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Natural affinors on time-dependent higher order
cotangent bundles

ABSTRACT. We study natural affinors on time-dependent natural bundles.
Then we determine all natural affinors on the time-dependent higher order
cotangent bundle T"*M x R.

1. Introduction. Recently, it has been pointed out that natural tensor
fields of type (1,1) (in other words affinors) play an important role in differ-
ential geometry. In particular, I. Kolar and M. Modugno have used natural
affinors to introduce the general concept of the torsion of a connection, [6].
Using such a point of view, it is useful to classify all natural affinors on some
natural bundles. Such an approach has been used e.g. in [3], [4] and [6].
Further, non-autonomous Lagrangian dynamics can be considered as an
extension of autonomous Lagrangian dynamics by introducing the addi-
tional time coordinate. For example, M. de Leén and R. P. Rodrigues have
introduced the concept of time-dependent (or dynamical) connection, [10].
Quite analogously, one can define dynamical vector fields, affinors, sprays
and other structures. M. Doupovec and I. Kolai have classified all na-
tural affinors on time-dependent Weil bundles, [2]. It is well known that
Weil algebras and Weil functors generalize many geometric structures and
constructions. In particular, there is a complete description of all product
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preserving functors on the category of all smooth manifolds and all smooth
maps in terms of Weil functors, [7].

The aim of this paper is twofold. First, we study natural affinors on time-
dependent natural bundles from a general point of view. In Example 2 we
introduce the new natural affinor on a time-dependent natural bundle, which
was not included in [2]. Second, we classify all natural affinors on time-
dependent higher order cotangent bundles. We remark that such bundles
are used e.g. in higher order mechanics, [14]. In this paper we essentially
use the results [8] and [9] of J. Kurek.

All manifolds and maps are assumed to be infinitely differentiable.

2. Natural affinors on time-dependent bundles. In general, an affi-
nor on a manifold M is a tensor field of type (1,1) on M, which can be
interpreted as a linear morphism T'M — T M over the identity of M. By the
Frolicher—Nijenhuis theory, affinors are exactly tangent-valued one-forms on
M, i.e. sections from C*°(T'M®T*M). Given a fibered manifoldp : Y — M,
an affinor QQ on Y is called wertical, if (Q has values in the vertical bundle
VY, ie. Qe C®(VY @T*Y).

Further, let T*M C T*Y be the canonical inclusion of cotangent bun-
dles. By [11], vertical affinors of the form Q € C*°(VY ® T*M) are called
soldering forms. Let F' be a natural bundle £’ on the category M f,, of all
m-~dimensional manifolds and their local diffeomorphisms. We recall that a
natural affinor on a natural bundle F' is a system of affinors Qur : TFM —
TFM for every m-manifold M satisfying TF f o Quy = Qn o TF f for every
local diffeomorphism f : M — N. An example of a natural affinor is the
classical almost tangent structure on T'M.

Definition 1. The time-dependent natural bundle Fr corresponding to the
natural bundle F' is defined by FrM = FM x R for every m-dimensional
manifold M and by Frf = Ff x Idg : FrM — FrN for every local diffeo-
morphism f: M — N.

Clearly, the time-dependent natural bundle F generalizes the well known
time-dependent tangent bundle TM x R and also the time-dependent Weil
bundle Tg' from [2], if we restrict Tj' to the category M f,.

In what follows we introduce some examples of natural affinors on time-
-dependent bundles.

Example 1. For any natural bundle F' we have three simple constructions
of natural affinors on Fr. First, every natural affinor ) on F' induces a
natural affinor @ on F by means of the product structure F'M x R. Quite
analogously, the identity Idrr of TR determines another affinor Idrgr on Fg.
The third type of natural affinors on Fg can be defined by tensor products

X ® dt of absolute vector fields on F'M with the canonical one-form dt on
R.
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We recall that an absolute vector field can be interpreted as an absolute
natural operator transforming vector fields on M into vector fields on FM,
[7]. Clearly, absolute vector fields are natural in the following sense.

Definition 2. A natural vector field X on natural bundle F' is a system
of vector fields Xy : FM — TFM for every m-manifold M satisfying
TFfoXy =XyoFf for all local diffeomorphisms f: M — N.

If F is a natural vector bundle, then the classical Liouville vector field
Lpyr on FM is natural. Clearly, Ly is generated by the one-parameter
family of homotheties. More generally, let ®(¢) be a smooth one-parameter
family of natural transformations F' — F', where smoothness means that the
map ®(t)y : FM x R — FM is smooth for every manifold M. Then the
formula X = % ‘0 ®(t) s defines a natural vector field Xp; : FM — TFM.

