j)(1−p)n−2
j exp

(
2φ(1− n−1

j+1)
)

≤ 102
∞∑

j=1

n
−(p+1)
j exp

(
2φ(1− n−1

j+1)
)

< ∞.
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Hence, f ∈ Qp.
Next, we show that f satisfies (6). Observe that for k ≥ 2 and |z| =

1− 1
nk

,

|f ′(z)| ≥ |zf ′(z)| =
∣∣∣ ∞∑
j=1

cjnjz
nj

∣∣∣
≥ cknk|z|nk −

k−1∑
j=1

cjnj |z|nj −
∞∑

j=k+1

cjnj |z|nj

≥ cknk

(
1− 1

nk

)nk

−
k−1∑
j=1

cjnj −
∞∑

j=k+1

cjnj

(
1− 1

nk

)nj

= (I) − (II) − (III).

Since the sequence (1− 1
n )n increases with n, and nk ≥ 2,

(21) (I) ≥ 1
4
cknk.

Now, in order to estimate (II) and (III), we will use the following lemma
stated in [17, p. 339].

Lemma 1. If {sk} is a sequence of positive numbers and sk/sk+1 → 0 as
k →∞, then,

k−1∑
j=1

sj = o(sk), and
∞∑

j=k+1

s−1
j = o(s−1

k ) as k →∞.

Notice that by (18), (ii), (16), and (14),

cknk

ck+1nk+1
= exp

(
φ(1− n−1

k+1)− φ(1− n−1
k+2)

)
→∞ as k →∞,

so by the lemma,

(22) (II) = o(cknk), as k →∞.

Now using the elementary inequality (1 − x)n < 2(nx)−2, valid for 0 <
x < 1 and n ≥ 1, we obtain

(23) (III) ≤ 2n2
k

∞∑
j=k+1

cj

nj
.
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But also, by (18), (16), (i), and (14),

nk/ck

nk+1/ck+1
=

1
α2

k

expφ(1−n−1
k+2)

expφ(1−n−1
k+1)

≤ 1
α2

k

(nk+2

nk+1

) p+1
2

=
1

α
(3−p)/2
k

(αk+1

αk

) p+1
2 → 0,

so by (23) and the lemma again,

(24) (III) = o(cknk), as k →∞.

Therefore, by (21), (22), and (24), there exists k0 such that for all k ≥ k0,∣∣f ′(z)
∣∣ >

1
8
cknk > expφ

(
1− 1

nk+1

)
, |z| = 1− 1

nk
.

Thus, for k ≥ k0,

T
(
1− 1

nk
, f ′

)
=

1
2π

∫ π

−π

log+
∣∣∣f ′((

1− 1
nk

)
eiθ

)∣∣∣dθ > φ
(
1− 1

nk+1

)
.

Now, if r ≥ 1−(nk0)
−1, take k ≥ k0 such that 1−(nk)−1 ≤ r < 1−(nk+1)

−1.
Since T and φ are increasing functions of r, we obtain

T (r, f ′) ≥ T
(
1− 1

nk
, f ′

)
> φ

(
1− 1

nk+1

)
≥ φ(r).

This completes the proof of Theorem 2. �

2. Proofs of Theorems 3 and 4. We start proving Theorem 3. Let
f ∈ Qp. Set

Fr(θ) = max
0≤ρ≤r

∣∣f ′(ρeiθ)
∣∣2, 0 < r < 1, θ ∈ R.

By the Hardy-Littlewood Maximal Theorem,∫ π

−π

Fr(θ)dθ ≤ C

∫ π

−π

∣∣f ′(reiθ)
∣∣2dθ, 0 < r < 1.

Since g(z, 0) = log 1
|z| and f ∈ Qp, we have

∫ 1

0

∫ π

−π

Fr(θ)
(
log

1
r

)p

rdθdr ≤ C

∫ 1

0

∫ π

−π

∣∣f ′(reiθ)
∣∣2g(reiθ, 0)prdθdr < ∞.
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Hence we deduce that∫ 1

0

Fr(θ)
(
log

1
r

)p

rdr < ∞, a.e. θ,

which yields, by means of the equivalence log 1
r ∼ (1− r) as r → 1,

lim
r→1

∫ 1

r

Fs(θ)(1− s)pds = 0, a.e. θ.

Since F is an increasing function of r, we have for a.e. θ∣∣f ′(reiθ)
∣∣2 (1− r)p+1

p + 1
≤ Fr(θ)

∫ 1

r

(1− s)pds ≤
∫ 1

r

Fs(θ)(1− s)pds−→
r→1

0

and (10) follows. �

Proof of Theorem 4. We may assume without loss of generality that
φ(r) ↗ ∞ as r ↗ 1. Also, it suffices to prove that there exist f ∈ Qp and
C > 0 such that for every θ

(25) lim sup
r→1

∣∣f ′(reiθ)
∣∣

φ(r)
≥ C.

