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Abstract. Let P∗
n denote the class of all polynomials of degree at most

n not vanishing in the open unit disc. Furthermore, let 0 ≤ r < R ≤
1. We obtain some sharp lower and upper bounds for |f(r)|/|f(R)| when

f belongs to P∗
n. In our investigations we make essential use of certain

properties of functions analytic and bounded in the unit disc.

1. Introduction and statement of results. For any entire function f
let

M(f ; ρ) := max
|z|=ρ

|f(z)| (0 ≤ ρ <∞) ,

and denote by Pn the class of all polynomials of degree at most n. If f
belongs to Pn then so does the polynomial f∗(z) := znf(1/z). Hence, by
the maximum modulus principle M(f∗; r−1) ≥ M(f∗; 1) for 0 < r < 1.
However, M(f∗; r−1) = r−nM(f ; r), and so

(1) M(f ; r) ≥ rnM(f ; 1) (0 < r < 1) .

In (1) equality holds if and only if f(z) is a constant multiple of zn.
The following result of Rivlin [7] contains the sharp version of (1) for

polynomials not vanishing in the open unit disc.
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Theorem A. Let P∗
n consist of all those polynomials in Pn which do not

vanish in the open unit disc. Then for any f belonging to P∗
n, we have

(2) M(f ; r) ≥
(

1 + r

2

)n

M(f ; 1) (0 ≤ r < 1) ,

where equality holds if and only if f(z) := c
(
z − eiγ

)n
, c ∈ C, c 6= 0, γ ∈ R.

Here, we may also mention Mamedhanov [4] who observed that under
the conditions of Theorem A, we have

∣∣f (
reiγ

)∣∣ ≥ (
1 + r

2

)n ∣∣f (
eiγ

)∣∣ (0 ≤ r < 1 ; γ ∈ R) .

Govil [1] noted that (2) can be replaced by the more general inequality

(3) M(f ; r) ≥
(

1 + r

1 +R

)n

M(f ;R) (0 ≤ r < R ≤ 1) .

He also proved the following result.

Theorem B. Let f(z) :=
∑n

ν=0 cνz
ν be a polynomial of degree at most n

not vanishing in the open unit disc. If f ′(0) = 0, then for 0 ≤ r < R ≤ 1,
we have

(4) M(f ; r) ≥
(

1+r
1+R

)n
M(f ;R)

1− (n/4)(1−R)(R−r) ((1+r)/(1+R))n−1 .

In [5] it was shown that under the conditions of Theorem B, we have

(5) M(f ; r) ≥
(

1 + r2

1 +R2

)n/2

M(f ;R) (0 ≤ r < R ≤ 1) ,

which is sharp for even n.
A reader wondering about the value of the condition “f ′(0) = 0” ap-

pearing in the statement of Theorem B might find some of the sections
in [8, Section 6 in particular; 9; 6] persuasive. It may be added that if
f(z) :=

∑n
ν=0 cνz

ν satisfies the conditions of Theorem A, then the polyno-
mial f(z2) is of degree at most 2n and satisfies the other two conditions
of Theorem B.

Inequality (5) is only a special case of the following more general result
[5, Corollary 1] which applies to all polynomials of degree at most n not
vanishing in the open unit disc.
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Theorem C. Let f(z) :=
∑n

ν=0 cνz
ν 6= 0 for |z| < 1. Then

(6)
M(f ; r)
M(f ;R)

≥
(

1 + 2λr + r2

1 + 2λR+R2

)n/2 (
0 ≤ r < R ≤ 1 , λ :=

∣∣∣∣ c1nc0
∣∣∣∣) .

Note that if f(z) :=
∑n

ν=0 cνz
ν 6= 0 for |z| < 1, then c0 6= 0, and

|c1/c0| ≤ n. Hence, λ := |c1/nc0| ≤ 1. For any λ ∈ [0 , 1] and γ ∈ R, the
two zeros of the quadratic 1 + 2λze−iγ + z2e−2iγ lie on the unit circle, and
so if n is even then fγ(z) := (1 + 2λze−iγ + z2e−2eγ)n/2 is a polynomial of
degree n satisfying the conditions of Theorem C. It is clear that

M(fγ ; ρ) = (1 + 2λρ+ ρ2)n/2 (0 ≤ ρ ≤ 1) ,

and so (6) becomes an equality for the polynomial fγ , γ ∈ R. The inequality
is not sharp in the case where n is odd.

Here we prove the following result which tells us more than what
Theorem C does.

