LUBLIN - POLONIA

VOL. LIV, 9

On the growth of polynomials not vanishing in the unit disc

Dedicated to Professor Zdzistaw Lewandowski on his 70-th birthday

Abstract

Let \mathcal{P}_{n}^{*} denote the class of all polynomials of degree at most n not vanishing in the open unit disc. Furthermore, let $0 \leq r<R \leq$ 1. We obtain some sharp lower and upper bounds for $|f(r)| /|f(R)|$ when f belongs to \mathcal{P}_{n}^{*}. In our investigations we make essential use of certain properties of functions analytic and bounded in the unit disc.

1. Introduction and statement of results. For any entire function f let

$$
M(f ; \rho):=\max _{|z|=\rho}|f(z)| \quad(0 \leq \rho<\infty)
$$

and denote by \mathcal{P}_{n} the class of all polynomials of degree at most n. If f belongs to \mathcal{P}_{n} then so does the polynomial $f^{*}(z):=z^{n} \overline{f(1 / \bar{z})}$. Hence, by the maximum modulus principle $M\left(f^{*} ; r^{-1}\right) \geq M\left(f^{*} ; 1\right)$ for $0<r<1$. However, $M\left(f^{*} ; r^{-1}\right)=r^{-n} M(f ; r)$, and so

$$
\begin{equation*}
M(f ; r) \geq r^{n} M(f ; 1) \quad(0<r<1) . \tag{1}
\end{equation*}
$$

In (1) equality holds if and only if $f(z)$ is a constant multiple of z^{n}.
The following result of Rivlin [7] contains the sharp version of (1) for polynomials not vanishing in the open unit disc.

Theorem A. Let \mathcal{P}_{n}^{*} consist of all those polynomials in \mathcal{P}_{n} which do not vanish in the open unit disc. Then for any f belonging to \mathcal{P}_{n}^{*}, we have

$$
\begin{equation*}
M(f ; r) \geq\left(\frac{1+r}{2}\right)^{n} M(f ; 1) \quad(0 \leq r<1), \tag{2}
\end{equation*}
$$

where equality holds if and only if $f(z):=c\left(z-e^{\mathrm{i} \gamma}\right)^{n}, c \in \mathbb{C}, c \neq 0, \gamma \in \mathbb{R}$.
Here, we may also mention Mamedhanov [4] who observed that under the conditions of Theorem A, we have

$$
\left|f\left(r \mathrm{e}^{\mathrm{i} \gamma}\right)\right| \geq\left(\frac{1+r}{2}\right)^{n}\left|f\left(\mathrm{e}^{\mathrm{i} \gamma}\right)\right| \quad(0 \leq r<1 ; \gamma \in \mathbb{R}) .
$$

Govil [1] noted that (2) can be replaced by the more general inequality

$$
\begin{equation*}
M(f ; r) \geq\left(\frac{1+r}{1+R}\right)^{n} M(f ; R) \quad(0 \leq r<R \leq 1) . \tag{3}
\end{equation*}
$$

He also proved the following result.
Theorem B. Let $f(z):=\sum_{\nu=0}^{n} c_{\nu} z^{\nu}$ be a polynomial of degree at most n not vanishing in the open unit disc. If $f^{\prime}(0)=0$, then for $0 \leq r<R \leq 1$, we have

$$
\begin{equation*}
M(f ; r) \geq\left(\frac{1+r}{1+R}\right)^{n} \frac{M(f ; R)}{1-(n / 4)(1-R)(R-r)((1+r) /(1+R))^{n-1}} \tag{4}
\end{equation*}
$$

In [5] it was shown that under the conditions of Theorem B, we have

$$
\begin{equation*}
M(f ; r) \geq\left(\frac{1+r^{2}}{1+R^{2}}\right)^{n / 2} M(f ; R) \quad(0 \leq r<R \leq 1) \tag{5}
\end{equation*}
$$

which is sharp for even n.
A reader wondering about the value of the condition " $f^{\prime}(0)=0$ " appearing in the statement of Theorem B might find some of the sections in [8, Section 6 in particular; 9; 6] persuasive. It may be added that if $f(z):=\sum_{\nu=0}^{n} c_{\nu} z^{\nu}$ satisfies the conditions of Theorem A, then the polynomial $f\left(z^{2}\right)$ is of degree at most $2 n$ and satisfies the other two conditions of Theorem B.

