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Abstract. For given integers m and n, 2 < m < n, we consider the prob-

lem max |aman| in the class S(M) of holomorphic, univalent and bounded

functions f(z) = z + a2z2 + . . . in the unit disk |z| < 1. We prove that
max |aman| is realized by the Pick function for M close to 1 iff (m− 1) and

(n − 1) are relatively prime.

1. Introduction. In what follows we deal with the class S(M), M > 1, of
holomorphic functions f in the unit disk D = {z : |z| < 1} which have the
form

f(z) = z + a2z
2 + . . . , z ∈ D,
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and are univalent and bounded by M in D, i.e. |f(z)| < M, z ∈ D.
Very little is known about the coefficient problem within the class S(M).

Among others we suggest [3], [13], [14], [11], [12] as the references.
The important role in this class plays the so-called Pick function PM (z)

given by the formula

PM (z) = 2z

[
(1− z)2 +

2
M
z + (1− z)

√
(1− z)2 +

4
M
z

]−1

, z ∈ D,

which maps the unit disk D onto the disk DM = {w : |w| < M} slit along
the segment [−M,−M(2M − 1− 2

√
M(M − 1))].

If M → ∞, then the class S(M) reduces to the well known class S and
the Pick function reduces to the Koebe function K(z) = z(1 − z)−2 which
is known to be extremal for max |an|, f ∈ S, n = 2, 3, . . . , by the famous
de Branges result [2].

Contrary to that, in the class S(M) the Pick function is not extremal
for max |a3| if M ∈ (1, e). However, for the functional |a2an|, n ≥ 3, the
Pick function is extremal if M is close to 1, [6]. The last result proved the
conjecture [5] characterizing the extremal property of the Pick function for
M close to 1.

In this note we extend the result from [6] and we will prove that

(1) max
f∈S(M)

|aman|, 2 < m < n,

is attained by the Pick function for M close to 1 iff (m− 1) and (n− 1) are
relatively prime.

We have

Theorem 1. For every given integers m, n, 2 < m < n, such that (m− 1)
and (n − 1) are relatively prime there exists Mm,n > 1 such that for all
M ∈ (1,Mm,n) the functional |aman| is maximized in S(M) only by the
Pick function PM ∈ S(M) or its rotations.

Theorem 2. Let integers m, n, 2 < m < n, be such that (m−1) and (n−1)
are not relatively prime. Then the functional |aman| is not maximized by
rotations of the Pick function, when M is close to 1.

In order to prove the above Theorems, we will apply the Loewner equa-
tion for the class S(M) and optimal control theory results adjusted to uni-
valent functions problems as developed in [8]. This method has been suc-
cessfully applied to other coefficient problems in the class S(M) (e.g. [9],
[10]).



A coefficient product estimate for bounded univalent functions 29

2. Auxiliary Theorems and Lemmas.

Theorem A (Loewner equation) [4]. Let w = w(z, t) be the solution of
the Loewner equation

(2)
dw

dt
= −we

iu + w

eiu − w
, w|t=0 = z, 0 ≤ t ≤ logM,

with a piecewise continuous function u = u(t).
Then

(3) w(z, t) = e−t[z + a2(t)z2 + a3(t)z3 + . . . ], z ∈ D, t ≥ 0,

is holomorphic and univalent with respect to z ∈ D for every t ≥ 0. More-
over, the functions given by the formula

(4) f(z) := Mw(z, logM) ∈ S(M),

form a dense subclass of S(M).

Remark 1. In the case u(t) = const., the function f given by (4) is
the Pick function PM (z) or its rotations and in the case when u(t) is a
smooth function on [0, logM ], the corresponding f maps D onto DM minus
a smooth slit.

In general, piecewise smooth functions u(t) correspond to mappings f of
D onto DM with a finite number of smooth slits [8].

The function u(t) will be called the control function.
Remark 2. By the generalized Loewner equation [8] we mean the dif-

ferential equation of the form

(5)
dw

dt
= −w

n∑
j=1

λj
eiuj + w

eiuj − w
, w|t=0 = z, 0 ≤ t ≤ logM,

where λj ≥ 0, j = 1, . . . , n, and
∑n
j=1 λj = 1. The functions uj(t), j =

1, . . . , n, are again piecewise continuous functions [8].

In the case when uj(t), j = 1, . . . , n, are smooth functions on [0, logM ]
the functions f of the form (4) obtained from the equation (5) map D onto
DM with a finite number of smooth slits.

