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Abstract. This is an introductory survey on applications of the Julia vari-

ation to problems in geometric function theory. A short exposition is given

which develops a method for treating extremal problems over classes F of
analytic functions on the unit disk D for which appropriate subsets Fn can

be constructed so that (i) F =
⋃

n Fn and (ii) for each f ∈ Fn a geometric

constraint will hold that ∂f(D) will have at most n “sides”. Applications
of this method which have been made to problems in the literature are re-

viewed, e.g., Netanyahu’s problems about the distortion theorems for starlike

and convex functions constrained to contain a fixed disk; Goodman’s prob-
lems about omitted values for classes of univalent functions; integral means

estimates for derivatives of convex functions; maximization problems for

functionals on linear fractional transforms of convex and starlike functions.

This is a survey paper on the applications of a variational method intro-
duced by J. Krzyż in [29]. It is based on Julia’s modification of Hadamard’s
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variation of the Green’s function. In the early 1900’s, in order to investi-
gate the behavior of Green’s function for slight deformations on the bound-
ary of its domain, Hadamard developed his variational formulas [23]. The
validity of the formulas relied on the domain having (at least) a contin-
uously differentiable or smooth boundary. In the 1930’s Julia, modifying
Hadamard’s procedure, derived a new variational formula in terms of the
Riemann mapping function for the domain. This also required the boundary
of the domain to be smooth. This requirement proved to be too restrictive
to solve most extremal problems since the corresponding extremal domains
have non-smooth, typically piece-wise smooth, boundaries. In particular,
Schiffer suggested in [39] that the requirement of a smooth boundary was
too restrictive for extremal problems for the general class of univalent func-
tions; he then proceeded to develop his method of interior variations to
circumvent the issue.

The first author was introduced to the Hadamard and Julia variational
formulas during his graduate studies at the University of Maryland by J.
Hummel. Hummel had used results on the Julia variation, obtained in [38],
to create in [27] a general variational method for starlike functions. He gave
a discussion of the Hadamard and Julia formulas in his lecture notes in [26].
We note also that Julia’s formula was used by M.S. Robertson in [37] to
develop a variational method for analytic functions on the unit disk with
positive real part.

Aside from Schiffer’s and Hummel’s references, the Hadamard and Julia
variational formulas remained generally dormant until Krzyż in [29] applied
the Julia variational formula to convex polygons. A rigorous proof that
the formula is valid when the boundary contains corners was provided by
Barnard and Lewis in [10]. It was found later that an independent proof had
been given earlier by Warshawski in [44]. Consequently, the initial condition
of smoothness on the boundary of the domain could be replaced by a piece-
wise smooth condition. This allowed for the method to be applied to a fairly
large class of functions; in particular, to any class of functions whose image
domains could be approximated by domains bounded by a finite number of
arcs with explicit geometric conditions. The extremal domains with their
piece-wise smooth boundaries are then among the approximating domains
with a small number of sides. Since the approach of using dense subclasses
does not usually give uniqueness of the extremal functions, other methods
are needed to obtain uniqueness.

For completeness, we will give a brief outline of the method. Let C denote
the complex plane and let

Dr = {z : |z| < r}, D = {z : |z| < 1} = D1,

Cr = {z : |z| = r}, γ = {z : |z| = 1} = C1,
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A = {f : f is analytic on D, f(z) = z + ... },
S = {f : f ∈ A, f is 1-to-1 on D}

SX = {f : f ∈ A, f(D) is geometrically characterized by X}.
Two specific subclasses of S to which we will make frequent reference are

S∗ and K, the subclasses of starlike functions (with respect to the origin)
and convex functions, respectively. Recall that a function f ∈ S is starlike
if and only if

Re {zf ′(z)
f(z)

} > 0

for z ∈ D. Also, a function f ∈ S is convex if and only if

Re {1 +
zf ′′(z)
f ′(z)

} > 0

for z ∈ D.
Let E be a domain in C. Let r0 be the mapping radius or inner radius

of the domain E at z0. It is determined by the limit

lim
z→z0

g(z, z0) + log |z − z0| = log r0

where g(z, z0) is the Green’s function of E at z0. Alternately, the mapping
radius is given as the first order coefficient of the univalent mapping function
f : D → E such that f(0) = z0, i.e., let f(z) = a0 + a1z + a2z

2 + ...,
then r0 = |a1|. Both the mapping radius and the Green function depend
on the domain (and z0), and as was shown in [25], the mapping radius is
monotonically, set theoretically and continuously dependent on the size of
the domain.