Inequality (5) is only a special case of the following more general result [5, Corollary 1] which applies to all polynomials of degree at most n not vanishing in the open unit disc.

Theorem C. Let $f(z):=\sum_{\nu=0}^{n} c_{\nu} z^{\nu} \neq 0$ for $|z|<1$. Then
(6) $\frac{M(f ; r)}{M(f ; R)} \geq\left(\frac{1+2 \lambda r+r^{2}}{1+2 \lambda R+R^{2}}\right)^{n / 2} \quad\left(0 \leq r<R \leq 1, \lambda:=\left|\frac{c_{1}}{n c_{0}}\right|\right)$.

Note that if $f(z):=\sum_{\nu=0}^{n} c_{\nu} z^{\nu} \neq 0$ for $|z|<1$, then $c_{0} \neq 0$, and $\left|c_{1} / c_{0}\right| \leq n$. Hence, $\lambda:=\left|c_{1} / n c_{0}\right| \leq 1$. For any $\lambda \in[0,1]$ and $\gamma \in \mathbb{R}$, the two zeros of the quadratic $1+2 \lambda z \mathrm{e}^{-\mathrm{i} \gamma}+z^{2} \mathrm{e}^{-2 \mathrm{i} \gamma}$ lie on the unit circle, and so if n is even then $f_{\gamma}(z):=\left(1+2 \lambda z \mathrm{e}^{-\mathrm{i} \gamma}+z^{2} \mathrm{e}^{-2 \mathrm{e} \gamma}\right)^{n / 2}$ is a polynomial of degree n satisfying the conditions of Theorem C. It is clear that

$$
M\left(f_{\gamma} ; \rho\right)=\left(1+2 \lambda \rho+\rho^{2}\right)^{n / 2} \quad(0 \leq \rho \leq 1),
$$

and so (6) becomes an equality for the polynomial $f_{\gamma}, \gamma \in \mathbb{R}$. The inequality is not sharp in the case where n is odd.

Here we prove the following result which tells us more than what Theorem C does.
Theorem 1. Let $f(z):=\sum_{\nu=0}^{n} c_{\nu} z^{\nu} \neq 0$ for $|z|<1$. Then, for any $\gamma \in \mathbb{R}$, we have
(7) $\frac{\left|f\left(r e^{\mathrm{i} \gamma}\right)\right|}{\left|f\left(R e^{i \gamma}\right)\right|} \geq\left(\frac{1+2 \lambda r+r^{2}}{1+2 \lambda R+R^{2}}\right)^{n / 2} \quad\left(0 \leq r<R \leq 1, \lambda:=\left|\frac{c_{1}}{n c_{0}}\right|\right)$.

Obviously (7) implies (6).
We shall apply Theorem 1 to obtain the following result about polynomials having all their zeros on the unit interval.
Corollary 1. Let $P(z):=\sum_{\nu=0}^{n} a_{\nu} z^{\nu}$ have all its zeros on the unit interval $[-1,1]$, and let ζ be any point of the complex plane, not belonging to $[-1,1]$. Furthermore, let A be the semi-major axis of the ellipse passing through ζ and having $-1,1$ as foci. Then

$$
|P(\zeta)| \geq\left(\frac{A+\Lambda}{1+\Lambda}\right)^{n}\left|P\left(\frac{\xi}{A}\right)\right| \quad\left(\xi:=\Re \zeta, \Lambda:=\left|\frac{a_{n-1}}{n a_{n}}\right|\right) .
$$

Upper bound for $\left|f\left(r \mathrm{e}^{\mathrm{i} \gamma}\right)\right| /\left|f\left(R \mathrm{e}^{\mathrm{i} \gamma}\right)\right|, 0 \leq r<R \leq 1$. For any entire function f let

$$
m(f ; \rho):=\min _{|z|=\rho}|f(z)| \quad(0 \leq \rho<\infty) .
$$

If $f(z) \neq 0$ in the open unit disc, then by the minimum modulus principle $m(f ; r) \geq m(f ; R)$ for $0 \leq r<R \leq 1$. How large can $m(f ; r) / m(f ; R)$ be if f satisfies the conditions of Theorem C? The following result contains an answer to this question.