The reason for this is that if φ is a positive increasing function in (0, 1)
satisfying (11), then it is possible to find φ1, positive and increasing in
(0, 1) with limr→1 φ1(r) = ∞, and such that∫ 1

0

(1− r)pφ2(r)φ2
1(r)dr < ∞.

Clearly, if there are f ∈ Qp and C > 0 satisfying (25) for every θ, with φ
replaced by φφ1, then the same f satisfies equation (12) for every θ.

With these assumptions we may start the proof. Take a sequence
{rk} ↗ 1, with r1 > 1/4, which satisfies

(26) rk+1 − rk >
1
2
(1− rk), for all k,

(27) φ(rk+1)/φ(rk) →∞ as k →∞,

(28)
(1− rk+1)

3−p
2

(1− rk)2
= O(1), as k →∞.

It follows from (26) that for all k

(29) 1− rk+1 <
1
2
(1− rk) < rk+1 − rk.

Bearing this in mind, observe that for all k ∈ N
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rk

(1−r)pdr =
1

1+p

(
(1−rk)1+p−(1−rk+1)1+p

)
≥ 1−2−(1+p)

1 + p
(1−rk)1+p.

Since φ is increasing, (11) implies

(30)

∞∑
k=1

(1− rk)1+pφ2(rk) ≤ 1 + p

1− 2−(1+p)

∞∑
k=1

∫ rk+1

rk

(1− r)pφ2(rk)dr

≤ 1 + p

1− 2−(1+p)

∞∑
k=1

∫ rk+1

rk

(1− r)pφ2(r)dr

≤ 1 + p

1− 2−(1+p)

∫ 1

0

(1− r)pφ2(r)dr < ∞.

Now, for each k, let nk be the unique non-negative integer such that

nk ≤
1

1− rk
< nk + 1.

This implies, together with the facts that {rk} is increasing and r1 ≥ 1/4,

(31) 1− 1
nk
≤ rk < 1− 1

nk + 1
, and

1
4

< nk(1− rk) ≤ 1.

Define now

f(z) =
∞∑

k=1

(1− rk)φ(rk)znk .

By (30), f is analytic in ∆. Moreover, f is a power series with Hadamard
gaps. Indeed, by the definition of nk and by (29),

nk+1

nk
≥

1
1−rk+1

− 1
1

1−rk

=
1− rk

1− rk+1
− (1− rk) > 2− 3

4
> 1, all k.

We now check that f is in Qp. To this end we use Theorem A. For each
j, let k(j) be the unique non-negative integer such that

2k(j) ≤ nj < 2k(j)+1.

In this situation, we have by (31) and (30),

∞∑
k=0

2k(1−p)
∑

2k≤nj<2k+1

(1− rj)2φ2(rj) =
∞∑

j=1

2k(j)(1−p)(1− rj)2φ2(rj)

≤
∞∑

j=1

n1−p
j (1− rj)2φ2(rj) ≤

∞∑
j=1

(1− rj)1+pφ2(rj) < ∞.
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This shows that f ∈ Qp.
Next, to show that f satisfies (25), it suffices to find a constant C > 0

and k0 ∈ N such that∣∣f ′(rkeiθ)
∣∣

φ(rk)
≥ C for every θ and all k ≥ k0.

If |z| = rk (k ≥ 2) then, (31) and r
nj

k ≤ 1 imply

|f ′(z)| ≥ |zf ′(z)| =
∣∣∣ ∞∑
j=1

nj(1− rj)φ(rj)znj

∣∣∣
≥ nk(1− rk)φ(rk)rnk

k −
∑
j 6=k

nj(1− rj)φ(rj)r
nj

k

≥ 1
4
φ(rk)

(
1− 1

nk

)nk

−
k−1∑
j=1

φ(rj)−
∞∑

j=k+1

φ(rj)
(
1− 1

nk + 1

)nj

= (I) − (II) − (III).

The procedure now is basically the same as in the proof of Theorem 2.
Since the sequence (1 − 1

n )n increases with n and nk ≥ 2, we have (I) ≥
Cφ(rk). Now, by (27) and Lemma 1 we obtain (II) = o

(
φ(rk)

)
. Finally, as

in (23), we deduce

(III) ≤ 2(nk + 1)2
∞∑

j=k+1

φ(rj)
n2

j

.

