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Some natural operators in linear vector fields

Abstract. The higher order tangent bundles of vector bundles are a modi-
fication of the usual dual to jets of functions, restricted to those linear along
the fibres. The paper shows, roughly speaking, that these bundles are more
rigid than their full version.

Introduction. The category of vector bundles with m-dimensional bases
and vector bundle maps with local diffeomorphisms as base maps will be
denoted by VBm. The category of vector bundles with m-dimensional bases
and n-dimensional fibers and vector bundle isomorphisms onto open vector
subbundles will be denoted by VBm,n.
Given a vector bundle E there are two (depending functorially on E)
vector r-tangent bundles of E. Namely, the vector (r)-tangent bundle
T (r)flE = (Jr

fl(E,R)0)∗, where

Jr
fl(E,R)0 = {jr

xγ | γ : E → R is fiber linear, γx = 0, x ∈ M},

and the vector [r]-tangent bundle T [r]flE = E ⊗ (Jr(M,R)0)∗.
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In this paper we deduce that for integers m ≥ 2, n ≥ 1 and r ≥ 1 any
VBm,n-natural operator A lifting linear vector fields X from vector bun-
dles E into vector fields A(X) on T (r)flE is a linear combination with real
coefficients of the flow operator T (r)flX and the Liouville vector field. As
corollaries we deduce the same facts for T (r)flE∗, (T (r)flE)∗ and (T (r)flE∗)∗

instead of T (r)flE. Using similar methods we remark the same results for
T [r]flE instead of T (r)flE. The above result shows that T (r)fl is more rigid
than their full version T (r) because we have (r + 2)-linearly independent
natural operators lifting vector fields to T (r), see [4].
Natural operators lifting vector fields are used practically in all papers in
which problem of prolongations of geometric structures was studied. That
is why such natural operators are classified in papers [1], [2], [4], [5] and
others.
The trivial vector bundle Rm ×Rn over Rm with standard fiber Rn will
be denoted by Rm,n. The coordinates on Rm will be denoted by x1, . . . , xm.
The fiber coordinates on Rm,n will be denoted by y1, . . . , yn.
All manifolds are assumed to be finite dimensional and smooth. Maps
are assumed to be smooth, i.e. of class C∞.

1. The vector (r)-tangent bundle functor. Given a VBm-object p :
E → M the vector (r)-tangent bundle T (r)flE of E is the vector bundle

T (r)flE = (Jr
fl(E,R)0)∗

over M , where

Jr
fl(E,R)0 = {jr

xγ | γ : E → R is fiber linear, γx = 0, x ∈ M}.

Every VBm-map f : E1 → E2 covering f : M1 → M2 induces a vector
bundle map T (r)flf : T (r)flE1 → T (r)flE2 covering f such that〈

T (r)flf(ω), jr
f(x)ξ

〉
= 〈ω, jr

x(ξ ◦ f)〉 ,

ω ∈ T
(r)fl
x E1, jr

f(x)ξ ∈ Jr
fl(E2,R)0, x ∈ M1.

The correspondence T (r)fl : VBm → VBm is a fiber product preserving
gauge bundle functor.

2. The vector [r]-tangent bundle functor. Given a VBm-object p :
E → M the vector [r]-tangent bundle T [r]flE of E is the vector bundle
T [r]flE = E⊗(Jr(M,R)0)∗ overM . Every VBm-map f : E1 → E2 covering
f : M1 → M2 induces (in obvious way) a vector bundle map T [r]flf :
T [r]flE1 → T [r]flE2 covering f .
The correspondence T [r]fl : VBm → VBm is a fiber product preserving
gauge bundle functor.
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Remark 1. The bundle T (r)M = (Jr(M,R)0)∗ is called the vector (r)-
tangent bundle of a manifoldM , see [2]. This justifies the name (r)-tangent
bundle of a vector bundle. One can show that T (r)flE and T [r]flE have
a very similar construction and that only T (r)flE and T [r]flE admit this
construction, see [3]. This justifies the name [r]-tangent bundle of a vector
bundle.