Theorem 2. Let $f(z):=\sum_{\nu=0}^{n} c_{\nu} z^{\nu} \neq 0$ for $|z|<1$, and let $\lambda:=$ $\left|c_{1} / n c_{0}\right|$. Then, for any $\gamma \in \mathbb{R}$, we have
(8) $\quad \frac{\left|f\left(r e^{\mathrm{i} \gamma}\right)\right|}{\left|f\left(R e^{\mathrm{i} \gamma}\right)\right|} \leq\left(\frac{1+r}{1+R}\right)^{(1-\lambda) n / 2}\left(\frac{1-r}{1-R}\right)^{(1+\lambda) n / 2} \quad(0 \leq r<R<1)$.

In (8), equality holds for the polynomial

$$
f_{1, \gamma}(z):=\left(1+z \mathrm{e}^{-\mathrm{i} \gamma}\right)^{(1-\lambda) n / 2}\left(1-z \mathrm{e}^{-\mathrm{i} \gamma}\right)^{(1+\lambda) n / 2}
$$

where it is presumed that $(1-\lambda) n / 2$ is an integer.
The following corollary is a simple consequence of Theorem 2.
Corollary 2. Let $f(z):=\sum_{\nu=0}^{n} c_{\nu} z^{\nu} \neq 0$ for $|z|<1$, and let $\lambda:=\left|c_{1} / n c_{0}\right|$. Then

$$
\begin{equation*}
m(f ; r) \leq\left(\frac{1+r}{1+R}\right)^{(1-\lambda) n / 2}\left(\frac{1-r}{1-R}\right)^{(1+\lambda) n / 2} m(f ; R) \quad(0 \leq r<R<1) \tag{9}
\end{equation*}
$$

Sharpness of the estimate for $\boldsymbol{m}(\boldsymbol{f} ; \boldsymbol{r}) / \boldsymbol{m}(\boldsymbol{f} ; \boldsymbol{R})$. We claim that (9) becomes an equality for $f_{1, \gamma}$ which is a polynomial of degree n provided that $(1-\lambda) n / 2$ is an integer. It is enough to check this for $f_{1,0}$. Since for all real θ and all $\rho \in[0,1)$:

$$
\left|f_{1,0}\left(\rho \mathrm{e}^{\mathrm{i} \theta}\right)\right|=\left(1+2 \rho \cos \theta+\rho^{2}\right)^{(1-\lambda) n / 4}\left(1-2 \rho \cos \theta+\rho^{2}\right)^{(1+\lambda) n / 4}
$$

we need to determine $\min _{-1 \leq t \leq 1} A_{\lambda}(t)$, where

$$
A_{\lambda}(t):=\left(1+2 \rho t+\rho^{2}\right)^{1-\lambda}\left(1-2 \rho t+\rho^{2}\right)^{1+\lambda} \quad(0 \leq \lambda \leq 1)
$$

It is clear that

$$
\min _{-1 \leq t \leq 1} A_{0}(t)=A_{0}(\pm 1)=\left(1-\rho^{2}\right)^{2}
$$

and that

$$
\min _{-1 \leq t \leq 1} A_{1}(t)=A_{1}(1)=(1-\rho)^{4}
$$

Hence, equality holds in (9) for $f_{1,0}$ when $\lambda=0$, and also when $\lambda=1$.
Now let $0<\lambda<1$. An elemetary calculation gives

$$
A_{\lambda}^{\prime}(t)=-4 \rho\left\{2 \rho t+\lambda\left(1+\rho^{2}\right)\right\}\left(\frac{1-2 \rho t+\rho^{2}}{1+2 \rho t+\rho^{2}}\right)^{\lambda}
$$