Moreover, in the case when f∗ ∈ S(M) is a boundary function of the
coefficient region

VMn = {a = (a2, . . . , an) : f ∈ S(M)}
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there exists the unique system of continuous functions u1, . . . , un−1 and non-
negative constants λ1, . . . , λn−1,

∑n−1
j=1 λj = 1, such that f∗(z) =

Mw(z, logM), where w = w(z, t) is the solution of (5).
The parametric representation for the coefficients obtained from the

Loewner equation allows us to apply the classical variational methods [1]
or the Pontryagin maximum principle [7] to solve extremal problems in the
class S(M).

Indeed, let ak(t) be given by (3), ak(t) = x2k−1(t)+ix2k(t), k = 2, . . . , n,
and a(t) = (a1(t), a2(t), . . . , an(t))T , a1(t) = 1, a0 = (1, 0, . . . , 0)T ,
x(t) = (x3(t), . . . , x2n(t)). Substituting (3) into (2) we obtain the following
differential equation for a(t) [8]:

(6)
da(t)
dt

= −2
n−1∑
s=1

e−s(t+iu)As(t)a(t), a(0) = a0,

where

A(t) =


0 0 . . . 0 0

a1(t) 0 . . . 0 0
a2(t) a1(t) . . . 0 0

...
...

. . .
...

...
an−1(t) an−2(t) . . . a1(t) 0

 .

The k-th row in the formula (6) for vector a(t) is a system of two equations
for x2k−1 and x2k. We will write equations for coordinates of x(t) as follows

(7)
dxk
dt

=gk(t, x, u), xk(0)=0, x2k−1(logM) + ix2k(logM)=ak.

Note that

(8) g2k−1(0, 0, u) = −2 cos(k − 1)u, g2k(0, 0, u) = 2 sin(k − 1)u, k ≥ 2.

The coefficient region VMn is the reachable set for the system (7), i.e. the
set of all possible values of x(logM) which can be obtained as solutions of
(7) with arbitrary piecewise continuous functions u = u(t). To find VMn it
is sufficient to describe its boundary ∂VMn . Every boundary point a ∈ ∂VMn
is represented by a solution of (7) with u(t) satisfying corresponding vari-
ational equations. As proved in [8], in order to describe all the boundary
functions f ∈ S(M) which correspond to the boundary points of the coeffi-
cient region VMn we have to consider the following Hamilton function

(9) H(t, x, ψ, u) =
2n∑
k=3

gk(t, x, u)ψk,
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where ψ = ψ(t) = (ψ3(t), . . . , ψ2n(t)) is the nonzero conjugate vector which
satisfies the conjugate hamiltonian system

(10)
dψk
dt

= − ∂H
∂xk

, ψk(0) = ξk, k = 3, . . . , 2n.

Theorem B [8]. Let x(t) be a solution of the system (7) with a piecewise
continuous control function u∗(t). If x = x(logM) is a boundary point of
VMn , then there exists a solution ψ = ψ(t) of the system (10) with the same
control function u∗(t) such that

(11) max
u

H(t, x(t), ψ(t), u) = H(t, x(t), ψ(t), u∗(t))

for all t ∈ [0, logM ] for which u∗(t) is continuous.

The condition (11) is called the Pontryagin maximum principle. Evi-
dently u∗(t) is a root of the equation

(12) Hu(t, x, ψ, u) = 0

at the continuity points of u∗(t).
Denote ξ = (ξ3, . . . , ξ2n). In particular, at t = 0 we have

(13) H(0, 0, ξ, u) = −2
n∑
k=2

(ξ2k−1 cos(k − 1)u− ξ2k sin(k − 1)u).

Varying the initial data ξ in (10) and solving the systems (7) and (10) with
the control functions u satisfying the Pontryagin maximum principle, we
obtain all the boundary points of x(logM) of VMn .

Since the conjugate system (10) is linear with respect to ψ, the vector
ψ(t) depends linearly on the initial data ξ in (10). The maximizing property
of a control function u satisfying the Pontryagin maximum principle is also
preserved if ψ is multiplied by a positive number. This allows us to nor-
malize the initial vector ξ in a suitable form. Such a suitable normalization
will be introduced and explained later.

For certain values ξ the Hamilton function may have several maximum
points u ∈ (−π, π]. In this case instead of (2) we have to use the gener-
alized Loewner differential equation (5) and the corresponding system of
differential equations for xk(t), ψ(t) instead of (7) and (10). More precisely,
if at t = 0 the Hamilton function H(0, 0, ξ, u) attains its maximum at m
different points u1, . . . , um in (−π, π], then we have to use the generalized
Loewner differential equation (5) with index m.
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Theorem C [8]. Let x(t) be a solution of the system (7) with a con-
trol function u∗(t) and x = x(logM) be a boundary point of VMn . If
H(0, 0, ξ, u) attains its maximal value at exactly one point in (−π, π] for
which Huu(0, 0, ξ, u) 6= 0, then u∗(t) is continuous on [0, logM ].