Let X0 be a specific geometric characterization. We will suppose that
there exist compact subclasses

Sn = {f ∈ SX0 : ∂f(D) has at most n smooth “sides”}
such that for each f ∈ Sn, ∂f(D) is a bounded Jordan curve and⋃

n

Sn = SX0 .

The definition of “sides” will depend on the geometric characterization of
X0.

For example, for the class of convex functions K the subclass Kn could
be all of the functions for which f(D) is a bounded convex polygon with at
most n sides.

Let X0 be a specific geometric characterization. Suppose L is a contin-
uous linear functional, L : A → C, and for the class SX0 we want to find
supf∈SX0

Re L(f). Standard normal family arguments give the existence of
an extremal function whenever SX0 is a normal family.

The following proposition will now be proven.
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Proposition 1. Let z = reiθ, |z| = r < 1, and let T (ζ) = L
(
zf ′(z) 1+ζz

1−ζz

)
,

where ζ = eiφ. If Re T (ζ) = c (for any constant c) has at most m solutions
on |ζ| = 1, then for n ≥ m

sup
f∈SX0

Re L(f) = sup
n

max
f∈Sn

Re L(f) = max
f∈Sm

Re L(f).

Proof. The compactness of the subfamilies Sn along with the density of⋃
n Sn in SX0 insures that, for n ≥ m,

sup
f∈SX0

Re L(f) = sup
n≥m

max
f∈Sn

Re L(f).

We will show that maxf∈Sn Re L(f) = maxf∈Sm Re L(f) for n ≥ m.
Let n be a fixed integer greater than m. Consider any function f in Sn

where ∂f(D) has strictly more than m “sides”. By the assumption that
∂f(D) is a (bounded) Jordan curve (where f(D) is a Jordan domain), we
have, by applying Caratheodory’s Extension Theorem [19], that f has a
continuous extension to D̄ = D

⋃
γ.

Let Ω = f(D) and Γ = f(γ) = ∂Ω. Then Γ has m+1 or more “sides.” Call
these sides, Γ1,Γ2, ... and call the preimages γ1, γ2, ..., where f(γj) = Γj .

We will locally vary Γ by moving one “side” in the following manner (see
Figure 1).

Figure 1

Pick a “side” of Γ, say Γj . For w ∈ Γj , w = f(z) for some z ∈ γj . Let
n(w) = zf ′(z)

|zf ′(z)| and let p(w) be the distance along the unit normal from w
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to a point w∗ on a new “side” Γ∗j . The distance moved is controlled by εp(w),
which is positive along the outward pointing normal and negative along the
inward pointing normal. That is, it is positive if the “side” is moved out and
negative if the “side” is moved in. (The variational distances at the corners
are shown to be o(ε) in [10].) Form a new polygonal curve Γε containing
the “side” Γ∗j . When the new curve Γε can be chosen so that it still has n
or more “sides,” the variation is allowable. Details can be found in Barnard
[6].

We note here that our initial definition of “sides” will require a geometric
condition which allows the “sides” to be moved both in and out in the
manner described above.

For a given z ∈ D (z = reiθ), the varied function fε which maps D onto
the varied domain Ωε for which ∂Ωε = Γε becomes by the Julia Variational
Formula [6],

fε(z) = f(z) + εzf ′(z)
∫

Γ

1 + ζz

1− ζz
dΨ + o(ε)

where ζ = eiφ, o(ε) is uniform for z in compact subsets of D and, for w =
f(ζ),

dΨ =
p(w)n(w)
i[ζf ′(ζ)]2

dw.

A change in variable

dΨ(φ) =
p(w)
|f ′(ζ)|

dφ

insures that dΨ(φ) is real and gives

fε(z) = f(z) + εzf ′(z)
∫

γ

1 + ζz

1− ζz
dΨ(φ) + o(ε).

We note for future reference that the change in mapping radius from f(D)
to fε(D) is given by

ε

∫
γ

dΨ(φ) + o(ε).

If the varied side is Γj , the integral need only be taken over γj since the
value of dΨ(φ) is defined to be zero over the rest of γ by construction.

If two “sides” of Γ are locally varied, say Γk was moved out and Γl was
moved in, the varied function becomes

fε(z) = f(z) + ε

[
zf ′(z)

∫
γk

1 + ζz

1− ζz
dΨ− zf ′(z)

∫
γl

1 + ζz

1− ζz
dΨ

]
+ o(ε).
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Using the linearity of L, we have

Re L(fε) = Re L(f) + ε

∫
γk

Re L

(
zf ′(z)

1 + ζz

1− ζz

)
dΨ

− ε

∫
γl

Re L

(
zf ′(z)

1 + ζz

1− ζz
dΨ

)
+ o(ε).