For any $\rho \in(0,1)$, the only possible root of $A_{\lambda}^{\prime}(t)=0$ in $[-1,1]$ is $t=t_{0}:=-\lambda\left(1+\rho^{2}\right) / 2 \rho$. If $t_{0} \notin[-1,1]$ then $A_{\lambda}^{\prime}(t)<0$ for all $t \in[-1,1]$ since $A_{\lambda}^{\prime}(1)<0$, and so

$$
\min _{-1 \leq t \leq 1} A_{\lambda}(t)=A_{\lambda}(1) .
$$

In the case where t_{0} belongs to $[-1,1]$ it is a point of local maximum since

$$
A_{\lambda}^{\prime \prime}\left(t_{0}\right)=-8 \rho^{2}\left(\frac{1-2 \rho t_{0}+\rho^{2}}{1+2 \rho t_{0}+\rho^{2}}\right)^{\lambda}<0
$$

We conclude that

$$
\min _{-1 \leq t \leq 1} A_{\lambda}(t)=\min \left\{A_{\lambda}(-1), A_{\lambda}(1)\right\}=A_{\lambda}(1)
$$

Consequently,

$$
\min _{|z|=\rho}\left|f_{1,0}(z)\right|=(1+\rho)^{(1-\lambda) n / 2}(1-\rho)^{(1+\lambda) n / 2} \quad(0 \leq \rho<1)
$$

and so (9) becomes an equality for $f_{1,0}$ which is a polynomial provided that $(1-\lambda) n / 2$ is an integer.
2. A lemma. For the proofs of Theorems 1 and 2 we need the following auxiliary result.
Lemma 1. Let $f(z):=c_{n} \prod_{\nu=1}^{n}\left(z-z_{\nu}\right)=\sum_{\nu=0}^{n} c_{\nu} z^{\nu} \neq 0$ for $|z|<1$. Then $z f^{\prime}(z)-n f(z) \neq 0$ for $|z|<1$, and $\left|f^{\prime}(z)\right| \leq\left|z f^{\prime}(z)-n f(z)\right|$ for $|z|=1$, so that

$$
\begin{equation*}
\varphi(z):=\frac{f^{\prime}(z)}{z f^{\prime}(z)-n f(z)} \tag{10}
\end{equation*}
$$

is analytic on the closed unit disc. Furthermore, $|\varphi(z)| \leq 1$ for $|z| \leq 1$.
Proof of Lemma 1. The polynomial $f^{*}(z):=z^{n} \overline{f(1 / \bar{z})}$ has all its zeros in the closed unit disc. Furthermore, any zero of f lying on the unit circle is also a zero of f^{*} of the same multiplicity. This allows us to conclude that $\psi(z):=f^{*}(z) / f(z)$ is analytic on the closed unit disc, and $\psi(z)=1$ on the unit circle. Hence, by the maximum modulus principle $|\psi(z)| \leq 1$ for $|z| \leq 1$. It follows that

$$
\left|\frac{f(z)}{f^{*}(z)}\right|=\left|\overline{\psi\left(\frac{1}{\bar{z}}\right)}\right| \leq 1 \quad(|z| \geq 1)
$$

Consequently, $f(z)-\omega f^{*}(z) \neq 0$ for $|z|>1$ and $|\omega|>1$. In other words, the polynomial $f(z)-\omega f^{*}(z)$ has all its zeros in the closed unit disc for all ω such that $|\omega|>1$. By the Gauss-Lucas theorem [2, Theorem 4.4.1] we can say the same about its derivative $f^{\prime}(z)-\omega f^{* \prime}(z)$. This implies that $\left|f^{\prime}(z)\right| \leq\left|f^{* \prime}(z)\right|$ for $|z|>1$. By continuity, $\left|f^{\prime}(z)\right| \leq\left|f^{* \prime}(z)\right|$ for $|z|=1$ also. Since

$$
\left|f^{*^{\prime}}(z)\right|=\left|z^{n-1} \overline{f^{*^{\prime}}(z)}\right|=\left|z^{n-1} \overline{f^{* \prime}\left(\frac{1}{\bar{z}}\right)}\right| \quad(|z|=1)
$$

we see that

$$
\begin{equation*}
\left|f^{\prime}(z)\right| \leq\left|z^{n-1} \overline{f^{*^{\prime}}}\left(\frac{1}{\bar{z}}\right)\right| \quad(|z|=1) . \tag{11}
\end{equation*}
$$