Note that because of possible rotation in S(M) the extremal problem (1)
can be reduced to the following:

(14) <aman → max .

Suppose f ∈ S(M) maximizes <aman in S(M). Then fα(z) =
e−iαf(eiαz) with α = 2πk/(m + n − 2), k = 0, 1, . . . ,m + n − 3, also
maximizes <aman in S(M). Evidently am 6= 0 for the extremal function.
Hence, if m − 1 and n − 1 are relatively prime, there exists an extremal
function f ∈ S(M) for which

− π

m+ n− 2
< π − arg am ≤ π

m+ n− 2
.

Denote such a function by fM0 . It is known [3] that fM0 maps D onto DM

minus finitely many piecewise analytic curves. Hence, it may be represented
by the formula (4), where w(z, t) is the solution of the Loewner differential
equation (2).

Lemma 1. Assume that the extremal function fM0 ∈ S(M) is given by the
formula (4) where w(z, t) has the expansion (3) and is a solution of the
Loewner differential equation (2). Then

(15) am(t) = −2t+ o(t), an(t) = −2t+ o(t), am(t)an(t) = 4t2 + o(t2),

am = −2(M − 1) + o(M − 1), an = −2(M − 1) + o(M − 1),

(16) aman = 4(M − 1)2 + o((M − 1)2),

as t→ 0+ and M → 1+.

Proof. Denote

I(t) = <am(t)an(t) = x2m−1(t)x2n−1(t)− x2m(t)x2n(t).

Using (8) after differentiating I(t) we have

(17)
dI

dt
|t=0 = 0,
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(18)

d2I

dt2
|t=0 = 2

(
dx2m−1

dt

dx2n−1

dt

)
t=0

− 2
(
dx2m

dt

dx2n

dt

)
t=0

= 8(cos(m−1)u(0) cos(n−1)u(0)− sin(m−1)u(0) sin(n−1)u(0))

= 8 cos(m+ n− 2)u(0).

The formulas (17) and (18) imply the asymptotic expansion

(19) <aman = I(logM) = 4 cos(m+ n− 2)u(0)(M − 1)2 + o((M − 1)2).

Solving the extremal problem (14) for M close to 1 we have to maximize
the first nonzero term in the asymptotic expansion (19). Hence, we have to
put
cos(m+ n− 2)u(0) = 1 in (19) or equivalently

u(0) = uj(0) =
2πj

m+ n− 2
, j = 0, 1, . . . ,m+ n− 3.

Therefore, for the extremal function we have

<aman = 4(M − 1)2 + o((M − 1)2).

From (8) we obtain the asymptotic expansion for am and an

am = −2 cos(m− 1)uj(0)(M − 1) + o(M − 1),

an = −2 cos(n− 1)uj(0)(M − 1) + o(M − 1).

For the extremal function fM0 we can choose j = 0 or equivalently uj(0) = 0,
which implies in this case

am(t) = −2t+ o(t), an(t) = −2t+ o(t),

and hence
am(t)an(t) = 4t2 + o(t2).

For t = logM this gives

am = −2(M − 1) + o(M − 1), an = −2(M − 1) + o(M − 1),

which ends the proof of Lemma 1. �

The coefficient region VMn is the closed set in R2n−2 whose points have
coordinates (x3, . . . , x2n). For c ∈ R, let us define the surface Qc in R2n−2

by the equation

(20) x2m−1x2n−1 − x2mx2n = c.

In order to solve the extremal problem (14) we have to find the maximal
value c such that the surface Qc has a nonempty intersection with VMn .
Denote Qc=max = Q and assume that

x ∈ Q ∩ VMn , where x = x(logM) = (x3(logM), . . . , x2n(logM)).

Without loss of generality we assume that the point x ∈ VMn which corre-
sponds to the extremal function fM0 is such that x2m−1 < 0 and x2n−1 < 0
when M is close to 1.
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Lemma 2. The normal vector n to the surface Q at the point x has the
form

(21) n =
[
0, . . . , 0,− <an

<am
,
=an
<am

, 0, . . . , 0,−1,
=am
<am

]
,

where the first two nonzero coordinates correspond to the indices 2m−1 and
2m.

Lemma 2 has been proved in [6] for m = 2. Its generalization for arbitrary
m > 2 is evident.

Note that the representation formula (21) for n follows from the normal-
ization condition x2n−1 = −1. Since we have x2m−1 < 0 and x2n−1 < 0,
the chosen direction of n corresponds to increasing parameter c of the level
surfaces Qc.