We have then

∂

∂ε
Re L(fε)|ε=0 =

∫
γk

Re L

(
zf ′(z)

1 + ζz

1− ζz

)
dΨ

−
∫

γl

Re L

(
zf ′(z)

1 + ζz

1− ζz
dΨ

)
.

Let T (ζ) = L(zf ′(z) 1+ζz
1−ζz ). Then,

(0.1)
∂

∂ε
Re L(fε)|ε=0 =

∫
γk

Re T (ζ)dΨ−
∫

γl

Re T (ζ)dΨ.

The function T (ζ) maps |ζ| = 1 onto a curve β. On this curve β, there
are m + 1 arcs resulting from T (γ1), T (γ2), ..., T (γm+1) (see Figure 2). The
Mean Value Theorem for integrals allows us to conclude that on each arc
γj there exists a ζj such that

(0.2)
∫

γj

Re T (ζ)dΨ(φ) = Re T (ζj)
∫

γj

dΨ(φ).

This implies that for γk and γl there are ζk and ζl satisfying (0.2) which
makes (0.1) become

∂

∂ε
Re L(fε)|ε=0 = Re T (ζk)

∫
γk

dΨ− Re T (ζl)
∫

γl

dΨ.

By hypothesis , Re T (ζ) = c (for any constant c) has at most m solutions.
Thus, the most such points, T (ζj), any vertical line (Re T (ζ) = c) could
intersect is m. Since ∂f(D) has strictly more than m sides, there must
exist two points T (ζk) and T (ζl) in β such that the real part of one is
greater than the real part of the other, say

Re T (ζk) > Re T (ζl).

Thus, if the two sides that are initially varied are Γk and Γl, then the partial
in (0.1) can be chosen so that

∂

∂ε
Re L(fε)|ε=0 > Re T (ζl)

[∫
γk

dΨ(φ)−
∫

γl

dΨ(φ)
]

.
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Figure 2

As noted earlier,
∫

γk
dΨ(φ)−

∫
γl

dΨ(φ) represents the change in the map-
ping radius. From continuity Γ can be varied so that the resulting function
fε is again in Sn, i.e., if Ψ(φ) is chosen on γk and γl so that the resulting
mapping radius of fε is 1, then

∫
γk

dΨ(φ)−
∫

γl
dΨ(φ) = 0. Hence,

∂

∂ε
Re L(fε)|ε=0 > [Re T (ζl)](0) = 0.

Recall that
∂

∂ε
Re L(fε)|ε=0 =

∫
γk

Re L

(
zf ′(z)

1 + ζz

1− ζz

)
dΨ

−
∫

γl

Re L

(
zf ′(z)

1 + ζz

1− ζz
dΨ

)
.

We have

Re L(fε) = Re L(f) + ε

[
∂

∂ε
Re L(fε)|ε=0

]
+ o(ε).
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Thus, for any function f ∈ Sn such that ∂f(D) has strictly more than m
“sides”, each of which can be moved both in and out, a function can be
found which increases the real part of the functional L. Therefore, we have
that the function f ∈ Sn which maximizes the real part of the functional L
is actually in Sm. Thus, for n ≥ m,

max
f∈Sn

Re L(f) = max
f∈Sm

Re L(f).

This proves Proposition 1. �

Remark. In [8] it is shown that by combining this method with Loewner
theory on slit domains that this method may be applied to domains where
∂f(D) is not a Jordan curve (where f(D) is a slit domain) with slight
variations. Hence, this variational method involving Proposition 1 may be
used to solve extremal problems over a much broader class of functions.

It is this basic idea that the authors have been able to apply to a variety of
extremal problems. The first arose in Barnard’s dissertation and answered a
question which arose out of Netanyahu’s work in [36]. Netanyahu had asked
to determine the extremal functions for the standard distortion theorems
for the class of starlike or convex functions whose image domains contain a
fixed disk centered at the origin. Netanyahu had done this [36] for the class
NS(d) of univalent functions in S whose image domains contain a fixed disk
of radius d centered at the origin, but his methods did not appear to work
for the corresponding classes NS∗(d) or NK(d). The extremal functions
for the classes NS∗(d) and NK(d) were found by Barnard in [6], however,
a more general result containing resolutions for Netanyahu’s questions as
special cases was given in [10] by Barnard and Lewis.

