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Technological problems of natural gas desulfurization in syngases 

manufacturing plants have been discussed and the results of investigations 

on the activity of the model Ni-Mo/Al2O3 catalyst in hydrogenation of 

selected sulfur compounds have been presented. The HDS reaction rate is 

dependent on a compound structure. The hydrogenation rate on the Ni-

Mo/Al2O3 catalyst for the given sulfur compound increases in the order: 

CS2>(CH3)2S>C4H10S>C2H6S2>C4H4S. 

 

 

1. INTRODUCTION 

 

Sulfur compounds are present in all fossil feedstocks such as natural gas, 

crude oil and coal, used both as energy carriers and substrates in the chemical 

industry. Desulfurization of abovementioned fossil feedstocks belongs to the 

important technological issues [1]. Due to its wide availability natural gas is used 

as a basic feedstock in the most important branches of the chemical industry. 

Technological predispositions and solutions of chemical plants necessitate deep 

purification of natural gas. Sulfur compounds belong to potent poisons of the 
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catalysts used in syngases production and conversion processes that are run at 

manufacturing plants of ammonia, methanol, DME and liquid hydrocarbons [2]. 

The catalysts that are utilized in these plants (especially nickel and copper ones) 

are very sensitive to sulfur compounds and in their presence undergo 

deactivation. The recommended sulfur level for natural gas (especially for the 

one processed in reformers) is less than 0.02 ppmv [3]. The sulfur problem also 

pertains to engine fuels, where the law restrictions force the investigations on 

highly effective new generation technologies, so-called „ultra-deep desulfuri-

zation” [4]. 

The concentration of sulfur compounds in raw natural gas depends on the 

geographic localization of deposits and can be in a wide range. Sulfur in natural 

gas occurs mainly in the form of hydrogen sulfide, however, organic sulfides and 

disulfides, carbon disulfide or thiols as well as other compounds of a more 

complex structure can be also present [3]. The purification of gases, especially 

with a high content of sulfur compounds (raw natural gas, coal and biomass 

gasification products, coke oven gas), is generally performed by means of 

absorption methods e.g. Sulfinol process, washing with amines etc. As a result of 

these operations it is possible to decrease the hydrogen sulfide content below 

1 ppm. From the practical viewpoint of chemical syntheses on the industrial 

scale natural gas requires thorough purification. With this end in view hydrogen 

sulfide sorption on selective sorbents preceded by hydrodesulfurization process 

(HDS), i.e. catalytic hydrogenation of organic sulfur compounds, is commonly 

used. In classical process desulfurization of natural gas is carried out in two 

stages: (Figure 1a): 

• hydrogenation of organic sulfur compounds to H2S on the Ni-Mo or Co-Mo 

catalysts at the temperature of 350–400 
o
C, under the pressure of 2–4 MPa 

with the gas hourly space velocities (GHSV) in the range of 1000–3000 h
-1

 

and the concentration of supplied hydrogen in the range of 2–5% vol. 

 

RSH + H2 → RH + 2H2S (1) 

 

• sorption of the resulting H2S on a zinc sorbent (ZnO). 

 

ZnO + H2S → ZnS + 2H2O (2) 

 

The Co-Mo catalysts exhibit higher activity in HDS processes than the Ni-Mo 

catalysts, wherethrough the cobalt catalysts are preferred in processing of 

feedstocks containing sulfur compounds of low reactivity. What is a remarkable 

shortcoming of cobalt catalysts is the fact that they also catalyze the exothermic 

reaction of carbon oxides methanation and this can cause negative effects such 
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as undesirable elevation of temperature in the case of carbon oxides-containing 

feedstocks [5]. This is not the case for Ni-Mo catalysts and they are 

recommended for HDS processes of feedstocks that may contain CO2 e.g. natural 

gas from local deposits.  

Since a sulfide form is an active form of Ni-Mo or Co-Mo catalysts, they 

require initial activation in H2S/H2 stream. The operating conditions of this 

process have a remarkable influence on the final activity of catalysts. Its 

constancy is determined by maintenance of the appropriate extent of catalyst 

sulfidation [6-8]. In the case of feedstocks containing low amounts of organic 

sulfur compounds or when their concentration fluctuates in time and problems 

with maintaining the catalyst active form may occur, elimination of the HDS 

loop and utilization of a zinc-copper sorbent in the sorption loop besides the zinc 

sorbent may be an alternative. The zinc-copper sorbent is a bifunctional system 

[9]. It is characterized by the activity towards hydrogenation sufficient for 

conversion of low amounts of organic sulfur compounds into H2S and 

concurrently it acts as an effective sorbent of the resulting H2S [10].  