By [7], every natural vector field X on F' is vertical. This yields that
natural affinors X ® dt on Fr from Example 1 are soldering forms.

Example 2. Let F' be a natural vector bundle and let f be a natural
function on TF. We recall that this is a system of functions fy; : TFM — R
for every m-dimensional manifold M satisfying fis = fv o T Fp for all local
diffeomorphisms ¢ : M — N. Denote by mwp; : FM — M the bundle
projection and by pys : TM — M the tangent bundle projection. For any
X € TIrM = TFM x TR we have pp (X)) € Fr M, pri(ppoam (X)) € FM
and z := ma(pri(prm (X)) € M. Let s : M — FM be a zero section.
Then the cartesian product of s(z) with fas(pri1(X)) defines an element

R(X) :=s(z) x fp(pri(X)) € FM xR = Fr M.

As FM is a vector bundle, FrM is a vector bundle too. For X € TFrM
we have

P(X) = (pF]RM(X)aR(X)) S (FRM @FRM) EVFIRM C TFrM.
This defines a natural affinor P on FrM.

We remark that natural affinors from Example 2 did not appear in the
description of all natural affinors on time-dependent Weil bundles, [2]. We
also point out that the classical Liouville one-form of the cotangent bundle
T*M is the simplest example of a natural function on TT™.

It is well known that natural affinors play a significant role in the theory
of torsions of connections. In particular, if we interpret a general connection
I': FM — J'FM as its horizontal projection (denoted by the same symbol)
I': TFM — TFM, we obtain an affinor on F. Further, I. Kolai and M.
Modugno introduced the generalized torsion of I' as the Frolicher—Nijenhuis
bracket [I', Q] of I with some natural affinor @ on F', [6]. Such an approach
has been used e.g. in [3], [4] and [6]. There are also many papers which
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classify all natural affinors on some natural bundles, see [5], [8], [12] and
[13].

Denote by T4 the Weil functor corresponding to a Weil algebra A, [2]. By
the general theory, every product preserving functor F' on the category M f
of all smooth manifolds and all smooth maps is the Weil functor F = T4,
where A = FR. M. Doupovec and I. Kolaf have determined all natural
affinors on the time-dependent Weil bundle T M, [2]. Tt is interesting to
point out that all natural affinors on Tﬂ‘g‘M are generated only by affinors
from Example 1. Using this result, M. Doupovec has described torsions of
dynamical connections on time-dependent Weil bundles, [1].

Further, natural affinors on time-dependent higher order tangent bundles
were determined by I. Kolar and J. Gancarzewicz, [5]. Such affinors are also
generated only by three affinors from Example 1.

3. Natural affinors on time-dependent higher order cotangent bun-
dles. Let M be a smooth m-dimensional manifold and denote by T"*M =
J"(M,R)o the space of all r-jets from M into R with target 0. Every local
diffeomorphism f : M — N can be extended to a vector bundle morphism
T f : T™*M — T™N by jle — j;;(m)(gp o f~1), where f~! is constructed
locally. Then mp; : T"*M — M is a natural vector bundle which is called
the r-th order cotangent bundle. Clearly, T'*M = T*M is the classical
cotangent bundle.
Denote by
g T M — T*M

the bundle projection defined by qus (j2f) = jilf . If X € TT"™* M, then
Try(X) € TM and qu(pre=a (X)) € T*M. So we can define a map

A TT™M — R, Ay (X) = (qum (prem (X)), T (X)),

which is called the generalized Liouville form on T7* M.

Further, let A} : T™*M — T" M be the s-th power natural transforma-
tion defined by A%(j2f) = j2(f)*®, where (f)® denotes s-th power of f. Since
wy 2 T™*M — M is a vector bundle, the vertical bundle VI™ M can be
identified with the Whitney sum T7*M & T™* M. Using this identification
we can define natural affinors Q3, : TT"™M — VT" M by

Q3(X) = (prrar(X), Anr (X) AS(prrens (X))

In what follows we will use the following results, which were proved by
J. Kurek.

Lemma 1 ([8]). All natural affinors on the r-th order cotangent bundle
T™M are of the form

koldprpn + k1Qh, + -+ + k.Qhy, ki € R.
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Lemma 2 ([9]). All natural transformations T™*M — T"™ M are of the
form
kAT + -+ kAL ki eR

Multiplying the s-th power transformation A7 by a real number ¢, we
obtain a smooth one-parameter family of natural transformations (tA}) :
T™*M — T™ M. This generates a vector field Ly : T"*M — VIT™ M by

Ls(u) = % ) (u+tAL(u)).