To obtain the more general result, we first answered M. Reade’s ques-
tion as to determining a geometric characterization for the Mocanu class,
MS∗(α), of α-starlike functions. MS∗(α) was a continuously parametrized
family of functions, 0 ≤ α ≤ ∞, defined analytically, which contained the
class S∗ = MS∗(0) and the class K = MS∗(1). In particular, Mocanu had
defined in [35] the class MS∗(α) as those functions in A for which

Re
{

(1− α)
(

zf ′(z)
f(z)

)
+ α

(
1 +

zf ′′(z)
f ′(z)

)}
> 0.

We determined in [10] that by defining an α-arc for α > 0, loosely speaking,
as a translate of an arc of the αth power of the line x = 1 (see [10] for
details), then a domain f(D) is the image of an α-starlike function f if and
only if any two points in f(D) can be connected by an α-arc lying in f(D).
(Note α = 1 gives 1-arcs as straight line segments [hence, convexity], while
the limiting case of α = 0 gives starlikeness with respect to the origin.)
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By using as a dense subclass those domains bounded by a finite number of
α-arcs as “sides”, we proved the following result.

For a given d, 0 ≤ d < 1 and 1 < ρ ≤ ∞, let MS∗(α, d, ρ) be those
functions in MS∗(α) for which d ≤ |f(z)/z| ≤ ρ. Let F = F (·, α, d, ρ)
be the function in MS∗(α, d, M) whose image is the symmetric domain
bounded by an arc γd ⊂ Cd, which is symmetric about −d, an arc γρ ⊂ Cρ,
which is symmetric about ρ and two α-arcs connecting the endpoints of γd

and γρ. We proved the following main theorem and corollary.

Theorem 1. Let α, d and ρ be fixed nonnegative numbers satisfying 0 ≤
α ≤ ∞, 0 ≤ d < 1 and 1 < ρ ≤ ∞. Then,

(A) The function g(z) = log[F (z)/z], z ∈ D is univalent and convex in
the direction of the imaginary axis.

(B) If f ∈ MS∗(α, d, ρ), then log[f(z)/z] is subordinate to g.

Corollary 1. Let α, d and ρ be as in Theorem 1. Let Φ be a given noncon-
stant entire function. If f ∈ MS∗(α, d, ρ), then

(A) For given z ∈ D\{0}

Re
{

Φ
[
log

f(z)
z

]}
≤ max

0<θ≤2π
Re

{
Φ

[
log

F (z)
z

]}
,

(B) For given r, 0 < r < 1, and λ > 0,∫ π

−π

|f(reiθ)|λdθ ≤
∫ π

−π

|F (reiθ)|λdθ,

(C) For a given positive integer N ≥ 2,

N∑
k=2

|ak|2 ≤
N∑

k=2

|Ak|2,

where f(z) = z +
∑∞

k=2 akzk and F (z) = z +
∑∞

k=2 Akzk, z ∈ D.

Another application of this variational method was to show in [4] that
any f ∈ S for which ∂f(D) has an analytic slit which contains a point
f(eiθ1) = f(eiθ2) where the opposing normals exist and are of unequal mo-
dulus, i.e., |f ′(eiθ1)| 6= |f ′(eiθ2)|, can always be varied locally on the bound-
ary to produce a domain of strictly larger mapping radius. For consequences
of this result, see [4].

General applications of the variational method were used in a series of
papers on the omitted values problem of Goodman. The problem of omitted
values was first posed by Goodman [20] in 1949, restated by MacGregor
[33] in his survey article in 1972, then reposed in a more general setting by
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Brannan [3] in 1977. It also appears in Bernardi’s survey article [17] and
has appeared in several open problem sets since then, including [7], [18],
[21] and [34].

For a function f ∈ S, let A(f) denote the Lebesgue measure of the set
D\f(D) and for 0 < r < 1 let L(f, r) denote the Lebesgue measure of
the set {D\f(D)}

⋂
Cr. Two explicit problems posed by Goodman and by

Brannan were to determine

A = sup
f∈S

A(f)

and

(0.3) L(r) = sup
f∈S

L(f, r).

Goodman [20] showed that 0.22π < A < 0.50π. The lower bound which
he obtained was generated by a domain of the type shown in Figure 3.