Theorem 1. Let f(z) :=
∑n

ν=0 cνz
ν 6= 0 for |z| < 1. Then, for any

γ ∈ R, we have

(7)
|f(reiγ)|
|f(Reiγ)|

≥
(

1 + 2λr + r2

1 + 2λR+R2

)n/2 (
0 ≤ r < R ≤ 1 , λ :=

∣∣∣∣ c1nc0
∣∣∣∣) .

Obviously (7) implies (6).
We shall apply Theorem 1 to obtain the following result about polyno-

mials having all their zeros on the unit interval.

Corollary 1. Let P (z) :=
∑n

ν=0 aνz
ν have all its zeros on the unit interval

[−1, 1], and let ζ be any point of the complex plane, not belonging to [−1, 1].
Furthermore, let A be the semi-major axis of the ellipse passing through ζ
and having −1, 1 as foci. Then

|P (ζ)| ≥
(
A+ Λ
1 + Λ

)n ∣∣∣∣P (
ξ

A

)∣∣∣∣ (
ξ := <ζ ,Λ :=

∣∣∣∣an−1

nan

∣∣∣∣) .

Upper bound for |f(reiγ)|/|f(Reiγ)| , 0 ≤ r < R ≤ 1 . For any entire
function f let

m(f ; ρ) := min
|z|=ρ

|f(z)| (0 ≤ ρ <∞) .

If f(z) 6= 0 in the open unit disc, then by the minimum modulus principle
m(f ; r) ≥ m(f ;R) for 0 ≤ r < R ≤ 1. How large can m(f ; r)/m(f ;R) be
if f satisfies the conditions of Theorem C? The following result contains
an answer to this question.
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Theorem 2. Let f(z) :=
∑n

ν=0 cνz
ν 6= 0 for |z| < 1, and let λ :=

|c1/nc0|. Then, for any γ ∈ R, we have

(8)

∣∣f (
reiγ

)∣∣
|f (Reiγ)|

≤
(

1+r
1+R

)(1−λ)n/2( 1−r
1−R

)(1+λ)n/2

(0 ≤ r < R < 1) .

In (8), equality holds for the polynomial

f1,γ(z) :=
(
1 + ze−iγ

)(1−λ)n/2 (
1− ze−iγ

)(1+λ)n/2
,

where it is presumed that (1− λ)n/2 is an integer.
The following corollary is a simple consequence of Theorem 2.

Corollary 2. Let f(z) :=
∑n

ν=0 cνz
ν 6= 0 for |z| < 1, and let

λ := |c1/nc0|. Then

(9) m(f ; r)≤
(

1+r
1+R

)(1−λ)n/2(1−r
1−R

)(1+λ)n/2

m(f ;R) (0≤r<R<1) .

Sharpness of the estimate for m(f ; r)/m(f ;R) . We claim that (9)
becomes an equality for f1,γ which is a polynomial of degree n provided
that (1− λ)n/2 is an integer. It is enough to check this for f1,0. Since for
all real θ and all ρ ∈ [0 , 1):∣∣f1,0

(
ρeiθ

)∣∣ = (1 + 2ρ cos θ + ρ2)(1−λ)n/4(1− 2ρ cos θ + ρ2)(1+λ)n/4 ,

we need to determine min−1≤t≤1Aλ(t), where

Aλ(t) := (1 + 2ρt+ ρ2)1−λ(1− 2ρt+ ρ2)1+λ (0 ≤ λ ≤ 1) .

It is clear that
min

−1≤t≤1
A0(t) = A0(±1) = (1− ρ2)2 ,

and that
min

−1≤t≤1
A1(t) = A1(1) = (1− ρ)4 .

Hence, equality holds in (9) for f1,0 when λ = 0, and also when λ = 1.
Now let 0 < λ < 1. An elemetary calculation gives

A′
λ(t) = −4ρ{2ρt+ λ(1 + ρ2)}

(
1− 2ρt+ ρ2

1 + 2ρt+ ρ2

)λ

.
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For any ρ ∈ (0, 1), the only possible root of A′
λ(t) = 0 in [−1, 1] is

t = t0 := −λ(1+ρ2)/2ρ. If t0 6∈ [−1 , 1] then A′
λ(t) < 0 for all t ∈ [−1 , 1]

since A′
λ(1) < 0, and so

min
−1≤t≤1

Aλ(t) = Aλ(1) .

In the case where t0 belongs to [−1 , 1] it is a point of local maximum
since

A
′′

λ(t0) = −8ρ2

(
1− 2ρt0 + ρ2

1 + 2ρt0 + ρ2

)λ

< 0 .