Finally, we observe that for all z on the unit circle

$$
\begin{equation*}
z^{n-1} \overline{f^{* \prime}\left(\frac{1}{\bar{z}}\right)}=c_{n-1} z^{n-1}+\ldots+(n-1) c_{1} z+n c_{0}=n f(z)-z f^{\prime}(z) . \tag{12}
\end{equation*}
$$

Since $f^{* \prime}$ has all its zeros in $|z| \leq 1$, the polynomial $z^{n-1} \overline{f^{*}(1 / \bar{z})}$ has no zeros in the open unit disc, and so from (11) and (12) it follows that $\left|f^{\prime}(z) /\left(z f^{\prime}(z)-n f(z)\right)\right| \leq 1$ for $|z| \leq 1$.

3. Proofs of the theorems and of Corollary 1.

Proof of Theorem 1. Clearly,

$$
\frac{\mathrm{d}}{\mathrm{~d} \rho} \log |f(\rho)|=\Re \frac{\mathrm{d}}{\mathrm{~d} \rho} \log f(\rho)=\Re \frac{f^{\prime}(\rho)}{f(\rho)} \quad(0 \leq \rho<1) .
$$

In terms of the function φ introduced in (10), we have

$$
\begin{equation*}
\rho \frac{f^{\prime}(\rho)}{f(\rho)}=-\frac{n \rho \varphi(\rho)}{1-\rho \varphi(\rho)}=n-\frac{n}{1-\rho \varphi(\rho)}, \tag{13}
\end{equation*}
$$

so that

$$
\begin{equation*}
\rho \Re \frac{f^{\prime}(\rho)}{f(\rho)}=n-\Re \frac{n}{1-\rho \varphi(\rho)} \leq n-\frac{n}{1+\rho|\varphi(\rho)|} \quad(0 \leq \rho<1) . \tag{14}
\end{equation*}
$$

Since $\varphi(0)=-c_{1} / n c_{0}$, and $|\varphi(z)| \leq 1$ for $|z| \leq 1$, it follows from the generalized Schwarz's lemma [3, Section 6.2] that

$$
\begin{equation*}
|\varphi(\rho)| \leq \frac{\rho+|\varphi(0)|}{|\varphi(0)| \rho+1}=\frac{\rho+\lambda}{\lambda \rho+1} \quad\left(0 \leq \rho<1,: \lambda:=\left|\frac{c_{1}}{n c_{0}}\right|\right) . \tag{15}
\end{equation*}
$$

From (14) and (15) it follows that

$$
\rho \Re \frac{f^{\prime}(\rho)}{f(\rho)} \leq n-\frac{n}{1+\left(\rho^{2}+\lambda \rho\right) /(\lambda \rho+1)}=n \frac{\rho^{2}+\lambda \rho}{1+2 \lambda \rho+\rho^{2}},
$$

and so

$$
\Re \frac{f^{\prime}(\rho)}{f(\rho)} \leq n \frac{\rho+\lambda}{1+2 \lambda \rho+\rho^{2}} .
$$

Thus,

$$
\frac{\mathrm{d}}{\mathrm{~d} \rho} \log |f(\rho)|=\Re \frac{f^{\prime}(\rho)}{f(\rho)} \leq n \frac{\rho+\lambda}{1+2 \lambda \rho+\rho^{2}} \quad(0 \leq \rho<1) .
$$