Figure 3

Later, Goodman and Reich [22] gave an improved upper bound of 0.38π
for A. Lewis had shown in [31] by applying some deep results of Alt and
Caffarelli [2] in partial differential equations for free boundary problems
that the extremal domains had to have piecewise analytic boundaries and
that our methods developed in [10] for these omitted value problems could
be used to give a geometric description for the boundaries of the extremal
domains as follows. There is an f0 in S with A = A(f0) such that f0(D)
is circularly symmetric with respect to the positive real axis, i.e., it has the
property that for 0 < r < 1,

∂

∂θ
|f0(reiθ)| ≤ 0 and

∂

∂θ
|f0(re−iθ)| ≤ 0, for 0 < θ < π
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(cf. Hayman [25]). Moreover, the ∂f0(D) consists of the negative real axis
up to −1, and arc σ of the unit circle that is symmetric about −1 and an
arc λ lying in D, except for its endpoints. The arc λ is symmetric about the
reals, connects to the endpoints of σ and has monotonically decreasing mod-
ulus in the closure of the upper half disc. These results follow by standard
symmetrization methods. Much deeper methods are needed to show (as in
[5] and [31]) that f0 has a piecewise analytic extension to λ with f ′0 con-
tinuous on f−1

0 (λ) and |f ′0(f−1
0 (w))| ≡ c < 1 for all w ∈ λ

⋂
{D\(−1, 1)}.

Using these properties of f0 it was shown by the authors in [11] that by
“rounding the corners” of certain gearlike domains a close approximation
for the extremal function could be obtained. This gives the best known
lower bound of

0.24π < A.

The upper bound is conceptually harder since it requires an estimate on
the omitted area for each function in S. Indeed, it appears difficult to use
the geometric description of f0 to calculate A directly. However, an indirect
proof was used by Barnard and Lewis [9] to obtain the best known upper
bound of

A < 0.31π.

Open Problem. Show that f0 is unique and determine A explicitly.

For the class S∗ of functions in S whose images are starlike with respect
to the origin, the problem of determining the corresponding

A∗ = sup
f∈S∗

A(f)

has been completely solved by Lewis in [31]. The extremal function f1 ∈ S∗

defined by
A∗ = A(f1) ≈ 0.235π

is unique (up to rotation). The extremal domain ∂f(D) is a circularly
symmetric domain whose boundary ∂f1(D) has two radial rays projecting
into D with their endpoints connected by an arc λ1 that is symmetric about
the reals and has |f ′1(ζ)| ≡ c1 for all ζ ∈ f−1

1 (λ1).
The problem of determining L(r) in (0.3) was solved by Jenkins in [28]

where he proved that for a fixed r, 1/4 ≤ r < 1,

L(r) = 2π arccos(8
√

r − 8r − 1).

The extremal domain in this case is the circularly symmetric domain (unique
up to rotation) having as its boundary the negative reals up to −r and a
single arc of Cr symmetric about the point −r.
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The corresponding problem for starlike functions of determining

L∗(r) = sup
f∈S∗

L(f, r)

was solved by Lewandowski in [30] and by Stankiewicz in [40]. The ex-
tremal domain in that case is the circularly symmetric domain (unique up
to rotation) having as its boundary two radial rays and the single arc of Cr

connecting their endpoints. An explicit formula for the mapping function
in this case was first given by Suffridge in [41].

However, for the class K of functions in S whose images are convex
domains the corresponding problems of determining

AK(r) = sup
f∈K

A(f, r)

and
LK(r) = sup

f∈K
L(f, r),

where A(f, r) denotes the Lebesgue measure of Dr\f(D), presents some
interesting difficulties. One particular difficulty is that the basic tool of
circular symmetrization used in the solution of each of the previous deter-
minations is no longer available. The example of starting with the convex
domain bounded by a square shows that convexity is not alway preserved un-
der circular symmetrization. However, Steiner symmetrization (cf. Hayman
[25]) can still be used in certain cases such as sectors. Another difficulty is
the introduction of distinctly different extremal domains for different ranges
of r. Since every function in K covers a disk of radius 1/2 (cf. Duren [19]) r
needs only to be considered in the interval (1/2, 1). Waniurski has obtained
some partial results in [43]. He defined r1 and r2 to be the unique solutions
to certain transcendental equations where r1 ≈ 0.594 and r2 ≈ 0.673. If
Fπ/2 is the map of D onto the half plane {w : Re w > −1/2} and Fα maps
D onto the sector {

w :
∣∣∣arg

(
w +

π

4α

)∣∣∣ < α
}

whose vertex, v = −π/4α, is located inside D, then

AK(r) = A(Fπ/2, r) for 1/2 < r < r1,

LK(r) = L(Fπ/2, r) for 1/2 < r < r1,

and
LK(r) = L(Fα, r) for r1 < r < r2.