3. Examples of natural operators Tlin|VBm,n
 TT (r)fl. Let p : E →

M be a VBm,n-object. A projectable vector field X on E is called linear if
X : E → TE is a vector bundle map from p : E → M into Tp : TE → TM .
Equivalently, the flow FlXt of X is formed by VBm,n-maps. The space of
linear vector fields on E will be denoted by Xlin(E).
A natural operator A : Tlin|VBm,n

 TT (r)fl is an VBm,n-invariant family
of regular operators A : Xlin(E) → X (T (r)flE) for any VBm,n-object E.
The VBm,n-invariance means that for any VBm,n-map f : E1 → E2 and
any f -conjugate linear vector fields X and Y on E1 and E2 the vector
fields A(X) and A(Y ) are T (r)flf -conjugate. The regularity means that
A transforms smoothly parameterized families of linear vector fields into
smoothly parameterized families of vector fields.

Example 1. (The flow operator) Let X be a linear vector field on a VBm,n-
object p : E → M . The flow FlXt of X is formed by VBm,n-maps on E.
Applying functor T (r)fl we obtain a flow T (r)fl(FlXt ) on T (r)flE. The vector
field T (r)flX on T (r)flE corresponding to the flow T (r)fl(FlXt ) is called the
flow prolongation of X. The correspondence T (r)fl : Tlin|VBm,n

 TT (r)fl,
X → T (r)flX, is a natural operator.

Example 2. (The Liouville vector field) Let p : E → M be a VBm,n-
object. Let L be the Liouville vector field on the vector bundle T (r)flE,
Ly = y ∈ T

(r)fl
x E ∼= Ty(T

(r)fl
x E) ⊂ TyT

(r)flE, y ∈ T
(r)fl
x E, x ∈ M . The

correspondence L : Tlin|VBm,n
 TT (r)fl, X → L, is a natural operator.

4. A classification theorem. We have the following classification theo-
rem.

Theorem 1. Let r ≥ 1, m ≥ 2 and n ≥ 1 be integers. Any natural operator
A : Tlin|VBm,n

 TT (r)fl is a linear combination with real coefficients of the
flow operator T (r)fl and the Liouville vector field L.

The proof of Theorem 1 will occupy the Sections 5–8. As a corollary we
obtain

Corollary 1. Let r ≥ 1, m ≥ 2 and n ≥ 1 be integers. Any natural linear
operator A : Tlin|VBm,n

 TT (r)fl is a constant multiple of the flow operator.



92 J. Kurek and W.M. Mikulski

5. A reducibility lemma.

Lemma 1. Let A : Tlin|VBm,n
 TT (r)fl be a natural operator. The opera-

tor A is uniquely determined by the restriction Ã = A
(

∂
∂x1

)
|T (r)fl

0 Rm,n of

A
(

∂
∂x1

)
to the fibre T

(r)fl
0 Rm,n of T (r)flRm,n over 0 ∈ Rm.

Proof. The lemma follows standardly from the regularity and invariance
of A with respect to VBm,n-morphisms and the fact that any linear vector
field X on p : E → M covering a non-vanishing vector field on M is locally
VBm,n-conjugate with ∂

∂x1 . �

6. A decomposition lemma.

Lemma 2. Let A : Tlin|VBm,n
 TT (r)fl be a natural operator. Then there

exists α ∈ R such that A− αT (r)fl is a vertical type operator.

Proof. Put ˜̃A = Tπ ◦ Ã : T
(r)fl
0 Rm,n → T0Rm, where Ã is as in Lemma 1

and π : T (r)flRm,n → Rm is the bundle projection.
Using the invariance of A with respect to the fiber homotheties bτ for τ 6=

0 and then putting τ → 0 we see that ˜̃A(y) = ˜̃A(0) for any y ∈ T
(r)fl
0 Rm,n.