In modern manufacturing plants of syngases, with a feedstock being 

processed in the prereforming stage [11], the utilization of low-temperature HDS 

catalyst and additional introduction of desulfurizer with the zinc-copper sorbent 

allowing for the removal of sulfur to the level below 20 ppb is an attractive 

processing solution. Such a configuration of the process generates technological 

advantages (radical simplification of the feedstock saturation stage) and also 

extends operating time of costly catalysts for syngases production 

(Figure 1b) [12].  

 
a)                                                          b) 

 
 

 

Fig. 1 Scheme of desulfurization loop in syngases manufacturing plants a) classical 

solution b) modern configuration. 

 

Performance and productivity of the desulfurization loop is very much 

dependent on the HDS catalysts properties. The ideal catalyst should be 
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characterized by high and constant activity per bed volume unit and 

correspondingly high and constant mechanical strength. The catalyst should also 

exhibit high activity towards hydrogenation of various sulfur compounds, which 

may substantially differ in reactivity [3].  

                  

 
Fig. 2 Commercial HDS catalysts and sorbents (INS) a) hydrodesulfurization catalyst 

(HDS), b) zinc-copper sorbent Cu/ZnO, c) zinc sorbent ZnO. 

 

Model reactions are used for evaluation of catalytic properties towards 

hydrogenation. The literature data indicate that thiophene is usually used for this 

purpose (3), although it practically does not occur in natural gas.  

 

C4H4S + 4H2 → n-C4H10 + H2S      ∆H = -270,3  (kJ mol
-1

)  (3) 

 

In this work the investigations on the hydrogenation reaction rates of selected 

sulfur compounds on the model Ni-Mo/Al2O3 catalyst are presented. The 

knowledge of hydrogenation kinetics of various sulfur compounds is a basis for 

design and optimization of the scale of HDS catalyst loadings in industrial 

reactors.  

 

2. MATERIALS AND METHODS 

 

2.1. Preparation of catalysts 

The Ni-Mo catalyst was prepared on Al2O3 carrier (INS Al2O3, 220 m
2
/g), 

obtained by thermal shock method [13]. The catalyst was prepared by 

impregnation method; first with a (NH4)6Mo7O24 solution and then with 

a Ni(NO3)2 *6H2O solution. After each impregnation the catalysts were dried for 

12 h at 105 °C and calcined at 500 °C for 4 hours. 
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2.2. Chemical content 

The chemical composition of the samples was determined by means of the 

ICP-OES (inductively coupled plasma optical emission spectrometry) method. 

The measurements were done on a Varian 720-ES ICP-OES spectrometer with 

a horizontally oriented, axially viewed plasma, ideal for high sensitivity 

analyses. 

 

2.3. Texture and specific surface area 

Specific surface area and pore structure of catalysts were determined using N2 

adsorption isotherm in the temperature of liquid nitrogen with a Micromeritics 

ASAP 2050 Xtended Pressure sorption analyzer.  

 

2.4. Test procedure 

Before the activity measurements the samples were tentatively sulfided with 

hydrogen sulfide according to the previously developed methods [14]. After 

sulfidation procedure the catalyst was treated with a hydrogen stream saturated 

with selected sulfur compounds e.g. carbon disulfide, dimethyl sulfide, 

butanethiol, 1,2-ethanethiol, thiophene. The catalyst activity in hydrogenation 

reactions of sulfur compounds was compared with thiophene hydrogenation rate. 

The catalysts activity measurements in hydrogenation reactions were carried 

out in a Zielinski-type reactor [15] under atmospheric pressure. A schematic 

diagram of the experimental apparatus is shown in Figure 3. 

Activity measurement conditions: 

• grain size ………………….   0.1-0.16 mm; 

• sample weight …………………. 150 mg; 

• pressure ……………… atmospheric; 

• temperature ………….. 260, 300, 400 
o
C; 

• reaction mixture flow rate …. 4.6 dm
3
/h 

 

The analysis of hydrogen sulfide, the main hydrogenation product in exhaust 

gas from the reactor was performed on a Philips gas chromatograph equipped 

with an FPD detector.  