Barnard had announced in his survey talk on open problems in com-
plex analysis at the 1985 Symposium on the Occasion of the Proof of the
Bieberbach Conjecture the following conjecture.
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Conjecture 1. The extremal domains for determining AK(r) and LK(r)
will be half planes, symmetric sectors and domains bounded by single arcs
of Cr along with tangent lines to the endpoints of these arcs; the different
domains will depend on different ranges of r in (1/2, 1).

This conjecture was also made later, independently, by Waniurski at the
end of his paper in [43] in 1987.

In trying to determine the extremal domains for AK(r) and LK(r) via our
variational method developed in [10] the following problem was investigated.
For F ⊂ S and 1/4 ≤ d ≤ 1 let Fd = {f ∈ F : minz∈D |f(z)/z| = d}. Then,
determine the sharp constant A = A(Fd) such that for any f ∈ Fd

(0.4) I−1(f ′) = lim
r→1

1
2π

∫ π

−π

∣∣∣∣ 1
f ′(reiθ)

∣∣∣∣ dθ ≤ A

d
.

For 0 ≤ α < 1 let S∗(α) denote the subclass of S of starlike functions
of order α, i.e., a function f ∈ S∗(α) if and only if f satisfies the condi-
tion Re zf ′(z)/f(z) > α for z ∈ D. It is well known that K ⊂ S∗(1/2).
It follows fairly easily from subordination theory that A(S∗(1/2)) ≤ 4/π.
Furthermore, this estimate is sharp for S∗(1/2) since the functions fn(z) =
z/(1 − zn)1/n belong to S∗(1/2) for each n > 0. However, this estimate is
not sharp for the class K of convex functions which is a proper subset of
S∗(1/2). Considerable numerical evidence suggested to the authors to make
the following conjecture.

Conjecture 2. For each d, 1/2 ≤ d ≤ 1, A = A(Kd) = 1 in (0.4) with
equality holding for all domains which are bounded by regular polygons cen-
tered at the origin.

This conjecture was announced in March 1985 at the Symposium on the
Occasion of the Proof of the Bieberbach Conjecture at Purdue University.
It also appeared as Conjecture 8 in the first author’s “Open Problems and
Conjectures in Complex Analysis” in [7]. It was thought, by many func-
tion theorists, that the conjecture would be easily settled, given the vast
literature on convex functions and the large research base for determining
integral mean estimates, see [19].

An initial difficulty was the non-applicability of Baernstein’s circular
symmetrization methods, since convexity, unlike univalence and starlike-
ness, is not preserved under circular symmetrization as noted above. Al-
though Steiner symmetrization does preserve convexity, see [42], it did not
appear to be helpful for the problem and, indeed, we found that extremal
domains need possess no standard symmetry.

A confusing issue, which also arises, is that the integral means of the
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standard approximating functions fn in K defined by

f ′n(z) =
n∏

k=1

(1− zeiθk)−2αk , 0 < αk ≤ 1,
n∑

k=1

αk = 1

decrease when the arbitrarily distributed θk are replaced by uniformly dis-
tributed tk = kπ/n, as was shown in [45]. The conjecture suggests that
multiplication by the minimum modulus d must overcome this decrease.

We make the following definition.

Definition. Let Γ be a curve in C such that the left- and right-hand
tangents to the curve Γ exist at each point on Γ. The curve Γ will be said
to circumscribe a circle C if the left- and right-hand tangents to the curve
Γ at each point on Γ lie on tangent lines to the circle C.

We will employ the following notation.

Notation. Let f ∈ S and suppose that λ is a subarc of γ on which f is
smooth. For z = eiθ ∈ λ let dθ = < f(z), zf ′(z)

|zf ′(z)| >, i.e, dθ is the directed
length of the projection of f(z) onto the outward unit normal to the ∂f(D)
at f(z).

In [12], we proved the following theorem which verified Conjecture 2.

Theorem 2. Let f ∈ K, d = min
θ
|f(eiθ)| and d∗ = sup

θ
dθ. Then,

1
d∗
≤ 1

2π

∫ 2π

0

1
|f ′(eiθ)|

dθ ≤ 1
d

with equality holding if the ∂f(D) circumscribes Cd.