Remark that functions g3, . . . , g2n on the right-hand side of (7) do not
depend on x2n−1, x2n. Therefore,

dψ2n−1

dt
=
dψ2n

dt
= 0

and we may assume that ψ2n−1(t) = −1.
When c is the maximal value in (20), the normal vector n is orthogonal

to the tangent or support hyperplane to VMn at the point x. The boundary
point x is delivered by the extremal function fM0 ∈ S(M) represented by an
integral of the Loewner equation (2) or the generalized Loewner equation
(5). It is known from the calculus of variations [1] or from the optimal
control theory [7] that the conjugate vector ψ(logM) of the system (10)
or its analogue which corresponds to (5) is also orthogonal to the tangent
or support hyperplane to VMn at the point x. Therefore, we can normalize
ψ(logM) in such a way that it coincides with n.

The condition

(22) ψ(logM) = n

is called the transversality condition at the point x. This is the necessary
condition for our extremal problem.

Lemma 3. If M is close to 1, then the extremal function fM0 is given by the
formula (4) where w(z, t) is a solution of the Loewner differential equation
(2) with a continuous control function u(t).

Proof. Let us observe that since (m− 1) and (n− 1) are relatively prime,
the function

h(u) = 2(cos(m− 1)u+ cos(n− 1)u)
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attains its maximum on [−π, π] only at u = 0. Indeed, h(u) ≤ 4 and
h(u) = 4 only if cos(m− 1)u = 1 and cos(n− 1)u = 1, which is possible on
[−π, π] only for u = 0.

From (16) we see that the nonzero coordinates of the normal vector n
have the asymptotic expansions

(23) − <an
<am

= −1 + o(M − 1),
=an
<am

= o(M − 1),
=am
<am

= o(M − 1).

The functions − ∂H
∂xk

on the right-hand side of (10) are bounded for 0 ≤
t ≤ logM , which means that ψk(t) are close to ξk if t is close to 0. Therefore,
according to the transversality conditions the initial data ξ for the extremal
function fM0 are close to the vector ξ0 = (0, . . . , 0,−1, 0, . . . , 0,−1, 0) where
-1 first appears at the (2m− 1)-th place.

Notice that the function

H(0, 0, ξ0, u) = h(u) = 2(cos(m− 1)u+ cos(n− 1)u)

has only one absolute maximum in (−π, π] at u = 0 and Huu(0, 0, ξ0, 0) =
h′′(0) = −2((m− 1)2 + (n− 1)2) < 0. This property is preserved for ξ close
to ξ0, i.e. H(0, 0, ξ, u) attains its maximal value at exactly one point in
(−π, π] for which Huu(0, 0, ξ, u) < 0 for all ξ from the neighborhood of ξ0

including the point ξ corresponding to the extremal function fM0 . Applying
Theorem C we end the proof of Lemma 3. �

Lemma 3 guarantees that the control function u in the right-hand side
of (7) and (10) is the analytic branch of the implicit function u = u(t, x, ψ)
determined by the equation (12) with the initial value u(0, 0, ξ0) = 0.

Vectors x, ψ being the solution of the systems (7) and (10) with u =
u(t, x, ψ) on their right-hand sides depend only on t and ξ, i.e. x = x(t, ξ),
ψ = ψ(t, ξ). Put

u(t, ξ) = u(t, x(t, ξ), ψ(t, ξ)).

Remark 3. In particular, the initial value for u(0, 0, ξ0) means that u(0, ξ0)
= 0.

Every control function u(t) corresponding to the extremal function f of
the extremal problem (14) has to satisfy two necessary conditions: the Pon-
tryagin maximum principle (11) and the transversality condition (22). Now
we are able to show that the control function u(t) = 0 which corresponds to
the rotation: −PM (−z) of the Pick function satisfies both of these necessary
conditions.
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Lemma 4. The control function u(t)=0 satisfies the Pontryagin maximum
principle (11) and the transversality condition (22) if M is close to 1.

Proof. The control function u(t) = 0 in the Loewner differential equation
(2) corresponds to the function −PM (−z) for all M > 1. It is well known
that this function has real coefficients. Hence x2k(t) = 0, k = 2, . . . , n, in
(7) as well as g2k(t, x, u) = 0, k = 2, . . . , n.

From the explicit formulas for the right-hand side of the system (10) (see
e.g. [8]) it follows that in this case

− ∂H

∂x2k
= 0, k = 2, . . . , n.

Therefore, the initial equations ξ2k = 0, k = 2, . . . , n, are preserved for the
whole trajectory (x(t), ψ(t)), namely, ψ2k(t) = 0, k = 2, . . . , n, 0 ≤ t ≤
logM .