Hence, for $0 \leq r<R \leq 1$, we have

$$
\begin{aligned}
\log \frac{|f(R)|}{|f(r)|}=\int_{r}^{R} \frac{\mathrm{~d}}{\mathrm{~d} \rho} \log |f(\rho)| \mathrm{d} \rho & \leq \int_{r}^{R} n \frac{\rho+\lambda}{1+2 \lambda \rho+\rho^{2}} \mathrm{~d} \rho \\
& =\frac{n}{2} \log \frac{1+2 \lambda R+R^{2}}{1+2 \lambda r+r^{2}}
\end{aligned}
$$

This proves (7) in the case where γ is zero. The same argument applied to the polynomial $f\left(z \mathrm{e}^{\mathrm{i} \gamma}\right)$ gives the result for other values of γ.
Proof of Theorem 2. From (13) it follows that

$$
\rho \Re \frac{f^{\prime}(\rho)}{f(\rho)} \geq n-\frac{n}{1-\rho|\varphi(\rho)|},
$$

and so in view of (15), we have

$$
\rho \Re \frac{f^{\prime}(\rho)}{f(\rho)} \geq n-\frac{n}{1-\left(\rho^{2}+\lambda \rho\right) /(\lambda \rho+1)}=-n \frac{\rho^{2}+\lambda \rho}{1-\rho^{2}} .
$$

Hence

$$
\frac{\mathrm{d}}{\mathrm{~d} \rho} \log |f(\rho)|=\Re \frac{f^{\prime}(\rho)}{f(\rho)} \geq-n \frac{\rho+\lambda}{1-\rho^{2}},
$$

which implies that for $0 \leq r<R \leq 1$, we have

$$
\begin{aligned}
\log \frac{|f(R)|}{|f(r)|} & =\int_{r}^{R} \frac{\mathrm{~d}}{\mathrm{~d} \rho} \log |f(\rho)| \mathrm{d} \rho \\
& \geq-\int_{r}^{R} n \frac{\rho+\lambda}{1-\rho^{2}} \mathrm{~d} \rho \\
& =\frac{n}{2}\left[\log \left(1-\rho^{2}\right)\right]_{r}^{R}-\lambda \frac{n}{2} \int_{r}^{R}\left(\frac{1}{1+\rho}+\frac{1}{1-\rho}\right) \mathrm{d} \rho \\
& =\log \left\{\frac{(1+R)^{(1-\lambda) n / 2}(1-R)^{(1+\lambda) n / 2}}{(1+r)^{(1-\lambda) n / 2}(1-r)^{(1+\lambda) n / 2}}\right\} .
\end{aligned}
$$

This proves (8) in the case where γ is zero. The same argument applied to the polynomial $f\left(z \mathrm{e}^{\mathrm{i} \gamma}\right)$ gives the result for other values of γ.
Proof of Corollary 1. Let T_{k} denote the Chebyshev polynomial of the first kind of degree k. Then

$$
T_{k}(z)=2^{k-1} z^{k}+t_{k-2}(z) \quad(k \geq 2)
$$

where t_{k-2} is a polynomial of degree $k-2$. Hence,

$$
P(z)=\frac{1}{2^{n-1}} a_{n} T_{n}(z)+\frac{1}{2^{n-2}} a_{n-1} T_{n-1}(z)+\sum_{\nu=2}^{n} b_{\nu} T_{n-\nu}(z) .
$$

Since

$$
T_{k}\left(\frac{z+z^{-1}}{2}\right)=\frac{z^{k}+z^{-k}}{2} \quad(0 \leq k<\infty)
$$

we see that

$$
\begin{aligned}
P\left(\frac{z+z^{-1}}{2}\right)=\frac{1}{2^{n-1}} a_{n} \frac{z^{n}+z^{-n}}{2} & +\frac{1}{2^{n-2}} a_{n-1} \frac{z^{n-1}+z^{-n+1}}{2} \\
& +\frac{1}{2} \sum_{\nu=2}^{n} b_{\nu}\left(z^{n-\nu}+z^{-n+\nu}\right) .
\end{aligned}
$$