Write ˜̃A(0) =
∑

i αi

(
∂

∂xi

)
0
for some αi ∈ R, i = 1, . . . ,m. Using the

invariance of A with respect to aτ = (x1, τx2, . . . , τxm, y1, . . . , yn) for τ 6= 0
we deduce that α2 = · · · = αm = 0. Then ˜̃A(y) = α

(
∂

∂x1

)
0
for any y ∈

T
(r)fl
0 Rm,n, where α = α1. Then (A−αT (r)fl)

(
∂

∂x1

)
|T (r)fl

0 Rm,n is vertical.
Then A− αT (r)fl is vertical because of Lemma 1. �

Replacing A by A− αT (r)fl, where α is from the decomposition lemma,
we can assume that A is a vertical type operator.

7. Some preparation.

Lemma 3. Let m ≥ 2, n ≥ 1 and r ≥ 1 be integers. Let A : Tlin|VBm,n
 

TT (r)fl be a natural operator of vertical type. Define a map A : T
(r)fl
0 Rm,n→

T
(r)fl
0 Rm,n by

(1) Ã(y) = (y, A(y)) ∈ T
(r)fl
0 Rm,n × T

(r)fl
0 Rm,n ∼= (V T (r)fl)0Rm,n ,

y ∈ T
(r)fl
0 Rm,n, where Ã is as in Lemma 1. Then A is uniquely determined

by A. Moreover, A is linear and the dual map B = (A)∗ : (T (r)fl
0 Rm,n)∗ →

(T (r)fl
0 Rm,n)∗ satisfies the following conditions.

(i) For any local VBm,n-map f : Rm,n → Rm,n preserving germ0

(
∂

∂x1

)
(2) (T (r)fl

0 f−1)∗ ◦B = B ◦ (T (r)fl
0 f−1)∗ .
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(ii) For any β ∈ (N ∪ {0})m with 1 ≤ |β| ≤ r and l = 1, . . . , n

(3) B(jr
0(x

βyl)) =
n∑

k=1

∑
1≤|σ|≤|β|

cβ,l,k
σ jr

0(x
σyk)

for some cβ,l,k
σ ∈ R, where the second sum is over all σ ∈ (N∪{0})m

with 1 ≤ |σ| ≤ |β|.

Proof. Since Ã is uniquely determined by A, A is uniquely determined by
A because of Lemma 1.
For any t ∈ R define At : T

(r)fl
0 Rm,n → T

(r)fl
0 Rm,n by A

(
t ∂
∂x1

)
(y) =

(y, At(y)), y ∈ T
(r)fl
0 Rm,n. Clearly A = A1. By the invariance of A with

respect to the fiber homotheties we get the homogeneous condition At(τy) =
τAt(y) for any y ∈ T

(r)fl
0 Rm,n and τ 6= 0. So, At is linear because of the

homogeneous function theorem. In particular A is linear.
From the invariance of A with respect to a VBm,n-map f : Rm,n → Rm,n

preserving germ0

(
∂

∂x1

)
we obtain (2).

Let β ∈ (N ∪ {0})m with 1 ≤ |β| ≤ r and l = 1, . . . , n. We can write

(At)∗(jr
0(x

βyl)) =
n∑

k=1

∑
1≤|σ|≤r

cβ,l,k
σ (t)jr

0(x
σyk)

for some smooth maps cβ,l,k
σ : R → R. By the invariance of A with respect to

the base homotheties (τx1, . . . , τxm, y1, . . . , yn) we obtain the homogeneous
condition cβ,l,k

σ (τt) 1
τ |β|

= cβ,l,k
σ (t) 1

τ |σ|
for τ 6= 0. Then cβ,l,k

σ = 0 if |σ| >

|β|. �

8. The main lemma. By Lemma 3, A is uniquely determined by A. So,
Theorem 1 will be proved after proving the following lemma.

Lemma 4. Let r ≥ 1, m ≥ 2 and n ≥ 1 be integers. Suppose that B :
(T (r)fl

0 Rm,n)∗ → (T (r)fl
0 Rm,n)∗ is a linear map satisfying the conditions (i)

and (ii) of Lemma 3. Then there is γ ∈ R such that B = γid
(T

(r)fl
0 Rm,n)∗

.