Let x(t) be the solution of the system (7) with u = 0 on its right-hand
side and ψ(t) be the solution of the Cauchy problem for the system (10)
with x(t) given by (7) and u = 0 on its right-hand side. Instead of the
initial data at t = 0 in (10) we consider the initial data

ψ(logM) =
(

0, . . . , 0,− x2n−1(logM)
x2m−1(logM)

, 0, . . . , 0,−1, 0
)
,

which is equivalent to the transversality condition (22). In this case we in-
tegrate the system (10) from logM to 0. Write ψ(0) = ξP = (ξP3 , . . . , ξ

P
2n).

The choice of the initial data ξ = ξP at t = 0 guarantees that the transver-
sality condition (22) is satisfied. Note that ψ(logM) and ψ(0) are close
to ξ0 = (0, . . . , 0,−1, 0, . . . , 0,−1, 0). Moreover, ψ2k = 0, ξP2k = 0, k =
2, . . . , n.

The Hamilton function H(t, x, ψ, u) as a function of u is a polynomial
of the (n − 1)-th degree with respect to cosu. It is ”close” to h(u) =
2(cos(m − 1)u + cos(n − 1)u) if M is close to 1. As we have pointed out,
this is a polynomial with respect to cosu and polynomials hε(u) which are
close to it have only one absolute maximum at cosu = 1 and h′′ε (0) < 0.
This means that u(t) = 0 satisfies the Pontryagin maximum principle (11),
which ends the proof of Lemma 4. �

Recall that the maximum principle generates the function u(t, ξ) by the
equation (12). It was shown in [6] that u(t, ξ) has bounded partial deriva-
tives in a neighborhood of the point (t, ξ) = (0, ξ0).
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3. Proofs of the theorems.

Proof of Theorem 1. We wish to show that there exists the unique point
ξ∗ in the neighborhood of ξ0 for which the solution of the systems (7) and
(10) satisfies the maximum principle (11) and the transversality condition
(22). As soon as the point ξP corresponding to the rotation −PM (−z) of
the Pick function also generates the solution of (7) and (10) satisfying these
necessary extremum conditions, we obtain ξ∗ = ξP .

The problem is difficult due to the fact that the value ψ(logM) in the
transversality condition (22) depends on unknown coefficients am, an. To
avoid this difficulty we require that according to Lemma 1, x2m−1(t, ξ) < 0
and introduce the vector

(24) ψ∗(t, ξ) = ψ(t, ξ)−m(t, ξ),

where
(25)

m(t, ξ) =
(

0, . . . , 0,− x2n−1(t, ξ)
x2m−1(t, ξ)

,
x2n(t, ξ)
x2m−1(t, ξ)

, 0, . . . , 0,
x2m(t, ξ)
x2m−1(t, ξ)

)
.

The transversality condition can now be written in the form

(26) ψ∗(logM, ξ∗) = (0, . . . , 0,−1, 0).

From (7) we obtain the differential equations and from (8) the initial
data for (−m(t, ξ))

d

dt

x2n−1

x2m−1
=
g2n−1(t, x, u)x2m−1 − g2m−1(t, x, u)x2n−1

x2
2m−1

= G2m−1(t, x, u),

x2n−1

x2m−1
|t=0 =

cos(n− 1)u(0, ξ)
cos(m− 1)u(0, ξ)

,

− d

dt

x2n

x2m−1
= −g2n(t, x, u)x2m−1 − g2m−1(t, x, u)x2n

x2
2m−1

= G2m(t, x, u),

− x2n

x2m−1
|t=0 =

sin(n− 1)u(0, ξ)
cos(m− 1)u(0, ξ)

,

− d

dt

x2m

x2m−1
= −g2m(t, x, u)x2m−1 − g2m−1(t, x, u)x2m

x2
2m−1

= G2n(t, x, u),

− x2m

x2m−1
|t=0 =

sin(m− 1)u(0, ξ)
cos(m− 1)u(0, ξ)

.
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This implies that the function ψ∗(t) = (ψ∗3(t), . . . , ψ∗2n(t)) is the solution
of the system of differential equations
(27)
dψ∗2m−1

dt
= − ∂H

∂x2m−1
+G2m−1, ψ∗2m−1(0) = ξ2m−1 +

cos(n− 1)u(0, ξ)
cos(m− 1)u(0, ξ)

,

(28)
dψ∗2m
dt

= − ∂H

∂x2m
+G2m, ψ∗2m(0) = ξ2m +

sin(n− 1)u(0, ξ)
cos(m− 1)u(0, ξ)

,

(29)
dψ∗k
dt

= − ∂H
∂xk

, ψ∗k(0) = ξk, k = 3, . . . , 2m− 2, 2m+ 1, . . . , 2n− 2,

(30)
dψ∗2n
dt

= G2n, ψ∗2n(0) = ξ2n +
sin(m− 1)u(0, ξ)
cos(m− 1)u(0, ξ)

.