Thus

$$
f(z):=z^{n} P\left(\frac{z+z^{-1}}{2}\right)=\frac{1}{2^{n}} a_{n}+\frac{1}{2^{n-1}} a_{n-1} z+\cdots+\frac{1}{2^{n}} a_{n} z^{2 n}
$$

is a polynomial of degree $2 n$ having all its zeros on $|z|=1$. Applying Theorem 1 with $2 n$ instead of n, we obtain

$$
\frac{\left|f\left(r \mathrm{e}^{\mathrm{i} \gamma}\right)\right|}{\left|f\left(\mathrm{e}^{\mathrm{i} \gamma}\right)\right|} \geq\left(\frac{1+2 \Lambda r+r^{2}}{2+2 \Lambda}\right)^{n} \quad\left(0 \leq r<1,: \gamma \in \mathbb{R},: \Lambda:=\left|\frac{a_{n-1}}{n a_{n}}\right|\right)
$$

which leads us to the estimate

$$
\frac{\left|P\left(\left(r^{-1} \mathrm{e}^{-\mathrm{i} \gamma}+r \mathrm{e}^{\mathrm{i} \gamma}\right) / 2\right)\right|}{|P(\cos \gamma)|} \geq\left(\frac{\left(r^{-1}+r\right) / 2+\Lambda}{1+\Lambda}\right)^{n} \quad(0 \leq r<1,: \gamma \in \mathbb{R})
$$

For any $\gamma \in \mathbb{R}$, the point $\zeta:=\left(r^{-1} \mathrm{e}^{-\mathrm{i} \gamma}+r \mathrm{e}^{\mathrm{i} \gamma}\right) / 2$ lies on the ellipse $\mathcal{E}_{r^{-1}}$ whose foci are -1 and 1 , and whose semi-axes are $A:=\left(r^{-1}+r\right) / 2$ and $B:=\left(r^{-1}+r\right) / 2$. Since $\cos \gamma=\xi / A$, where $\xi:=\Re \zeta$, the preceding inequality is equivalent to

$$
|P(\zeta)| \geq\left(\frac{A+\Lambda}{1+\Lambda}\right)^{n}\left|P\left(\frac{\xi}{A}\right)\right| \quad(\zeta \notin[-1,1])
$$

References

[1] Govil, N.K., On the maximum modulus of polynomials, J. Math. Anal. Appl. 112 (1985), 253-258.
[2] Hille, E., Analytic Function Theory, Vol. I, Blaisdell Publishing Company, New York, 1959.
[3] Krzyż, J., Problems in complex variable theory, American Elsevier Publishing Company, Inc., New York, 1971.
[4] Mamedhanov, Dzh. M., Some inequalities for algebraic polynomials and rational functions, Izv. Akad. Nauk Azerbaĭdzhan. SSR Ser. Fiz.-Tekhn. Mat. Nauk (1962), no. 5, 9-14. (Russian)
[5] Qazi, M.A., On the maximum modulus of polynomials, Proc. Amer. Math. Soc. 115 (1992), 337-343.
[6] Rahman, Q.I., J. Stankiewicz, Differential inequalities and local valency, Pacific J. Math. 54 (1974), 165-181.
[7] Rivlin, T.J., On the maximum modulus of polynomials, Amer. Math. Monthly 67 (1960), 251-253.
[8] Walsh, J.L., The location of the zeros of the derivative of a rational function, revisited, J. Math. Pures Appl. 43 (1964), 353-370.
[9] Walsh, J.L., A theorem of Grace on the zeros of polynomials, revisited, Proc. Amer. Math. Soc. 15 (1964), 354-360.

Department of Mathematics received March 30, 2000
University of Central Florida
Orlando, Fl 32816, U.S.A.
Present address (of M.A. Qazi):
Department of Mathematics
Auburn University
Auburn, Al 36849-5310, U.S.A.
Département de Mathématiques et de Statistique
Université de Montréal
Montréal (Québec), Canada H3C 3J7
e-mail: rahmanqi@dms.umontreal.ca