But by (31), (28) and (30),

n2
j/φ(rj)

n2
j+1/φ(rj+1)

≤ 16
φ(1/4)

(1− rj+1)2φ(rj+1)
(1− rj)2

=
16

φ(1/4)
(1− rj+1)

3−p
2

(1− rj)2
(1− rj+1)

1+p
2 φ(rj+1)−→

j→∞
0

so by Lemma 1,
∞∑

j=k+1

φ(rj)
n2

j

= o
(φ(rk)

n2
k

)
,

which implies (III) = o
(
φ(rk)

)
. This completes the proof of Theorem 4. �
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4. Remarks.

Remark 1. The estimate given in Theorem 3 allows us to say something
about the radial variation of functions in the Qp spaces. We start recalling
some definitions. For a function f analytic in the unit disk ∆ and θ ∈
[−π, π], the quantity

V (f, θ) =
∫ 1

0

∣∣f ′(reiθ)
∣∣dr,

denotes the radial variation of f along the radius [0, eiθ], i.e., the length of
the image of this radius under the mapping f . The exceptional set E(f)
associated to f is then defined as

E(f) =
{
eiθ ∈ ∂∆ : V (f, θ) = ∞

}
.

Since
∫ 1

0
(1−r)−(p+1)/2dr is finite if and only if p < 1, then an immediate

consequence of Theorem 3 is the following

Theorem 5. If f ∈ Qp, 0 < p < 1, then the exceptional set E(f) has linear
measure 0.

Observe that nothing of this kind can be stated for Qp with p ≥ 1. Indeed,
as we have noticed above before Proposition 1, if f(z) =

∑∞
k=1

1
kz2k

, then
f ∈ BMOA = Q1 and V (f, θ) = ∞ for every θ.

On the other hand, for functions in the Dirichlet class D ≡ Q0 there is a
more precise result due to Beurling [7].

Theorem B. If f ∈ D, then the exceptional set E(f) has a zero logarithmic
capacity.

We refer to [10,16,21] for the definition and basic results about capaci-
ties and Hausdorff measures. We do not know whether the conclusion of
Theorem B is true for Qp, 0 < p < 1. However, something can be said. For
0 < p < 1, let Dp be the space of functions f(z) =

∑∞
n=0 anzn, analytic in

∆ such that
∞∑

n=1

n1−p|an|2 < ∞.

Zygmund proved the following result (see [16, Ch. 4]).

Theorem C. If f ∈ Dp, 0 < p < 1, then the exceptional set E(f) has zero
p-capacity. Conversely, if E is a set of zero p-capacity, then there is f ∈ Dp

whose exceptional set contains E.

It is not difficult to see that f ∈ Qp, 0 < p < 1 implies f ∈ Dp. In fact,
if f(z) =

∑∞
n=0 anzn ∈ Qp, 0 < p < 1, there exists C > 0 such that∫∫

∆

∣∣f ′(z)
∣∣2gp(z, a)dxdy < C, for all a ∈ ∆.
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In particular, we have for a = 0, using properties of the Beta function and
Stirling’s formula for the Gamma function: Γ(t + 1) ∼ tte−t(2πt)1/2,

∞ >

∫ 1

0

∫ π

−π

∣∣f ′(reiθ)
∣∣2 logp 1

r
rdrdθ =

∞∑
n=1

n2|an|2
∫ 1

0

r2n−1 logp 1
r
dr

≥
∞∑

n=1

n2|an|2
∫ 1

0

r2n−1(1− r)pdr =
∞∑

n=1

n2|an|2B(2n, p + 1)

=
∞∑

n=1

n2|an|2
Γ(2n)Γ(p + 1)
Γ(2n + p + 1)

≈
∞∑

n=1

n1−p|an|2.

Therefore, an immediate consequence of Zygmund’s result is the following

Theorem 6. If f ∈ Qp, 0 < p < 1, then the exceptional set E(f) has zero
p-capacity.

However, we do not know whether for a given set E of null p-capacity
there is f ∈ Qp whose exceptional set contains E.

Remark 2. From Beurling’s result (Theorem B), it follows that any f ∈ D
has non-tangential limit everywhere except for a set of null logarithmic
capacity, and then

(32)
∣∣f ′(reiθ)

∣∣ = o
(
(1− r)−1

)
as r → 1,

whenever eiθ is a point at which f has a finite non-tangential limit.
This implies that for f ∈ D the estimate (32) holds for every θ ∈ (−π, π],

except for a set of null logarithmic capacity. Girela [15] showed that this
estimate is sharp in a very strong sense. In our case, using Theorem 6
and (32), we obtain a similar result for Qp, 0 < p < 1, although we do not
know whether it is sharp in the sense given by Girela.

Theorem 7. If f ∈ Qp, 0 < p < 1, then∣∣f ′(reiθ)
∣∣ = o

(
(1− r)−1

)
as r → 1,

for every θ ∈ (−π, π], except for a set of null p-capacity.
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