
ANNALES
UN IVERS ITAT I S MAR IAE CUR IE { SK�ODOWSKA

LUBL IN { POLON IA

VOL. L IV, 11 SECTIO A 2000

GERALD SCHMIEDER
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Abstract. In this paper we try to initiate an analytic approach of an
extension of Schwarz’s Lemma to holomorphic functions defined on multiply

connected domains as studied by Ahlfors and Grunsky.

0. Introduction. The M�obius resp. the Carath�eodory (pseudo)dis-
tance has its origin in Complex Analysis of Cn (cf. [2]). Let G ⊂ C be a
finitely-connected bounded domain in the complex plane C. By H1(G) we
denote the set of holomorphic functions f : G → D := {z ∈ C : |z| < 1}.
Then the M�obius (pseudo)distance is given by

c∗G(z, w) := sup

{∣∣∣∣∣ f(z)− f(w)
1− f(z)f(w)

∣∣∣∣∣ : f ∈ H1(G)

}
(z, w ∈ G)

and the Carath�eodory (pseudo)distance is defined as (cf. [2])

cG(z, w) = tanh−1(c∗G(z, w)).
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In the case under consideration of a plane domain G both are not only
pseudodistances but really metrics.

Without loss of generality we may assume w = 0 ∈ G. By the Schwarz-
Pick-Lemma we have

c(z) := c∗G(z, 0) = sup{|f(z)| : f ∈ H1(G) and f(0) = 0}.

For fixed z ∈ G Montels Theorem gives us the existence of some f ∈
H1(G) with f(0) = 0 and f(z) = c(z). In this case we call f an extremal
function with respect to z.

In his articles [4] and (mainly in) [5] Grunsky characterized these ex-
tremal functions, but the proofs are hard to read and harmonic functions
are essentially involved. The same is true concerning an article of Ahlfors
[1] which deals with the associated problem to maximize |f ′(0)| in the class
H0

1(G) := {f ∈ H1(G) : f(0) = 0}. This has also been treated by Grun-

sky in his first paper on these extremal problems. Later on, Grunsky
published his textbook [6], which also includes the mentioned proof.

Of course it would be desirable to derive the results purely analytically.
In this paper we introduce two propositions which could give us the key.
Unfortunately we are not yet able to prove them purely analytically in full
generality, at least not without refering to Grunskys work. But they imply
the main property of the extremal functions (in both cases), namely to be
proper maps of degree N of the N -connected domain G onto D.

Every finitely-connected bounded plane domain is conformally equivalent
to some circular domain (i.e. each boundary component is a circle or a
single point), cf. [3]. Therefore it is enough to consider some N -connected,
bounded circular domain G ⊂ C with 0 ∈ G whose complement components
are not singletons.

1. Call for a proof.

Proposition 1. Let G be some N -connected complex domain with 0 ∈ G
and f ∈ H0

1(G) a function which is not a proper map of degree N of G
on D. Then, for each z1 ∈ G \ {0}, there is some meromorphic function
Φ = ΦG,f,z1 : G → C ∪ {∞} =: C with the following properties:

1. f · Φ ∈ H0
1(G),

2. |Φ(z1)| > 1.

Remarks:
1. As already mentioned in the introduction, we do not know any complete
proof for this proposition without using the mentioned result of Grunsky
(which obviously does imply it; take Φ := Θ

f where the extremal function
Θ is taken respect to z1).
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2. For all z1 ∈ G sufficiently close to such a boundary portion, which
is mapped into D, one can give a purely analytic proof using the ”spike
functions” 1 + (1− z)λ (with small positive λ), which allow to give f(G) a
local peak. We omit the details.
3. In the simple case N = 1 we can prove and improve it in the following
way: let B denote the Blaschke produkt sharing the zeros of f in G = D
except 0. Then Φ :=

1
B

has the desired properties simultaneously for all
z1 ∈ G.

Concerning the problem of maximizing the derivative in 0 in the class
H0

1(G) the following plays the analogous role.