Proof. We start with a preparation.
Let α ∈ (N ∪ {0})m, |α| = r, l = 1, . . . , n. We prove that

(4) B(jr
0(x

αyl)) = cjr
0(x

αyl)

for some real number c (independent of α and l).
For, we write

(5) B(jr
0((x

1)ry1)) =
n∑

k=1

∑
1≤|σ|≤r

ck
σjr

0(x
σyk)
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for some ck
σ ∈ R. By the invariance of A with respect to (locally defined)

(x1, . . . , xi−1, xi + τ(x2)2, xi+1, . . . , xm, y1, . . . , yn)−1 for τ ∈ R and i =
1, . . . ,m (see condition (i)) we obtain

B(jr
0((x

1)ry1)) =
∑

k

∑
σ

(ck
σjr

0(x
σyk) + τσic

k
σjr

0(x
σ−ei+e2+e2yk) + . . . ) ,

where the dots is the finite sum of monomials in τ of degree ≥ 2. Then

(6) ck
σ = 0 for 1 ≤ |σ| < r .

More, by the invariance of B with respect to (x1, . . . , xm, y1, τy2, . . . , τyn)
(see condition (i)) for τ 6= 0 we deduce that

(7) ck
σ = 0 for k 6= 1 .

Then by (5), (6) and (7) and the invariance of B with respect to (x1, τx2,
. . . , τxm, y1 , . . . , yn) (see condition (i)) we deduce that

(8) B(jr
0((x

1)ry1)) = cjr
0((x

1)ry1)

for c = c1
(r,0,...,0) ∈ R. Then using the invariance of B with respect to

(x1 + τ2x2 + · · · + τmxm, x2, . . . , xm, y1, . . . , yn)−1 for τ2, . . . , τm ∈ R (see
condition (i)) we get

(9)
B(jr

0((x
1 + τ2x2 + · · ·+ τmxm)ry1))

= cjr
0((x

1 + τ2x2 + · · ·+ τmxm)ry1) .

Both sides of (9) are polynomials in τ2, . . . , τm. Considering the coefficients
of the polynomials in (τ2)α2 , . . . , (τm)αm we get

(10) B(jr
0(x

αy1)) = cjr
0(x

αy1) .

Then using the invariance of B with respect to the permutations of fibered
coordinates (see condition (i)) we get (4).
Now, we will proceed by the induction with respect to r.
The case r = 1.
The Lemma 4 for r = 1 follows from (4) for r = 1.
The inductive step.
By (4) we have a linear map

[B] : (T (r−1)fl
0 Rm,n)∗ → (T (r−1)fl

0 Rm,n)∗

factorizing B.
By the assumptions (i) and (ii) of B we see that [B] satisfies the conditions
(i) and (ii) for r − 1.
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Then, by the inductive assumption,

(11) [B] = γid
(T

(r−1)fl
0 Rm,n)∗

for some γ ∈ R. It remains to prove that B = γid
(T

(r)fl
0 Rm,n)∗

, where γ is as

above. By the assumption (ii) on B and by the equality (11) we have that

(12) B(jr
0(x

βyl)) = γjr
0(x

βyl)

for any β ∈ (N ∪ {0})m with 1 ≤ |β| < r and l = 1, . . . , n
So, it remains to prove that for any α ∈ (N ∪ {0})m with |α| = r and

l = 1, . . . , n we have

(13) B(jr
0(x

αyl)) = γjr
0(x

αyl) .

So, by (4) it remains to prove that c = γ, where c is as in (4). Using (12)
for β = (r − 1, 0, . . . , 0) ∈ (N ∪ {0})m and the invariance of B with respect
to (x1 + (x2)2, x2, . . . , xm, y1, . . . , yn)−1 (see condition (i)) we deduce that

(14) B(jr
0((x

1)r−2(x2)2yl)) = γjr
0((x

1)r−2(x2)2yl) .

Then from (14) and (4) with α = (r− 2, 2, 0, . . . , 0) we get that c = γ. The
inductive step is complete.
The proof of Theorem 1 is complete. �

9. Some versions of Theorem 1. In this section we present some ver-
sions of Theorem 1. We start with the following proposition.