Clearly, L; is the classical Liouville vector field on T™* and L, can be also
defined by Ls(u) = (u, A% (u)).

Using Example 1 and Example 2, we have four types of natural affinors
on the time-dependent bundle Tp*M = T"* M x R:

I) Each natural affinor on 7"*M from Lemma 1 induces a natural affinor
on T*M by means of the product structure. In this way we obtain natural

affinors @}V[, ey @3\4 and }?ZTT*M.
IT) The identity of TR induces a natural affinor TCJZR on Tp*M.

IIT) Natural vector fields Ly : T™*M — TT"™ M induce natural affinors
(Ls ® dt) on T*M.

IV) Clearly, the generalized Liouville form Ay, : TT™ M — R is a natural
function on TT™ M. By Example 2, this natural function determines a
natural affinor P on Tp*M.

In the rest of this paper we prove that natural affinors from I-IV generate
all natural affinors on Tp*M. We first introduce the coordinate form of
affinors from I-1V.

The canonical coordinates (z°) on M induce the additional fiber coordi-
nates (u;, Wij, ..., Ui 4,) on T"*M, which are symmetric in all indices, [4].
Denoting by ¢ the coordinate on R, the coordinates on TTR*M are of the
form

(2t ug, . Uy, X = da’, T = dt, Uy = duy, . .., Usy..i, = dusg,..,).
Clearly, we have
Tdprep(da?, dt, dug, . . . dug, i) =(dz’, 0, dug, . . ., dug, ;)
Idg(da’,dt, du;, . .., du;,..; ) =(0,dt,0,...,0).

Obviously, the generalized Liouville form Ay, has the coordinate expres-
sion u;dz*. Then

P(dx’,dt,du;, . .., du;,..i,) = (0,u;dz?,0,...,0).
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J. Kurek has computed the coordinate form of affinors Q}W, ..., Q% on
T™ M. Using [8], we have

QY (da?, dt, dus, . . ., dug,...i,) = (0,0, wiugda? | gy ugda?)

Qv}q\/[(d.’xl, dt, dui, ce ,duil...ir) = (O, O, O, ce ,uil...isujdxj 5
(s+1)!

(5 - 1)!2! (i u25—1u1513+1)u1d$ IR

r!
(s —Dr—s+1)!

Uy " Wiy U..g, ) UG )

Qhy(dat, dt, dug, . .., dug,..i,) = (0,0,0,...,0,us - - ugujda’ ),

where (7; - - - i,) denotes the symmetrization.
Finally, the natural vector field Lg is of the form

0 T rl o
i1 is Oy ...i, (s —1)(r—s+1) (i1 is—1 WUigiy)

Ly=u >
8ui1.‘.ir

see [4]. So we have

(L1 @ dt)(da’, dt, dug, . . ., dug,..q,) = (0,0, udt, ... ui,..q.dt)

(Lr & dt)(dl‘l, dt, dug, . .. ,duil.l.ir) = (0, 0,0,...,0,u;,uiy -+~ Uirdt).

Proposition 1. All natural affinors F" : TIp*M — TTp*M are of the
form

F = a(t)Idpenr + b(t)Idr + a1 (1)QYy + - + a,(t)Qy
+b1(t) L1 @dt+ - -+ + by (t) Ly @ dt + c(t) P,

where a(t), ..., c(t) are arbitrary smooth functions of R.

Proof. Denote by G}, the group of all invertible r-jets of R™ into R™
with the source and the target zero. By the general theory, [7], it suffices to
find all G !-equivariant linear maps T(T*R™)o — T(TF*R™) of standard
fibers. ‘

Let (a%,ajy,...,aj;, ;) be the coordinates on G, and denote by a tilde
the inverse element. By standard evaluations we find the action of G/ on
the standard fibre T'(T*R™)o
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= _ =]
(1) U = a;u;
= . _~jid2, 4 ~g1
(2) Wiyig = a’il aig u]l]Q + a’i1i2ujl
= . _ =N ~Jr, ..
Uiy ...ip, = G, - - .ai:uﬂ._.jr
| . . .
rl
~J1 ~Jr—2~Jr—1 o
(3) Ty e G g
4ot Tila’jlaﬁ 4. u“—i-’dj Ui
(7, o 1)!1! (31 P2 ir) 7172 1oty
(4) X' = a,;-Xj
(5) T=T
T7. =i sd kvl
(6) Ui = a;Uj + ayar X'y
T7. . — miizderr. . 4 =01 )
Uiyi, = a3, a;,Uj 5o + a3, Uj
(7) "’jl"’jQ k:Xl "’jQ"'jl k‘Xl "'jl k‘Xl
+ @, a0 X+ @, a; 0] Ujyjo + @ 4o AL 5 Ujy
. ) ] A , .
— r!
=g U I/ S P Lo LR o
U“"'“ =ay @, Ull"'“ + (7. _ 2!)2!a(i1 ip—2 ai'rflir)U-]l"']'rfl