Hydrogenation reaction rate was calculated according to the equation:  

 

r = CH2S*V/mcat.  [Ndm
3

H2S/gcat.
-1

 h
-1

 ] (4) 

 

where: CH2S – hydrogen sulfide concentration in exhaust gases, V– reaction 

mixture volume,  mcat – catalyst weight. 
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Fig. 3. Scheme of experimental installation for sulfidation and catalyst activity 

measurements in hydrogenation of various sulfur compounds: 1 – flow controllers,  

2 – thermostated saturator, 3 – thermocouple, 4 – Zielinski reactor with catalyst sample,  

5 – chromatograph, 6  – flowmeter, 7 – computer. 

 

3. RESULTS AND DISCUSSION 

 

The evaluation of hydrogenation rates of selected sulfur compounds (carbon 

disulfide, dimethyl sulfide, butanethiol, 1,2-ethanethiol, thiophene) was 

performed on the carrier  Ni-Mo/Al2O3 catalyst, having characteristics shown in 

Table 1. The model Ni-Mo/Al2O3 catalyst contains 3.5% wt. NiO and 14.5% wt. 

MoO3 and has the specific surface area of 188 m
2
/g. Dominant pore size in the 

range 2-50 nm indicates the mesoporous structure of the catalyst. 

Figure 4 shows the comparison of hydrogenation reaction rates of organic 

sulfur compounds with different structure and physicochemical properties, 

hydrogenated on the model Ni-Mo/Al2O3 catalyst. The catalyst activity for 

carbon disulfide hydrogenation was taken as a standard.  

 

Tab. 1 Physicochemical characteristics of the Ni-Mo catalyst. 

 

Composition 
Sample 

NiO MoO3 Al2O3 

BET surface area 

[m2/g] 

Pore volume 

BJH  model 

[cm3/g] 

Al2O3 - - > 99 220 0.45 

Ni-Mo/Al2O3 3.5 14.5 balance 188 0.43 

 

The hydrogenation rate for thiophene is a few times lower than that for the 

other sulfur compounds: CS2>(CH3)2S>C4H10S>C2H6S2>C4H4S.  
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Fig. 4 Hydrogenation rates of various sulfur compounds on the Ni-Mo catalyst  

at temperatures 260, 300 and 400 
o
C. 

 

Table 2 shows the apparent activation energy for hydrogenation reaction of 

individual sulfur compounds. 

 

Tab. 2. Apparent activation energy for HDS reactions on the Ni-Mo/Al2O3 catalyst. 

 

Sulfur compounds 
Apparent activation energy  

Ea [kJ/mol] 

thiophene 40.0  

1,2-ethanedithiol  33.2 

butantiol 31.5 

dimethyl sulfide 31.0 

carbon disulfide (IV) 29.5 

 

The values of apparent activation energies for hydrogenation of sulfur 

compounds on the catalyst investigated depend on the compound structure and 

vary in the range from ca. 30 kJ/mol for linear compounds to ca. 40 kJ/mol in the 

case of aromatic ones (thiophene) (Table 3).  
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Tab. 3. Formula and properties of organic sulfur compounds. 

 

Sulfur compounds Formula  Hydrogenation rates 

thiophene 

C4H4S 

 

low 

1,2- ethanedithiol   
C2H4(SH)2 

medium 

butantiol 
 

C4H9SH 

medium 

dimethyl sulfide 
  

(CH3)2S 

high 

carbon disulfide (IV) 
 CS2 

S=C=S 
high 

 

The results of kinetic investigations and the evaluation of hydrogenation 

activation energy allow for the following arrangement of sulfur compounds with 

decreasing reactivity on the Ni-Mo/Al2O3 catalyst: 

CS2> (CH3)2S>C4H10S>C2H6S2>C4H4S.  

 
4. CONCLUSIONS 

 

The following conclusions can be drawn from our studies: 

• there is a pronounced correlation between the type of sulfur compound 

and the hydrogenation rate; compounds with linear structures are more 

easily hydrogenated than the aromatic ones, 

• the hydrogenation rate of the sulfur compounds on the Ni-Mo/Al2O3 

catalyst decreases in the following order: 

CS2>(CH3)2S>C4H10S>C2H6S2>C4H4S, with the reaction rate for 

thiophene being a 5 times lower than for other compounds, 

• at the temperature of 400 
o
C hydrogen disulfide and dimethyl sulfide 

hydrogenation rates are 5-6 times higher than for the analogous reaction 

with thiophene,  
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• Ni-Mo/Al2O3 catalyst show high activity towards hydrodesulfurization of 

sulfur compounds present in natural gas. 
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