Proposition 2. Let G and f ∈ H0
1(G) be as above. Then there is some

meromorphic function φ = φG,f : G → C ∪ {∞} with the following proper-
ties:

1. f · φ ∈ H0
1(G),

2. |φ(0)| > 1.

Remarks:
1. Note the last condition rules that |(fφ)′(0)| = |f ′(0)φ(0)| > |f ′(0)| if φ
has no pole in 0. The latter can only occur if f ′(0) = 0.
2. If Proposition 2 can be proved, then it is enough to consider the statement
of Proposition 1 under the weaker assumption that f is not a proper map
of G onto D, without any assumption of the degree. It is shown below that
this suffices to obtain the full result in any case.

2. Some properties of the extremal functions. The following corol-
laries are consequences of Proposition 1.

Corollary 1. If G is a N -connected domain in C, then each extremal func-
tion in H0

1(G) is a proper map G → D of degree N .

It is well known that this Corollary can also be expressed in the following
way:

Corollary 2. Let G be as above. If z1 ∈ G and f is an extremal function
in H0

1(G) with respect to z1, then |f(zk)| → 1 for every sequence zk ∈ G
with zk → ζ ∈ ∂G and f takes the value 0 exactly N times (counting
multiplicity).

The Reflection Principle gives:

Corollary 3. Each extremal function in H0
1(G) has a holomorphic exten-

sion on G.

Proposition 1 admits the following geometric observation on the location
of extremal points.
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Theorem 1. Let f ∈ H0
1(G) and denote by U the union of all open disks

D ⊂ G containing a zero z0 6= 0 of f . Then f is not extremal for any
z1 ∈ U .

Proof. Take Φ as the Möbius transformation which maps the disk D ⊂ U
on C\D having a pole in z0. Then we obtain f ·Φ ∈ H0

1(G) and |f ·Φ| > |f |
on D. �

Remark. If G is a slit domain with all slits on the real axis, then a function
which is extremal with respect to some z ∈ C must have all zeros in the
open lower (resp. upper) half plane if =z > 0 (resp. < 0). If f is extremal
in ∞ then all the zeros of f are real.

Theorem 2. Let z1 ∈ G. There is one and only one f ∈ H0
1(G) which is

extremal with respect to z1 and f(z1) > 0.

We will use an idea due to Heins (cf. the supplement to [5]) to show the
uniqueness of the extremal functions.

If f, g ∈ H0
1(G) are extremal with respect to z1, then h :=

f + g

2
∈ H0

1(G)
and h is again extremal with respect to z1. Corollary 1 says that h is a
proper map from G onto D. But obviously |h(ζ)| = 1 can only happen if
f(ζ) = g(ζ) for all ζ ∈ ∂D. So, by Cauchy’s Integral Formula, we conclude
f ≡ g in G.

3. The infinitesimal case. About sixty years ago Ahlfors [1] and
Grunsky [4], [5] (see also [3], ch. XI, §3) studied independently the problem
to maximize |F ′(0)| in the class H0

1(G), where G is as above some fixed
N -connected domain in the complex plane containing the origin. They
proved that this maximum is attained for some proper map F : G → D
of degree N . Using a suitable rotation we may provide F ′(0) > 0. With
this normalization F is uniquely determined. This follows from the same
argument as we have already used to prove Theorem 2. Let such a function
be fixed throughout this section. We will show that F is the limit of a
sequence of functions in fn ∈ H0

1(G) which are extremal with respect to
points zn ∈ G \ {0} tending to 0. (Remark: to obtain this result it is
not necessary to know the degree of properness of the fn; below we will
determine this degree as a consequence of the next result.)