Our original proof which was quite lengthy used as a major step the
following idea which has independent interest. For any domain Λ which
contains the origin, let the notation m.r.(Λ) denote the inner radius of Λ
at the origin. Given a d and a convex domain Ω = f(D) where f ∈ Kd,
one can always construct two varied domains Ω∗ and Ω∗∗ which satisfy the
containment relationship

(0.5) Ω∗ ⊆ Ω∗∗,

as follows.
The domain Ω∗∗ is constructed by multiplication by 1+ε for ε sufficiently

small and positive. This produces a radial enlargement (1 + ε)Ω = Ω∗∗ of
Ω. The domain Ω∗ is constructed by moving each smooth boundary point
w = f(eiθ) a distance εd in the direction of the outward pointing normal.
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An adjustment is made at the non-smooth boundary points to produce the
domain Ω∗ so that boundary of Ω∗ has the same geometric restrictions as
the boundary of Ω, e.g., same number of sides. Subordination then shows
that (0.5) implies that m.r.(Ω∗) ≤ m.r.(Ω∗∗). The variational formulas can
then be applied to yield that

∆m.r.(Ω∗,Ω) =
εd

2π

∫ π

−π

∣∣∣∣ 1
f ′(eiθ)

∣∣∣∣ dθ + o(ε) ≤ ε = ∆m.r.(Ω∗∗,Ω)

which give the result. Similar arguments are used for d∗.
We obtained, arising out of the proof, the rather unexpected sufficient

condition for equality to occur in (2) for the classes Kd. However, because
the proof used a scheme to approximate convex functions by polygonally
convex functions, we did not obtain a necessary condition for equality.

We devised in [13] a new, simpler proof for the conjecture which extends
Theorem 2. The proof relaxes the convexity requirement and validates the
necessity of the sufficient condition.

Theorem 3. Let f ∈ S∗(α) for some 0 ≤ α < 1. Suppose f is smooth
on X ⊂ ∂D where X is a countable union of pairwise disjoint subarcs of γ
such that the complement of X in γ has measure zero. Let d∗ = inf

θ∈X
dθ,

d∗ = sup
θ∈X

dθ. Then,

1
d∗
≤ 1

2π

∫ 2π

0

1
|f ′(eiθ)|

dθ ≤ 1
d∗

with equality holding if and only if ∂f(D) circumscribes Cd∗ .

Another application of the method originated from a question of Clunie
and Sheil-Small. If f ∈ S and w 6∈ f(D), then the function

(0.6) f̂ = f/(1− f/w)

belongs again to S. The transformation f → f̂ is an important tool in the
study of geometric function theory. If F is a subset of S, let

F̂ = {f̂ : f ∈ F,w ∈ C∗\f(D)}.

Here, C∗ = C
⋃
{∞}. Since we admit w = ∞, it is clear that F ⊂ F̂ ⊂ S.

If F is compact in the topology of local uniform convergence, then so is
F̂ . If F is rotationally invariant, that is, if fα(z) = e−iαf(eiαz) belongs to
F whenever f does, then F̂ is also rotationally invariant. It is an interesting
question to ask which properties of F are inherited by F̂ . Since Ŝ = S, this
question is trivial for S.
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In [14], [15] and [16] Barnard and Schober considered transforms of the
class K of convex mappings (and the class S∗ of starlike mappings). Simple
examples show that K̂ is strictly larger than K. Since the coefficients of
functions in K are uniformly bounded [by one (in modulus)], Clunie and
Sheil-Small had asked whether the coefficients of functions in K̂ have a
uniform bound. The affirmative solution of this problem was given by Hall
[24].

Open Question. Find the best uniform coefficient bound as well as the
individual coefficient bounds for functions in K̂.

In [14] the variational procedure developed in [10] is applied to a class
of extremal problems for K̂. If λ : K̂ → R is a continuous functional that
satisfies certain admissibility criteria, it was shown that the problem

max
K̂

λ

has a relatively elementary extremal function f̂1. More specifically, it was
shown that f̂1 is either a half-plane mapping f̂1(z) = z/(1 − eiαz) or is
generated through (0.6) by a parallel strip mapping f1 ∈ K.

The class of functionals considered in [14] contain the second-coefficient
functional λ(f̂) = Re a2 and the functionals λ(f̂) = Re Φ(log f̂(z)/z) where
Φ is entire and z is fixed. The latter functionals include the problems of
maximum and minimum modulus (Φ(w) = ±w). In general, the extremal
strip domains f1(D) need not be symmetric about the origin. This adds a
nontrivial and interesting character to the problem.