We conclude that

min
−1≤t≤1

Aλ(t) = min {Aλ(−1) , Aλ(1)} = Aλ(1) .

Consequently,

min
|z|=ρ

|f1,0(z)| = (1 + ρ)(1−λ)n/2(1− ρ)(1+λ)n/2 (0 ≤ ρ < 1) ,

and so (9) becomes an equality for f1,0 which is a polynomial provided that
(1− λ)n/2 is an integer.

2. A lemma. For the proofs of Theorems 1 and 2 we need the following
auxiliary result.

Lemma 1. Let f(z) := cn
∏n

ν=1 (z − zν) =
∑n

ν=0 cνz
ν 6= 0 for |z| < 1.

Then zf ′(z) − nf(z) 6= 0 for |z| < 1, and |f ′(z)| ≤ |zf ′(z) − nf(z)| for
|z| = 1, so that

(10) ϕ(z) :=
f ′(z)

zf ′(z)− nf(z)

is analytic on the closed unit disc. Furthermore, |ϕ(z)| ≤ 1 for |z| ≤ 1.

Proof of Lemma 1. The polynomial f∗(z) := znf(1/z) has all its zeros
in the closed unit disc. Furthermore, any zero of f lying on the unit circle
is also a zero of f∗ of the same multiplicity. This allows us to conclude
that ψ(z) := f∗(z)/f(z) is analytic on the closed unit disc, and ψ(z) = 1
on the unit circle. Hence, by the maximum modulus principle |ψ(z)| ≤ 1
for |z| ≤ 1. It follows that∣∣∣∣ f(z)

f∗(z)

∣∣∣∣ =

∣∣∣∣∣ψ
(

1
z

)∣∣∣∣∣ ≤ 1 (|z| ≥ 1) .
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Consequently, f(z)− ωf∗(z) 6= 0 for |z| > 1 and |ω| > 1. In other words,
the polynomial f(z) − ωf∗(z) has all its zeros in the closed unit disc for
all ω such that |ω| > 1. By the Gauss–Lucas theorem [2, Theorem 4.4.1]
we can say the same about its derivative f ′(z)−ωf∗′(z). This implies that
|f ′(z)| ≤ |f∗′(z)| for |z| > 1. By continuity, |f ′(z)| ≤ |f∗′(z)| for |z| = 1
also. Since

∣∣f∗′(z)∣∣ =
∣∣∣zn−1f∗′(z)

∣∣∣ =

∣∣∣∣∣zn−1f∗′
(

1
z

)∣∣∣∣∣ (|z| = 1)

we see that

(11) |f ′(z)| ≤

∣∣∣∣∣zn−1f∗′
(

1
z

)∣∣∣∣∣ (|z| = 1) .

Finally, we observe that for all z on the unit circle

(12) zn−1f∗′
(

1
z

)
= cn−1z

n−1 + . . .+ (n− 1)c1z + nc0 = nf(z)− zf ′(z) .

Since f∗′ has all its zeros in |z| ≤ 1, the polynomial zn−1f∗′(1/z) has
no zeros in the open unit disc, and so from (11) and (12) it follows that∣∣f ′(z)/(zf ′(z)− nf(z)

)∣∣ ≤ 1 for |z| ≤ 1. �

3. Proofs of the theorems and of Corollary 1.

Proof of Theorem 1. Clearly,

d
dρ

log |f(ρ)| = < d
dρ

log f(ρ) = < f ′(ρ)
f(ρ)

(0 ≤ ρ < 1) .

In terms of the function ϕ introduced in (10), we have

(13) ρ
f ′(ρ)
f(ρ)

= − nρϕ(ρ)
1− ρϕ(ρ)

= n− n

1− ρϕ(ρ)
,

so that

(14) ρ< f ′(ρ)
f(ρ)

= n−< n

1− ρϕ(ρ)
≤ n− n

1 + ρ|ϕ(ρ)|
(0 ≤ ρ < 1) .

Since ϕ(0) = −c1/nc0, and |ϕ(z)| ≤ 1 for |z| ≤ 1, it follows from the
generalized Schwarz’s lemma [3, Section 6.2] that

(15) |ϕ(ρ)| ≤ ρ+ |ϕ(0)|
|ϕ(0)|ρ+ 1

=
ρ+ λ

λρ+ 1

(
0 ≤ ρ < 1 , : λ :=

∣∣∣∣ c1nc0
∣∣∣∣) .
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From (14) and (15) it follows that

ρ< f ′(ρ)
f(ρ)

≤ n− n

1 + (ρ2 + λρ)/(λρ+ 1)
= n

ρ2 + λρ

1 + 2λρ+ ρ2
,

and so

< f ′(ρ)
f(ρ)

≤ n
ρ+ λ

1 + 2λρ+ ρ2
.