We can find a subsequence of (fn) which converges locally uniformly.
For the sake of simplicity we assume that fn tends to f locally uniformly
on G. Then f ∈ H0

1(G) and we wish to prove |f ′(0)| = F ′(0). Note that
this will imply that each subsequence of the genuine sequence (fn) has the
behaviour.
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If this would be not true, then we could find some ε > 0 with |f ′(0)|+4ε =
|F ′(0)|. Let us fix some neighborhood U of 0 with

∣∣∣F (ζ)− F (0)
ζ − 0

− F ′(0)
∣∣∣ =

∣∣∣F (ζ)
ζ

− F ′(0)
∣∣∣ < ε (ζ ∈ U)

as well as some n0 with

|f ′n(0)− f ′(0)| < ε (n ≥ n0)

and also (note that fn(0) = 0)

∣∣∣f ′n(0)− fn(ζ)
ζ

∣∣∣ < ε (n ≥ n0, ζ ∈ U).

So we can conclude

|f ′(0)|+ 3ε ≤
∣∣∣F (ζ)

ζ

∣∣∣ (ζ ∈ U)

and moreover∣∣∣fn(ζ)
ζ

∣∣∣−(∣∣∣f ′(0)−f ′n(0)
∣∣∣ +

∣∣∣f ′n(0)− fn(ζ)
ζ

∣∣∣)+3ε ≤
∣∣∣F (ζ)

ζ

∣∣∣ (ζ ∈ U, n ≥ n0).

This gives

∣∣∣fn(ζ)
ζ

∣∣∣ <
∣∣∣fn(ζ)

ζ

∣∣∣ + ε ≤
∣∣∣F (ζ)

ζ

∣∣∣ (ζ ∈ U, n ≥ n0)

and so we obtain |fn(ζ)| < |F (ζ)| for all ζ ∈ U \ {0} and n ≥ n0. But this
contradicts the extremality of fn with respect to zn ∈ U .

We summarize:

Theorem 3. If zn is a sequence in G \ {0} tending to 0 and fn ∈ H0
1(G)

denotes the extremal function with respect to zn, then f = lim fn exists and
|f ′(0)| = max{|h′(0)| : h ∈ H0

1(G)} (i.e. f = c · F with some constant c of
modulus 1).

Because it is known from the work of Grunsky and Ahlfors that F :
G → D is a proper map of degree N and the functions fn : G → D are
proper, the Argument Principle gives
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Lemma 1. There is a neighborhood U ⊂ G of 0 such for each z1 ∈ U the
associated extremal function f is a proper map of degree N .

4. Comparing the extremal functions. We consider a sequence zn ∈
G \ {0} tending to some point z0 ∈ G \ {0} and we wish to compare the
extremal functions fk ∈ H0

1(G) with respect to zk, k = 0, 1, 2, . . . .
Let us assume that the sequence (fn) converges locally uniformly in G,

otherwise we take a suitable subsequence, and let f = lim fn. The maxi-
mality of f0(z0) gives f(z0) ≤ f0(z0). But f(z0) < f0(z0) would contradict,
by a continuity argument and the locally uniform convergence of (fn), the
extremality of the functions fn. So f(z0) = f0(z0) and, by Theorem 2, we
obtain f ≡ f0. So we have proved:

Theorem 4. Let G be some N -connected domain in the complex plane and
let fw : G → D denote the extremal function with respect to w ∈ G \ {0}.
Then fw is continuous in w with respect to the topology of locally uniform
convergence on H0

1(G).

By local repetition of the argument of Lemma 1 along a path from 0 to
some given point w, Theorem 3 leads to

Theorem 5. Let G be as above. Then Proposition 2 implies that for each
w ∈ G \ {0} the extremal function fw : G → D with respect to w is a proper
map of degree N .

Lemma 2. An open set in the euclidean space Rm cannot be covered by
countably many, pairwise disjoint closed sets.

It is obviously enough to prove this in the case m = 1. But ”strongly”
decreasing open intervals

O1 ⊃ O2 ⊃ O2 ⊃ O3 ⊃ O3 . . .

must have at least one common point.
From this fact we finally derive as a consequence of Theorem 4:

Corollary 4. Let w1 ∈ G be given and define C(w1) as the set of all w ∈ G
such that fw = fw1e

iα for some real α = α(w). Then C(w1) = G or there
exist uncountably many distinct sets C(wj).
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