Let us consider the mapping

F : ξ → y = ψ∗(logM, ξ),

where ξ is from a neighborhood of ξ0.
The function y = F (ξ) maps the initial data analytically depending on ξ

onto the solution of the Cauchy problem (27) - (30). Hence, F is analytic
and its derivative Fξ is the Jacobi matrix consisting of elements

ψ∗jk(logM, ξ) =
∂ψ∗j (logM, ξ)

∂ξk
, j, k = 3, . . . , 2n− 2, 2n.

To determine ψ∗jk(t, ξ) we differentiate the equations (27)-(30) with re-
spect to ξk, k = 3, . . . , 2n− 2, 2n. The derivatives xξ and ψξ can be found
in the following way. Differentiating the systems (7) and (10) with respect
to ξ gives the system of differential equations

(31)
dxξ
dt

= L(t, x, u, xξ, uξ), xξ(0, ξ) = 0,

(32)
dψξ
dt

= N(t, x, ψ, u, xξ, ψξ, uξ), ψξ(0, ξ) = 1.

The initial data 0 and 1 in (31) and (32) are the zero matrix and the
unit matrix respectively. The right-hand sides L and N in (31) and (32)
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are linear with respect to xξ, ψξ and uξ. To find uξ we differentiate the
equation (12) with respect to ξ, and obtain

Hux(t, x, ψ, u)xξ +Huψ(t, x, ψ, u)ψξ +Huu(t, x, ψ, u)uξ = 0

which implies the formula

(33) uξ = −(Hux(t, x, ψ, u)xξ +Huψ(t, x, ψ, u)ψξ)/Huu(t, x, ψ, u).

Substituting uξ from (33) to (31) and (32) we solve the Cauchy problem for
the obtained system of differential equations. The solution (xξ(t, ξ), ψξ(t, ξ))
of the Cauchy problem is bounded for ξ close to ξ0 and t close to 0. The
obtained system of differential equations with respect to ψjk has a solution
as the Cauchy problem smoothly depending on initial data.

There remains to determine the initial data ηjk = ψ∗jk(0, ξ), j, k =
3, . . . , 2n− 2, 2n. Differentiating the initial data in (27)-(30) with respect
to ξ3, . . . , ξ2n−2, ξ2n, we obtain

η(2m−1)k(ξ) = δ(2m−1)k − [(n− 1) sin(n− 1)u(0, ξ) cos(m− 1)u(0, ξ)−

(34) (m− 1) cos(n− 1)u(0, ξ) sin(m− 1)u(0, ξ)]
uξk

(0, ξ)
cos2(m− 1)u(0, ξ)

,

k = 3, . . . , 2n− 2, 2n,

η(2m)k(ξ) = δ(2m)k + [(n− 1) cos(n− 1)u(0, ξ) cos(m− 1)u(0, ξ)+

(35) (m− 1) sin(n− 1)u(0, ξ) sin(m− 1)u(0, ξ)]
uξk

(0, ξ)
cos2(m− 1)u(0, ξ)

,

k = 3, . . . , 2n− 2, 2n,

(36)
ηjk(ξ) = δjk, j = 3, . . . , 2m−2, 2m+1, . . . , 2n−2, 2n, k = 3, . . . , 2n−2, 2n,

(37)

η(2n)k(ξ) = δ(2n)k +
m− 1

cos2(m− 1)u(0, ξ)
uξk

(0, ξ), k = 3, . . . , 2n− 2, 2n.

To determine uξk
(0, ξ) we notice that Huψk

(0, 0, ξ, u) = (gk)u(0, 0, u),
k = 3, . . . , 2n, xξ|t=0 = 0, and obtain from (33) at ξ = ξ0 that

uξk
(0, ξ0) =

(gk)u(0, 0, u)
2((m− 1)2 + (n− 1)2)

, k = 3, . . . , 2n− 2, 2n.
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In particular, taking into account (8) and Remark 3 we have

(38) uξ2m−1(0, ξ0) =
(m− 1) sin(m− 1)u(0, ξ0)

(m− 1)2 + (n− 1)2
= 0,

(39) uξ2m
(0, ξ0) =

(m− 1) cos(m− 1)u(0, ξ0))
(m− 1)2 + (n− 1)2

=
m− 1

(m− 1)2 + (n− 1)2
,

(40) uξ2n
(0, ξ0) =

(n− 1) cos(n− 1)u(0, ξ0)
(m− 1)2 + (n− 1)2

=
n− 1

(m− 1)2 + (n− 1)2
.