7! i ~j
4+ 4+ |:(T._1)|1|a(111a7;“) + - :| U]l]z

~J ~J1 ~jr k3l
(8) + a’i1~~~Z7’Uj1 + |:ai1k e airal X"+ ] Ujyooj,
+ 7‘7!5]-1 __.’C‘ij'r72’c‘ijrfl CLle—l-"- Wi 4.
(7“ _ 2)!2! (i1k tr—2 Vip_1ip) 1 1 gr—1
| o _
T
~J1 =1 kyl o ~J1 k~l,, .
+ |:(T_1)!1!a(i1kai2mir)al X'+ :| Uy jo + ailmirkal X Ujy -

Write u = (us, Uij, . - ., sy ..i,.). Any linear map of the standard fibre into
itself has the form

9) T =aj(t,u)X? + B(t, )T + A (t,u)Uj + - - + AV (8, u)Uj, . j,

(10) X' =i(t,u) X7 + 8 (t,u)T + BI(t,u)Uj + -+ BI9 (t,u)Uj, .,
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(11) Ui = i (t, w) X7 +Ci(t, w) T+C (t, w)Uj+- -+ C 77 (t,u) Uy, g

(12) Uil"'ir = Niqervipj (t, U)Xj + Ci1~~~ir (t, U)T + Czjllr (t, U)Uj
+oe CIT () Uy,

i1ty

Considering equivariancy of (9) with respect to the homotheties aé- = ké;
we obtain

1 1 1
E Otj(t, Ugy o - - ,uil...iT) = Oéj t, Eui, ey ﬁuil...ir
1 1
Bt Wiy .oy Uiyi) = <t, PACIEREE kruil'“ir>

. 1. 1 1
Al (t, Wiy ooy Wigorgy,) = —A7 (t, %ui, RN kruil"'ir)

i 1 . 1 1
Al ]T(t, Ujy .- ,uil...iT) = FAjl Jr <t, Eui, RN kTu““) .

By the homogenous function theorem from [7] we compute o (¢, u) = a(t)u;,
B(t,u) = B(t), AJ(t,u) = 0, AI(t,u) = 0. Thus (9) can be written in
the form

(13) T = a(t)u; X7 + B()T.
Quite analogously we prove
(14) X' =~(t)X".

Further, equivariancy of (11) implies
1 1 1
ﬁ nij(t7 (7P ,uil...iT) = nij t, EUZ‘, ey ﬁuil...”

1 1 1
E Ci(t, Uiy oo - ,uil...ir) = Cz <t, %’U,i, ey kru““>
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k

- 1 1 1
CZ-JUZ (t, (7P ,uil...ir) = -0 <t, %ui, ey kruil'”i’“>

. . 1 1
Cz] (t, (272 ,uil...ir) = CZ <t, Uiy e vy k.ruil”'if">

|
Q
o
=
o
V)

1 1
Cgll Z]T(t Uiy - - vuir"ir) = k: i1y < %ui, ce kruil'“ir> .
Using the homogenous function theorem we obtain
(15) U; = ( 17]z‘j(t)uij + 277ij(t)uiuj) X7+ CHw,T+C(t)U; .

Finally, the equivariancy of (12) leads to following relations:

1 1 1
L+l nil"'irj(tv Ugyov vy Ugy.. zr) Miy-evirj t, Ui, ey ?uil'“ir
1 1 1
k‘r C’Ll i (t Ujy ooy Uy - Zr Czl iy (t, E . kjru““)
1 1
ki i1 zr(t ’U,Z,...,’U/il..zr 11 ip t,E “'7ﬁui1"'ir
J1j2 Jij2 1 1
]{? Czl iy (t Ugy o o vy Ugq ... Z'r Cll i t: % ey Euil”'ir

1 1
Jig J1-J
Cll Zr(t ul,...,uil...ir) Cz1 ZT < ,%ui,...,ﬁuil...ir .