A sharp estimate for the second coefficient of functions in K̂ is given
explicitly in the following result. Surprisingly, the answer is not an obvious
one.

Theorem 4. If f̂(z) = z + a2z
2 + ... belongs to K̂, then

|a2| ≤
2
x0

sinx0 − cos x0 ≈ 1.3270

where x0 ≈ 2.0816 is the unique solution of the equation

cot x =
1
x
− 1

2
x

in the interval (0, π). Equality occurs for the functions e−iαf̂1(eiαz), α ∈ R,
where f̂1(z) = f1(z)/[1 − f1(z)/f1(1)] and f1 is the vertical strip mapping
defined by

(0.7) f1(z) =
1

2i sinx0
log

1 + eix0z

1− eix0z
.

We make the following conjecture.
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Conjecture 3. The extremal functions for maximizing |an| over K̂ are the
vertical strip mappings defined by (0.7) where a different x0 is needed for
each n.

In [15] the Koebe disk, radius of convexity and sharp estimates for the
coefficient functional|ta3 +a2

2| were found for functions in the class K̂. Also,
in [1] R.M. Ali found sharp upper and lower bounds for |f(z)| for f̂ ∈ K̂.

A key lemma in the proofs of the above was the determination of the
geometric characterization of the “sides” to be varied in the images of the
functions in a dense subclass of the transformed convex domains. The
variations of the functions in Kn whose image domains are convex polygons
with at most n sides did not reduce the problem for K̂ to examining domains
with a sufficiently small enough number of sides. We observed that functions
f̂ in K̂n map D onto curvilinear polygons with at most n sides and with
interior angles at π. Furthermore, if f̂ = f/(1− f/w), then the sides of the
∂f̂(D) all lie on circles or lines through the point w1 = −w (see Figure 4).
In fact, these two properties characterize functions in K̂n. That is, if g ∈ S
and the ∂g(D) is a curvilinear n-gon with interior angles at most π and if
the sides of the ∂g(D) all lie on circles or lines through a point −w 6∈ g(D),
then f = g/(1− g/w) belongs to Kn and so f̂ = g belongs to K̂n.

Figure 4

These observations thus produced the domains whose boundaries were
characterized in a geometric fashion so that our methods could be applied.

In a more recent application of the Julia variational method J. Ma [32]
has proved, in his dissertation under Ruscheweyh, the following results.

Let points zj ∈ D with zj 6= 0, j = 1, 2, ...,m and positive integers
lj , j = 0, 1, 2, ...,m be given. Define N = l0 + l1 + l2 + ... + lm. For g ∈ A
consider the complex N vector v(g) with components

ak (k = 2, 3, ..., l0 + 1), g(k)(zj) (k = 0, 1, ..., lj − 1; j = 1, 2, ...,m).
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Denote by VN (K) the set {v(g) : g ∈ K}.
Let Λ(v) be a real-valued function that is differentiable on some open

neighborhood of VN (K). Define a continuous functional Ψ on K by

Ψ(g) := Λ(v(g)) = Λ(a2, a3, ..., al0+1,g(z1), g′(z1), ..., g(l1−1)(z1), ...,

g(zm), g′(zm), ..., g(lm−1)(zm)).

A functional of this form will be called a functional of finite degree and the
number N is call the degree of the functional.

Let us denote

Λv :=
(

∂Λ
∂w1

, ...,
∂Λ

∂wN

)
,

where
∂Λ
∂wk

=
1
2

(
∂Λ
∂xk

− i
∂Λ
∂yk

)
, k = 1, 2, 3, ..., N.

The main results are the following theorems.

Theorem 5. Let Ψ be a functional of degree N on the class K and for
f0 ∈ K let

Ψ(f0) = max(min){Ψ(g) : g ∈ K}.

Suppose that Λv(v(f0)) 6= 0. Then,

(0.8) f0(z) =
∫ z

0

dη
N∏

k=1

(1− zkη)2λk

,

where |xk| = 1, λk >= 0, k = 1, ..., N and
∑N

k=1 λk = 1.

Theorem 6. Let H(w1, w2, ..., wN ) be an analytic function on a neighbor-
hood of the set VN (K). If for f0 ∈ K,

Re {H(v(f0))} = max(min){Ψ(g) : g ∈ K}

then f0 has the form (0.8).

We note that extremal functions with the form (0.8) map D onto convex
polygons with at most N sides.
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