Thus,

d
dρ

log |f(ρ)| = < f ′(ρ)
f(ρ)

≤ n
ρ+ λ

1 + 2λρ+ ρ2
(0 ≤ ρ < 1) .

Hence, for 0 ≤ r < R ≤ 1, we have

log
|f(R)|
|f(r)|

=
∫ R

r

d
dρ

log |f(ρ)|dρ ≤
∫ R

r

n
ρ+ λ

1 + 2λρ+ ρ2
dρ

=
n

2
log

1 + 2λR+R2

1 + 2λr + r2
.

This proves (7) in the case where γ is zero. The same argument applied to
the polynomial f(zeiγ) gives the result for other values of γ. �

Proof of Theorem 2. From (13) it follows that

ρ< f ′(ρ)
f(ρ)

≥ n− n

1− ρ|ϕ(ρ)|
,

and so in view of (15), we have

ρ< f ′(ρ)
f(ρ)

≥ n− n

1− (ρ2 + λρ)/(λρ+ 1)
= −nρ

2 + λρ

1− ρ2
.

Hence
d
dρ

log |f(ρ)| = < f ′(ρ)
f(ρ)

≥ −n ρ+ λ

1− ρ2
,

which implies that for 0 ≤ r < R ≤ 1, we have

log
|f(R)|
|f(r)|

=
∫ R

r

d
dρ

log |f(ρ)|dρ

≥ −
∫ R

r

n
ρ+ λ

1− ρ2
dρ

=
n

2
[
log(1− ρ2)

]R

r
− λ

n

2

∫ R

r

(
1

1 + ρ
+

1
1− ρ

)
dρ

= log
{

(1 +R)(1−λ)n/2(1−R)(1+λ)n/2

(1 + r)(1−λ)n/2(1− r)(1+λ)n/2

}
.
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This proves (8) in the case where γ is zero. The same argument applied to
the polynomial f(zeiγ) gives the result for other values of γ. �

Proof of Corollary 1. Let Tk denote the Chebyshev polynomial of the
first kind of degree k. Then

Tk(z) = 2k−1zk + tk−2(z) (k ≥ 2) ,

where tk−2 is a polynomial of degree k − 2. Hence,

P (z) =
1

2n−1
anTn(z) +

1
2n−2

an−1Tn−1(z) +
n∑

ν=2

bνTn−ν(z) .

Since

Tk

(
z + z−1

2

)
=
zk + z−k

2
(0 ≤ k <∞) ,

we see that

P

(
z + z−1

2

)
=

1
2n−1

an
zn + z−n

2
+

1
2n−2

an−1
zn−1 + z−n+1

2

+
1
2

n∑
ν=2

bν
(
zn−ν + z−n+ν

)
.

Thus

f(z) := znP

(
z + z−1

2

)
=

1
2n
an +

1
2n−1

an−1z + · · ·+ 1
2n
anz

2n

is a polynomial of degree 2n having all its zeros on |z| = 1. Applying
Theorem 1 with 2n instead of n, we obtain∣∣f (

reiγ
)∣∣

|f (eiγ)|
≥

(
1 + 2Λr + r2

2 + 2Λ

)n (
0 ≤ r < 1 , : γ ∈ R , : Λ :=

∣∣∣∣an−1

nan

∣∣∣∣) ,

which leads us to the estimate∣∣P (
(r−1e−iγ + reiγ)/2

)∣∣
|P (cos γ)|

≥
(

(r−1 + r)/2 + Λ
1 + Λ

)n

(0 ≤ r < 1 , : γ ∈ R) .

For any γ ∈ R, the point ζ :=
(
r−1e−iγ + reiγ

)
/2 lies on the ellipse Er−1

whose foci are −1 and 1, and whose semi-axes are A :=
(
r−1 + r

)
/2

and B :=
(
r−1 + r

)
/2. Since cos γ = ξ/A, where ξ := <ζ, the preceding

inequality is equivalent to

|P (ζ)| ≥
(
A+ Λ
1 + Λ

)n ∣∣∣∣P (
ξ

A

)∣∣∣∣ (ζ 6∈ [−1, 1]) . �
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