Substitution of (38) - (40) to (34), (35) and (37) at ξ = ξ0 gives

(41) η(2m−1)k(ξ0) = δ(2m−1)k, k = 3, . . . , 2n− 2, 2n,

(42)
η(2m)(2m)(ξ0) = 1 +

(m− 1)(n− 1)
(m− 1)2 + (n− 1)2

,

η(2m)(2n)(ξ0) =
(n− 1)2

(m− 1)2 + (n− 1)2
,

(43)
η(2n)(2m)(ξ0) =

(m− 1)2

(m− 1)2 + (n− 1)2
,

η(2n)(2n)(ξ0) = 1 +
(m− 1)(n− 1)

(m− 1)2 + (n− 1)2
.

Let B(t, ξ) be the Jacobi matrix consisting of elements ψ∗jk(t, ξ). Accord-
ing to (36), (41) - (43) we have

detB(0, ξ0) = 1 +
2(m− 1)(n− 1)

(m− 1)2 + (n− 1)2
> 0.

Hence, detB(logM, ξ0) > 0 if M is close to 1. This means that
B(logM, ξ0) = Fξ(ξ0) is invertible and F maps a neighborhood Uε(ξ0) =
{ξ : ‖ξ − ξ0‖ < ε} of ξ0 one-to-one onto a neighborhood of y0 = F (ξ0).
Therefore, there exists the unique ξ ∈ Qε(ξ0) for which the maximum prin-
ciple (11) and the transversality condition (22) in the form (26) are satis-
fied. According to Lemma 4 this is ξ = ξP which correponds to the function
−PM (−z). This ends the proof of Theorem 1. �
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Remark 4. We have proved that in the extremal problem (1) or (14) the
necessary extremum conditions in the form of the Pontryagin maximum
principle (11) - (12) and the transversality conditions (22) or (26) are in
fact the sufficient extremum conditions if M is close to 1.

Proof of Theorem 2. Let j ≥ 2 be the common divisor of (m − 1)
and (n − 1) and the function fM1 (z) be given by the formula (4) where
w(z, t) is a solution of the generalized Loewner equation (5) with index 2,
λ1 = λ2 = 1/2, u1(t) = 0 and u2(t) = 2π/j. The idea of the proof of
Theorem 2 is to compare the asymptotic expansions of I(t) = <am(t)an(t)
for two functions: −PM (−z) and fM1 (z). Denote I(t) corresponding to
−PM (−z) and fM1 (z) by IP (t) and I1(t) respectively. Note that −PM (−z)
can be represented by formula (4) if the solution w(z, t) of the equation (5)
corresponds to u1(t) = u2(t) = 0.

The differential equation for a(t) generated by the generalized Loewner
equation (5) with index 2 has,according to [8], the form

(44)
da(t)
dt

= −2
2∑
j=1

λj

n−1∑
s=1

e−s(t+iuj)As(t)a(t), a(0) = a0.

Recall that according to (17) I ′P (0) = I ′1(0) = 0. For given u1, u2 and
λ1, λ2 we have from (44)

(45) a′k(0)=−(e−i(k−1)u1 + e−i(k−1)u2)=−(1+e−i(k−1)2π/j), k = 2, . . . , n.

In particular, according to (8) and (45)

a′m(0) = −2, a′n(0) = −2,

for both functions −PM (−z) and fM1 (z). From here we immediately obtain

(46) I ′′P (0) = I ′′1 (0) = 2<a′m(0)a′n(0) = 8.

We now establish the equality

(47) I ′′′1 (0) = 3<(a′m(0)a′′n(0) + a′′m(0)a′n(0)).

Differentiate (44) with respect to t at t = 0 with λ1 = λ2 = 1/2 and
u1 = 0 to obtain
(48)
d2a(t)
dt2

|t=0 =−
n−1∑
s=1

(1+e−isu2)((−s)As(0)a0+sAs−1(0)A′(0)a0+As(0)a′(0)).
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The specific triangular form of the matrices A(0) and A′(0) implies

As(0)a0 = (0, . . . , 0, 1, 0, . . . , 0)T ,

where 1 appears at the (s+ 1)-th place, and

As−1(0)A′(0)a0 = As(0)a′(0) = (0, . . . , 0, a′2(0), . . . , a′n−s(0))T .

Therefore, it follows from (48) that

(49) a′′m(0) = 2(m− 1)−
m−2∑
s=1

(1 + e−isu2)(s+ 1)a′m−s(0),

(50) a′′n(0) = 2(n− 1)−
n−2∑
s=1

(1 + e−isu2)(s+ 1)a′n−s(0).