By the homogenous function theorem, the function 7;,...;,; is a sum of the
polynomials of degree as in u;,..;, satisfying the relation

r+1=a; +2as+---+ra,.

This has the following solutions:

ag=r+laa=---=a=0
ap=r—1l,aa=1la3=---=a,=0
ap=r—2,a3=1,aa=---=a, =0
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so that 7;,..;,; can be written in the form

iy orrin (b W) = 2Ny () Uiy Wiy - - - Ui, U5
+ 11 iy i () U2 - UG U
+ 1,20y i () U1 T2 - Uiy UG, U
+ o 1My () Wiy i -
By similar computations we find the expression of (;,...;,., Cz‘jl---w cee Cgll.','_'i]:
and we obtain
Usiyoip = [rMigeein (E) Wiy Wiy -+ - U, 0
F 11y iy (O) U2 Uy U
+ 1,27 i (E) U2 Uiy Ui, U i
o i (D)) X7
+ [ Cipiy Bty - i, + 1 Gyt (B UGy - Ui Ui, i)
+ oo+ 1y (t)uil.‘.“] T

+ |:'r*—]_C',‘L7127 (t)(s(’LlluZQ e uzr)

iy ooy

e OIS

i1ein

1 Jr 1.
s 51; Uiyoi, -

)

We first prove our assertion for » = 2. Formulas (13)—(16) for r = 2 are
of the form

(17) T = at)uu X* + ()T

(18) X' =~t)X'

(19) Ui = (1mie(t)uik + 2man()wsug) X5 + C(O)uT + Ct) U;

Uij = (omie(O)usujug + 11755 (O wijue + 12m65k (0 ugugy,
(20) + 1k (O uie) X* 4 (oG (Buing + 16 (Hui;) T
+ C' (1) uy Uy + CY (1)U -

The equivariancy of (19) with respect to the kernel of the jet projection
G? — Gl given by aj = 6; and ajy, arbitrary leads to relations

C(t) =~(t), 11k =0
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so that (19) is of the form
(21) U; = ni(Ousup X5 + G(OwT 4+ ~(t) Us

Finally, the equivariancy of (20) with respect to the kernel of the jet pro-
jection G2, — G} given by aj = 0; and ajy, ajy, arbitrary leads to relations

C' =0, CU(t) = y(t), 1G;(t) = G(1),

1,175k (t) = mi(t), 1Mk = 0, 1,2M55% = O,
so that (20) is of the form

Uij = mij (Ousujue X* + n; () uzjupX® + G (H)uu; T

(22)
+ ((t)ui; T +~v()U;j

Hence we have proved

F? = a(t)f;iTTQ*M + b(t)ﬁTR +a1(H)Qy + as(H) Q3

(23)
+ by (t)(Ll & dt) + b2(t)(L2 &® dt) + C(t)P,

where

a(t) =~(t), b(t) = B(t), ar(t) = mi(t), az(t) = ni;(t)
bi(t) = Gi(t), ba(t) = Gi5(t), c(t) = a(t).

This proves our proposition for » = 2. To finish the proof, we will use
the induction with respect to r. Suppose now, that our proposition is true
for r — 1, i.e.

P! = a(t) Ty + () Tdrz + ar ()@l + -~ ar1 () Q7

(24)
+b01(t) (L1 @dt) + -+ br—1(t)(Lyr—1 @ dt) + c(t)P.

Using the homogenous function theorem we deduce easily that the com-
ponents of F" at T, X, U, ..., U;, ..., are exactly the corresponding com-
ponents of F"~!. That is why it suffices to determine the last (r + 2)-th
component of F", which is given by (16). The equivariancy with respect to
the kernel of the projection GTF1 — Gl leads to the relations

CHdr(t) = alt), €L, (t)=-=CIT (@) =0,
17i-irj (8) = a1(t), s—117i,- w(t) = as—1(t) where s = 2,...,r,
s—1,2Miy-ir;(t) = 0 where s =2, ..., r,

P Miy-inj(t) = ap(t) is a new function,

1Ci1---ir( ) = ( ) Sflgil...ir (t) = bsfl(t) where s = 2, e, Ty

+Ciy-in (t) = by (t) is a new function.
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This completes the proof. O

Corollary 1. All natural affinors on the time-dependent cotangent bundle
TRM are of the form

.

(25) X' =a(t)X®
(26) Ul = al(t)uiuka + bl (t)UZT + CL(t) Ul
(27) T = c(t)up X" +b(t)T.

[10]

(11]

(12]
(13]

(14]
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