Proposition 1. Let A be a VBm,n-natural operator lifting a linear vector
field X on a vector bundle E into a vector field A(X) on T (r)flE (or T (r)flE∗

or (T (r)flE)∗ or (T (r)flE∗)∗). Then A(X) is a linear vector field on T (r)flE

(or T (r)flE∗ or (T (r)flE)∗ or (T (r)flE∗)∗) for any linear vector field X on
E.

Proof. It is easy to see this forX = ∂
∂x1 . (More precisely, the flow of A( ∂

∂x1 )
is invariant with respect to the fiber homotheties of T (r)flRm,n because of

∂
∂x1 is invariant with respect to the fiber homotheties of Rm,n.) Next we use
the same arguments as in the proof of Lemma 1. For T (r)flE∗, (T (r)flE)∗

and (T (r)flE∗)∗ instead of T (r)flE we use the same method. �

There is a natural involution (dualization) ()∗ : VBm,n → VBm,n, E →
E∗, f → (f−1)∗. So, using Proposition 1 and Theorem 1 we obtain easily
the following versions of Theorem 1.
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Theorem 2. For m ≥ 2, n ≥ 1 and r ≥ 1 any VBm,n-natural operator
lifting a linear vector field X on E into a vector field A(X) on T (r)flE∗ is a
linear combination of T (r)flX∗ and the Liouville vector field L on T (r)flE∗,
where X∗ is the dual to X linear vector field on E∗ (if ft is the flow of X,
then (f−1

t )∗ is the flow of X∗).

Theorem 3. For m ≥ 2, n ≥ 1 and r ≥ 1 any VBm,n-natural operator
lifting a linear vector field X on E into a vector field A(X) on (T (r)flE)∗ is a
linear combination of (T (r)flX)∗ and the Liouville vector field on (T (r)flE)∗.

Theorem 4. For m ≥ 2, n ≥ 1 and r ≥ 1 any VBm,n-natural operator
lifting a linear vector field X on E into a vector field A(X) on (T (r)flE∗)∗

is a linear combination of (T (r)flX∗)∗ and the Liouville vector field L on
(T (r)flE∗)∗.

10. The natural operators Tlin|VBm,n
 TT [r]fl. Quite similarly as

VBm,n-natural operators A : Tlin|VBm,n
 TT (r)fl one can define VBm,n-

natural operators A : Tlin|VBm,n
 TT [r]fl lifting a linear vector field X

from a vector bundle E into a vector field A(X) on T [r]flE.
Using the same proofs as in Sections 5–8 with T [r]fl instead of T (r)fl (in
particular with yl

0 ⊗ jr
0x

α instead of jr
0(x

αyl)) one can obtain the following
classification theorem.

Theorem 5. Let r ≥ 1, m ≥ 2 and n ≥ 1 be integers. Any natural operator
A : Tlin|VBm,n

 TT [r]fl is a linear combination with real coefficients of the
flow operator T [r]fl and the Liouville vector field L.

As a corollary one can obtain.

Corollary 2. Let r ≥ 1, m ≥ 2 and n ≥ 1 be integers. Any natural linear
operator A : Tlin|VBm,n

 TT [r]fl is a constant multiple of the flow operator.

One can deduce the following versions of Theorem 5.

Theorem 6. For m ≥ 2, n ≥ 1 and r ≥ 1 any VBm,n-natural operator
lifting a linear vector field X on E into a vector field A(X) on T [r]flE∗ is a
linear combination of T [r]flX∗ and the Liouville vector field L on T [r]flE∗.

Theorem 7. For m ≥ 2, n ≥ 1 and r ≥ 1 any VBm,n-natural operator
lifting a linear vector field X on E into a vector field A(X) on (T [r]flE)∗ is a
linear combination of (T [r]flX)∗ and the Liouville vector field on (T [r]flE)∗.

Theorem 8. For m ≥ 2, n ≥ 1 and r ≥ 1 any VBm,n-natural operator
lifting a linear vector field X on E into a vector field A(X) on (T [r]flE∗)∗

is a linear combination of (T [r]flX∗)∗ and the Liouville vector field L on
(T [r]flE∗)∗.
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