Substituting (45) into (49) and (50) and taking into account that
e−i(m−1)u2 = e−i(n−1)u2 = 1 we have

(51)

a′′m(0) = 2(m− 1) +
m−2∑
s=1

(s+ 1)(2 + e−isu2 + e−i(m−s−1)u2)

= 2(m− 1) +
m−2∑
s=1

(s+ 1)(2 + e−isu2 + eisu2),

(52)

a′′n(0) = 2(n− 1) +
n−2∑
s=1

(s+ 1)(2 + e−isu2 + e−i(n−s−1)u2)

= 2(n− 1) +
n−2∑
s=1

(s+ 1)(2 + e−isu2 + eisu2).

Finally, (45), (51) and (52) being substituted into (47) give the required
formula for I ′′′1 (0)

(53)

I ′′′1 (0) =− 6<(a′′m(0) + a′′n(0)) = −12(m+ n− 2)

− 12

[
m−2∑
s=1

(s+ 1)(1 + cos su2) +
n−2∑
s=1

(s+ 1)(1 + cos su2)

]
.
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To obtain I ′′′P (0) it is sufficient to substitute u2 = 0 instead of u2 into
(53). Hence we have

(54) I ′′′P (0) = −12(m+ n− 2)− 24

[
m−2∑
s=1

(s+ 1) +
n−2∑
s=1

(s+ 1)

]
.

Evidently
I ′′′1 (0) > I ′′′P (0).

From the asymptotic expansions

I1(t) =
1
2!
I ′′1 (0)t2 +

1
3!
I ′′′1 (0)t3 + o(t3),

IP (t) =
1
2!
I ′′P (0)t2 +

1
3!
I ′′′P (0)t3 + o(t3),

and from (46) we claim that I1(t) > IP (t) for t close to 0. Therefore the
Pick function does not maximize <aman in the class S(M) for M close to
1 which ends the proof of Theorem 2. �
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[4] Duren, P. L., Univalent Functions, Springer-Verlag, New York, 1983.

[5] Jakubowski, Z. J., Some problems concerning bounded univalent functions, Univa-

lent Functions, Fractional Calculus and their Applications (H. M. Srivastava and S.

Owa, eds.), Ellis Horwood Ser. Math. Appl., Horwood, Chichester, New York, 1989,
pp. 75–86.

[6] Jakubowski, Z. J., D. V. Prokhorov and J. Szynal, Proof of a coefficient product

conjecture for bounded univalent functions (to appear).

[7] Lee, E. B., L. Marcus, Foundations of Optimal Control Theory, John Wiley & Sons,

New York, 1967.

[8] Prokhorov, D. V., Reachable Set Methods in Extremal Problems for Univalent Func-
tions, Saratov University, Saratov, 1993.

[9] Prokhorov, D. V., Methods of optimization in coefficient estimates for bounded uni-

valent functions, Ann. Univ. Mariae Curie-Sk lodowska Sect. A 48 (1994), 106–119.

[10] Prokhorov, D. V., Radii of neighborhood for coefficient estimates of functions close

to the identity, Computational Methods and Function Theory, Proceedings, Nicosia,
1997 (to appear).

[11] Schiffer, M., O. Tammi, On bounded univalent functions which are close to identity,

Ann. Acad. Sci. Fenn. Ser. A I Math. 435 (1968), 3–26.



44 A. Ganczar, D.V. Prokhorov and J. Szynal

[12] Siewierski, L., Sharp estimation of the coefficients of bounded univalent functions

close to identity, Dissertationes Math. (Rozprawy Mat.) 86 (1971), 1–153.

[13] Tammi, O., Extremal Problems for Bounded Univalent Functions, Lecture Notes in
Math. 646, Springer-Verlag, New York, 1978.

[14] Tammi, O., Extremal Problems for Bounded Univalent Functions, II, Lecture Notes

in Math. 913, Springer-Verlag, New York, 1982.

Institute of Mathematics received November 25, 1999
M.Curie-Sk lodowska University
20-031 Lublin, Poland
e-mail: aganczar@golem.umcs.lublin.pl

Institute of Mathematics
M.Curie-Sklodowska University
20-031 Lublin, Poland
and
Saratov State University
410026 Saratov, Russia
e-mail: prokhor@golem.umcs.lublin.pl
and
prokhor.ma.sgu@oda.ssu.runnet.ru

Institute of Mathematics
M.Curie-Sklodowska University
20-031 Lublin, Poland
e-mail: jsszynal@golem.umcs.lublin.pl


